Koko: px
Aloita esitys sivulta:

Download "http://info.edu.turku.fi/mato/"

Transkriptio

1 Matemaattisia VALOja Vapaita avoimen lähdekoodin ohjelmia matematiikan opettamiseen ja muuhun matemaattiseen käyttöön.

2 LaTeX ja Texmaker LaTeX on ladontaohjelmisto, joka tuottaa ulkoasultaan erittäin ammattimaista jälkeä ja joka on erityisen hyvä matemaattisen tekstin ladonnassa. LaTeX-järjestelmän käyttö vaatii jonkin verran opettelua, koska sitä käytettäessä ladottava teksti kirjoitetaan LaTeXin omalla merkkauskielellä. Järjestelmässä sisältö kirjoitetaan ensin teksteditorilla raakatekstimuotoon, joka käännetään erikseen esimerkiksi pdf-tiedostoksi. Järjestelmän käyttöönotto vaatii siis hiukan työtä, mutta tulos on usein vaivan arvoista. MikTeX, TeXLive ja MacTeX ovat ohjelmistopaketteja, jotka kukin sisältävät toteutuksen LaTeX-järjestelmästä. MikTeX on usein Windows-ympäristössä käytettävä LaTeX-toteutus ja TeXLive puolestaan on useimmiten käytössä Linux- ja Unix-järjestelmissä. Mac OS X -järjestelmissä käytetään usein TeXLivestä johdettua MacTeX-pakettia. LaTeX-dokumentteja voi kirjoittaa millä tahansa tekstieditorilla, mutta useimmiten kannattaa käyttää jotain siihen tarkoitukseen tehtyä editoria. Eräs tällainen editori on Texmaker, josta löytyy sisäänrakennettuna monia LaTeXin käyttöä helpottavia ominaisuuksia, kuten dokumentin rakenteen näyttäminen puumaisena ja pikanappuloita erikoismerkeille, rakenteiden merkkauksille sekä dokumentin kääntämiselle. Lisäksi Texmaker sisältää näkymän dokumentin esikatselulle. Texmaker toimii Windows-, Linux- ja Mac OS X -alustoilla. LaTeX-dokumentteja voi kirjoittaa myöskin verkkopohjaisella editorilla asentamatta ohjelmia omalle koneelle: https://www.writelatex.com/ LaTeX: Lisenssi: LaTeX Project Public License Texmaker:

3 LyX LyX on tekstinkäsittelyohjelma, joka käyttää sivujen latomiseen LaTeX-ladontaohjelmaa, mutta jonka käyttöliittymä on helposti opittava ja käyttäjäystävällinen. Matematiikkan kirjoittaminen LyXillä on helppoa ja sitä voi vaivatta kirjoittaa suoraan muun tekstin sekaan. Matemaattiset merkit ja lausekkeet ovat kirjoitettavissa joko LaTeX-käskyjä tai helppoja pikanappuloita käyttäen. Ohjelma näyttää matematiikan suoraan oikeassa tulostettavassa muodossaan eikä lopputuloksen tarkastelu kesken kirjoittamisen vaadi erillistä kääntämistä. Kääntäminen tapahtuu vasta aivan lopuksi, kun halutaan dokumentista tulostettava versio. Tässä vaiheessa tiedostosta käännetään LaTeX-järjestelmää käyttäen kaunis pdf-tiedosto. LyX on saatavilla Windows-, Linux- ja Mac OS X -alustoille. Kotisivu:

4 GeoGebra GeoGebra on erittäin tunnettu ja laajalti käytetty työkalu geometristen konstruktioiden tekemiseen, esittämiseen ja opettamiseen. Siinä geometrinen kokonaisuus rakennetaan objekteista, joista osa on riippumattomia alkeisobjekteja, kuten pisteitä, ja osa alkeisobjekteista tai muista aiemmista objekteista riippuvia kuvioita, kuten pisteiden kautta kulkevia suoria, annettujen pisteiden avulla piirrettyjä ympyröitä tai kuvioiden leikkauspisteitä. GeoGebralla piirretyissä kuvioissa on usein ideana, että riippumattomia objekteja on mahdollisimman vähän ja näitä riippumattomia objekteja muokkaamalla koko kuvio elää ja päivittyy niiden mukana. Näin on helppoa havainnollistaa esimerkiksi kolmion "merkillisiä pisteitä" piirtämällä kuvio, jossa kolmion kulmapisteet ovat riippumattomia objekteja ja kaikki muut objektit, eli sivut, keskinormaalit, kulmanpuolittajat, leikkauspisteet jne. elävät kuvion mukana, kun kulmapisteitä siirretään. Geometristen kuvioiden piirtämisen lisäksi GeoGebralla voi piirtää erilaisten funktioiden kuvaajia sekä havainnollistaan taulukoista saatavia arvoja. GeoGebra on toteutettu Java-kielellä, joten se on käytettävissä monella alustalla, kuten Windows-, Linux- ja Mac OS X -ympäristöissä. GeoGebran voi käynnistää myös suoraan verkosta GeoGebran kotisivuilta, jolloin sitä ei tarvitse asentaa omalle koneelle. GeoGebralla on aktiivinen käyttäjäyhteisö, joka on luonut paljon valmiita havainnollistavia esimerkkejä ja tehtäviä. Kotisivu:

5 Kig Kig on toinen, vähemmän tunnettu työkalu interaktiivisten geometristen konstruktioiden tekemiseen. Kig sisältää monia samankaltaisia toimintoja kuin Geo- Gebra. Kig on saatavilla Linuxin KDE-ohjelmistoympäristöön ja Windows-alustalle siitä on vain alustava kokeellinen versio. Kotisivu: Reinteract Reinteract on selkeä käyttöliittymä interaktiivisten Python-kokeilujen sekä Python-kielellä tehtävien matemaattisten laskelmien tekemiseen. Reinteractilla koodipalaset järjestetään muistikirjoiksi (notebook) kutsutuiksi kokonaisuuksiksi, jotka koostuvat työsivuista (worksheet). Kukin työsivu sisältää Python-kielistä ohjelmakoodia sekä näiden suorittamisella saatuja tuloksia. Työsivun sisältöä voi muokata tavallisen tekstieditorin tapaan, mutta Reinteract pitää kirjaa siitä, mitkä osat koodia on suoritettu ja mitkä ei. Kukin työsivulle kirjoitettu ja suoritettu Python-komento tai koodirivi merkitään sinisellä värillä ja suorittamattomat rivit ja komennot keltaisella. Jos työsivulla muokataan tekstiä Reinteract muuttaa kaikkien muokatun kohdan jälkeen tulevien komentojen väriksi violetin, sillä näiden rivien tulosten paikkansapitävyydestä ei ole enää takeita. Kun muokatut rivit suoritetaan, suoritetaan samalla myös violetilla merkityt komennot uudelleen. Näin on mahdollista esimerkiksi määritellä työsivun alkuun arvoja joillekin muuttujille ja laskea näiden pohjalta joitain muita arvoja. Kun sivun alussa oleville muuttujille annetaan uudet arvot ja rivit suoritetaan uudelleen, lasketaan samalla uudelleen kaikki muutkin niiden rivien jälkeen tulevat laskelmat. Reinteractia käytettäessä voi hyödyntää myös tavallisia Python-kirjastoja, kuten numeerisen laskennan NumPy, symbo-

6 lisen laskennan SymPy sekä kaavioiden piirtoon tarkoitettua matplotlibiä. Reinteract sisältää myös oman yksinkertaisen piirtokomennon, jolla kuvaajia ja muita kuvioita voi piirtää suoraan työsivulle. Kotisivu: Lisenssi: BSD FreeMat FreeMat on jonkin verran Matlab-ohjelmaa muistuttava vapaa laskentaohjelma ja se pyrkiikin toteuttamaan suuren osan Matlabin toiminnallisuudesta. Ohjelma osaa erityisesti esittää vektorit ja matriisit ja tehdä niillä laskuoperaatioita. FreeMat sisältää toiminnot myös kuvaajien piirtämiseen sekä moneen muuhun käyttöön, kunhan vaan jaksaa opetella. Kotisivu:

7 Kalzium Kalzium on kemiaohjelma, jolla voi tutkia alkuaineiden jaksollista järjestelmää sekä alkuaineiden ja yhdisteiden ominaisuuksia. Kalziumista löytyvät kattavat taulukkotiedot alkuaineiden massoja, tiheyksiä ja sulamispisteitä myöten. Jaksollista järjestelmää voi tarkastella eri muodoissa, kuten klassisessa, suppeammassa ja laajemmassa muodossa. Kalzium on osa opetuskäyttöön suunnattua KDEdu-ohjelmistokokoelmaa ja vaatii alustakseen esimerkiksi Linux-järjestelmissä toimivan KDE-ohjelmistoympäristön. Kotisivu: Sage Sage on Python-pohjainen laskentaohjelma, jota voidaan käyttää selainkäyttöliittymällä. Sage-projektin tavoite on luoda vapaa avoimen lähdekoodin vaihtoehto laskentaohjelmille, kuten Magma, Mathematica, Maple ja Matlab. Sage on rakennettu Python-ohjelmointikielen ympärille toisaalta lisäämällä siihen jo olemassa olevien laskentapakettien lisäksi uusia osia sekä mahdollistamalla muiden avoimen lähdekoodin laskentaohjelmien, kuten Maximan, käyttö Pythonista käsin. Sagen käyttöliittymä on rakennettu toimimaan www-selaimessa ja se toimii notebook-tyyppisesti, eli siinä on mahdollista palata muokkaamaan aiempia komentorivejä. Kotisivu:

8 Arity Arity on tieteislaskin Android-laitteille. Arity sisältää graafisen tieteislaskimen toiminnallisuudet Android-puhelimeen tai Android-tabletille asennettavassa muodossa. Ohjelmassa voi määritellä omia nimettyjä funktioita ja se osaa myös laskea niiden ensimmäisen kertaluvun derivaattoja. Aritylla voi laskea myös kompleksiluvuilla ja piirtää funktioiden kuvaajia kaksi- tai kolmiulotteiseen koordinaatistoon. Samaan kuvaan voi piirtää myös useamman funktion kuvaajia. Kotisivu: Lisenssi: Apache Mathdroid Mathdroid on hyvä perustoiminnot sisältävä funktiolaskin Android-laitteille. Kotisivu:

Tasogeometriaa GeoGebran piirtoalue ja työvälineet

Tasogeometriaa GeoGebran piirtoalue ja työvälineet Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ (ja MITTAA) a) jana toinen jana, jonka pituus on 3 b) kulma toinen kulma, jonka

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)

Lisätiedot

BlueJ ohjelman pitäisi löytyä Development valikon alta mikroluokkien koneista. Muissa koneissa BlueJ voi löytyä esim. omana ikonina työpöydältä

BlueJ ohjelman pitäisi löytyä Development valikon alta mikroluokkien koneista. Muissa koneissa BlueJ voi löytyä esim. omana ikonina työpöydältä Pekka Ryhänen & Erkki Pesonen 2002 BlueJ:n käyttö Nämä ohjeet on tarkoitettu tkt-laitoksen mikroluokan koneilla tapahtuvaa käyttöä varten. Samat asiat pätevät myös muissa luokissa ja kotikäytössä, joskin

Lisätiedot

CVS. Kätevä väline usein päivitettävien tiedostojen, kuten lähdekoodin, hallitsemiseen

CVS. Kätevä väline usein päivitettävien tiedostojen, kuten lähdekoodin, hallitsemiseen CVS Versionhallintajärjestelmä Kätevä väline usein päivitettävien tiedostojen, kuten lähdekoodin, hallitsemiseen Käytetään komentoriviltä, myös graafisia käyttöliittymiä saatavilla CVS Kaikki tiedostot

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

6. Harjoitusjakso II. Vinkkejä ja ohjeita

6. Harjoitusjakso II. Vinkkejä ja ohjeita 6. Harjoitusjakso II Seuraavaksi harjoitellaan algebrallisten syötteiden, komentojen ja funktioiden käyttöä GeoGebrassa. Tarjolla on ensimmäisen harjoittelujakson tapaan kahden tasoisia harjoituksia: perustaso

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Est.kand Kandidaatintyö ja seminaari: L A T E Xin käyttöönotto

Est.kand Kandidaatintyö ja seminaari: L A T E Xin käyttöönotto Est.kand Kandidaatintyö ja seminaari: L A T E Xin käyttöönotto Luis R.J. Costa Aalto-yliopisto Sähkötekniikan korkeakoulu Syksy 2015 Sisältö Yleistä Minimaalinen suomenkielinen esimerkki Tärkeimmät yksityiskohdat

Lisätiedot

Valppaan asennus- ja käyttöohje

Valppaan asennus- ja käyttöohje Versio Päiväys Muokkaaja Kuvaus 0.9 16.2.2006 Tuukka Laakso Korjattu versio 0.1 Antti Kettunen Alustava versio Sisällysluettelo 1 Johdanto...2 2 Valppaan asennus...3 2.1 Valppaan kääntäminen...3 2.2 Valmiiksi

Lisätiedot

Matlab- ja Maple- ohjelmointi

Matlab- ja Maple- ohjelmointi Perusasioita 2. helmikuuta 2005 Matlab- ja Maple- ohjelmointi Yleistä losoaa ja erityisesti Numsym05-kurssin tarpeita palvellee parhaiten, jos esitän asian rinnakkain Maple:n ja Matlab:n kannalta. Ohjelmien

Lisätiedot

POHDIN - projekti. Funktio. Vektoriarvoinen funktio

POHDIN - projekti. Funktio. Vektoriarvoinen funktio POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Nspire CAS - koulutus Ohjelmiston käytön alkeet Pekka Vienonen

Nspire CAS - koulutus Ohjelmiston käytön alkeet Pekka Vienonen Nspire CAS - koulutus Ohjelmiston käytön alkeet 3.12.2014 Pekka Vienonen Ohjelman käynnistys ja käyttöympäristö Käynnistyksen yhteydessä Tervetuloa-ikkunassa on mahdollisuus valita suoraan uudessa asiakirjassa

Lisätiedot

Harjoitus 10: Mathematica

Harjoitus 10: Mathematica Harjoitus 10: Mathematica Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Mathematica-ohjelmistoon Mathematican

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Teknillinen korkeakoulu T-76.115 Tietojenkäsittelyopin ohjelmatyö. Testitapaukset - Koordinaattieditori

Teknillinen korkeakoulu T-76.115 Tietojenkäsittelyopin ohjelmatyö. Testitapaukset - Koordinaattieditori Testitapaukset - Koordinaattieditori Sisällysluettelo 1. Johdanto...3 2. Testattava järjestelmä...4 3. Toiminnallisuuden testitapaukset...5 3.1 Uuden projektin avaaminen...5 3.2 vaa olemassaoleva projekti...6

Lisätiedot

Muuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä

Muuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlkompleksianalyysi 1. mlk001.tex Ensiapuohjeita Sijoitus muuttujaan esim: >> z=(1+i)/(1-2*i) Puolipiste lopussa estää tulostuksen. Muuttujan

Lisätiedot

Matlabin perusteita Grafiikka

Matlabin perusteita Grafiikka BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

1 Alustus. 2 Tehtävät. Formaatti

1 Alustus. 2 Tehtävät. Formaatti 1 Alustus Vuosina 2011-2012 kerättiin matematiikan tietokoneopetukseen liittyvää materiaalia kahteen portaaliin. Työtä pohjusti peruskursseilla pidettävien tietokoneharjoitusten jääminen usein todella

Lisätiedot

ATK tähtitieteessä. 26. syyskuuta Osa 6 - LATEX

ATK tähtitieteessä. 26. syyskuuta Osa 6 - LATEX Osa 6 - L A TEX 26. syyskuuta 2014 Yleistä L A TEXista Latexin perusideana on vapauttaa kirjoittaja tuotettavan dokumentin ulkoasun muokkaamisesta. Kirjoittaja kirjoittaa tekstin tiettyjen sääntöjen mukaan,

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Peilatun kuvion ominaisuudet

Peilatun kuvion ominaisuudet Peilatun kuvion ominaisuudet Piirretään GeoGebralla koordinaatistoon kuvan mukainen nelikulmio Peilataan kuvio x-akselin suhteen origon suhteen. miten pisteiden koordinaatit muuttuvat, kun piste peilataan

Lisätiedot

Raspin Geany-IDE:n etäkäyttö

Raspin Geany-IDE:n etäkäyttö Raspin Geany-IDE:n etäkäyttö PUNOMO NETWORKS OY 23.7.2016 pva Geany ei ole IDE, eikä se ole teksturi, vaan se on kevyt-ide. IDE, Integrated Development Environment, integroitu ohjelmointiympäristö. Geany

Lisätiedot

C-ohjelmointikielen perusteet, osa 1

C-ohjelmointikielen perusteet, osa 1 C-ohjelmointikielen perusteet, osa 1 Kurssi johdattaa sinut askel askeleelta C-ohjelmoinnin perusteisiin. Kurssi suoritetaan kokonaan netissä vuorovaikutteisella alustalla itseopiskeluna tutorin avustuksella.

Lisätiedot

KYMENLAAKSON AMMATTIKORKEAKOULU

KYMENLAAKSON AMMATTIKORKEAKOULU 1 KYMENLAAKSON AMMATTIKORKEAKOULU Tietotekniikan koulutusohjelma / Tietoverkkotekniikka Ole Halonen GNU-ohjelmointityökalut Linux-järjestelmät 206101310 Seminaarityö 22.11.2012 2 Sisällysluettelo 2 1 Johdanto

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo? Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.

Lisätiedot

ATK II - Numeerinen mallintaminen (766315A), kevät 2016

ATK II - Numeerinen mallintaminen (766315A), kevät 2016 ATK II - Numeerinen mallintaminen (766315A), kevät 2016 H. Vanhamäki 7. tammikuuta 2016 Tiivistelmä Ensimmäisellä luennolla esitellään kurssin suuntaviivat ja tutustutaan LATEX-dokumenttien tekemiseen

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 9: L A T E X

Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 9: L A T E X Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 9: L A T E X 15. maaliskuuta 2009 LAT E X Johdanto Käyttö Syntaksi Layout Tavutus Johdanto L A T E X Yleistä T E Xistä ja L A T E Xista T E X on se ladontaohjelma

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/+^ 3 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen 3/ +^ 3 Liiku matematiikka alueella nuolinäppäimin. Kokeile

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Tähtitieteen käytännön menetelmiä Kevät 2009

Tähtitieteen käytännön menetelmiä Kevät 2009 Tähtitieteen käytännön menetelmiä Kevät 2009 2009-01-12 Yleistä Luennot Luennoija hannu.p.parviainen@helsinki.fi Aikataulu Observatoriolla Maanantaisin 10.00-12.00 Ohjattua harjoittelua maanantaisin 9.00-10.00

Lisätiedot

Suvi Junes/Pauliina Munter Tietohallinto/Opetusteknologiapalvelut 2014

Suvi Junes/Pauliina Munter Tietohallinto/Opetusteknologiapalvelut 2014 Tietokanta Tietokanta on työkalu, jolla opettaja ja opiskelijat voivat julkaista tiedostoja, tekstejä, kuvia ja linkkejä alueella. Opettaja määrittelee lomakkeen muotoon kentät, joiden kautta opiskelijat

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA

MATEMATIIKKA 3 VIIKKOTUNTIA EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Avoimen lähdekoodin kehitysmallit

Avoimen lähdekoodin kehitysmallit Avoimen lähdekoodin kehitysmallit Arto Teräs Avoimen lähdekoodin ohjelmistot teknisessä laskennassa -työpaja CSC, 25.5.2009 Avoimen lähdekoodin kehitysmallit / Arto Teräs 2009-05-25

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Muita kuvankäsittelyohjelmia on mm. Paint Shop Pro, Photoshop Elements, Microsoft Office Picture Manager

Muita kuvankäsittelyohjelmia on mm. Paint Shop Pro, Photoshop Elements, Microsoft Office Picture Manager Missio: 1. Asentaminen 2. Valokuvien tarkastelu, tallennus/formaatit, koko, tarkkuus, korjaukset/suotimet, rajaus 3. Kuvan luonti/työkalut (grafiikka kuvat) 4. Tekstin/grafiikan lisääminen kuviin, kuvien/grafiikan

Lisätiedot

Hellä ensikosketus. Tomi Kiviniemi

Hellä ensikosketus. Tomi Kiviniemi Hellä ensikosketus Tomi Kiviniemi Asialista Vähän debuggauksen filosofiaa. GDB:n peruskäyttö Netbeansissä. GDB:n peruskäyttö komentoriviympäristössä. Hieman edistyneempää sähellystä komentoriviympäristössä.

Lisätiedot

T harjoitustyö, kevät 2012

T harjoitustyö, kevät 2012 T-110.4100 harjoitustyö, kevät 2012 Kurssiassistentit T-110.4100@tkk.fi Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto 31.1.2012 Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä,

Lisätiedot

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014 18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Sangen lyhyt L A T E X-johdatus

Sangen lyhyt L A T E X-johdatus Sangen lyhyt L A T E X-johdatus Lari Koponen ja Eetu Ahonen 23.1.2013 Koulutuksen tavoitteet Koulutuksen jälkeen pystyy kirjoittamaan työselostuksen L A T E X:illa, eli Dokumentin rakenne tutuksi Tekstin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 1.2.2010 1 / 47 Sijoituksen arvokehitys, koodi def main(): print "Ohjelma laskee sijoituksen arvon kehittymisen."

Lisätiedot

Hieman linkkejä: http://cs.stadia.fi/~kuivanen/linux/kom.php, lyhyt ohje komentoriviohjelmointiin.

Hieman linkkejä: http://cs.stadia.fi/~kuivanen/linux/kom.php, lyhyt ohje komentoriviohjelmointiin. Linux-harjoitus 9 Linuxin mukana tulevat komentotulkit (mm. bash, tcsh, ksh, jne ) sisältävät ohjelmointikielen, joka on varsin tehokas ja ilmaisuvoimainen. Tähän yhdistettynä unix-maailmasta tutut tehokkaat

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

PlanMan Project 2015 projektihallintaohjelmisto loma-aikataulu

PlanMan Project 2015 projektihallintaohjelmisto loma-aikataulu PlanMan Project 2015 projektihallintaohjelmisto loma-aikataulu (PlanMan Project 2015 projektihallintaohjelmisto on PlanMan Oy:n kehittämä ja ylläpitämä tuote) 23.10.2015 Pekka Väätänen Loma-aikataulupohjan

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi. KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

T harjoitustehtävät, syksy 2011

T harjoitustehtävät, syksy 2011 T-110.4100 harjoitustehtävät, syksy 2011 Kurssiassistentit Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto T-110.4100@tkk.fi Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä ja harjoitustehtävät

Lisätiedot

Datatähti 2009 -alkukilpailu

Datatähti 2009 -alkukilpailu Datatähti 2009 -alkukilpailu Ohjelmointitehtävä 1/3: Hissimatka HUOM: Tutustuthan huolellisesti tehtävien sääntöihin ja palautusohjeisiin (sivu 7) Joukko ohjelmoijia on talon pohjakerroksessa, ja he haluavat

Lisätiedot

5. HelloWorld-ohjelma 5.1

5. HelloWorld-ohjelma 5.1 5. HelloWorld-ohjelma 5.1 Sisällys Lähdekoodi. Lähdekoodin (osittainen) analyysi. Lähdekoodi tekstitiedostoon. Lähdekoodin kääntäminen tavukoodiksi. Tavukoodin suorittaminen. Virheiden korjaaminen 5.2

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 31.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 31.1.2011 1 / 41 Luentopalaute kännykällä käynnissä! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

Differentiaali- ja integraalilaskenta 1. Tietokoneharjoitus: ratkaisut

Differentiaali- ja integraalilaskenta 1. Tietokoneharjoitus: ratkaisut Johdanto Kokeile tavallista numeroilla laskemista: yhteen-, kerto- ja jakolaskuja sekä potenssiinkorotusta. 5 (3.1) Differentiaali- ja integraalilaskenta 1 Tietokoneharjoitus: ratkaisut Kurssin 1. alkuviikon

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CS-A1111 14.9.2016 CS-A1111 Ohjelmoinnin peruskurssi Y1 14.9.2016 1 / 19 Oppimistavoitteet: tämän luennon jälkeen osaat kirjoittaa Python-ohjelman, joka pyytää käyttäjältä lukuja,

Lisätiedot

TIETOKANNAT: MYSQL & POSTGRESQL Seminaarityö

TIETOKANNAT: MYSQL & POSTGRESQL Seminaarityö TIETOKANNAT: MYSQL & POSTGRESQL Seminaarityö Tekijät: Eemeli Honkonen Joni Metsälä Työ palautettu: SISÄLLYSLUETTELO: 1 SEMINAARITYÖN KUVAUS... 3 2 TIETOKANTA... 3 2.1 MITÄ TIETOKANNAT SITTEN OVAT?... 3

Lisätiedot

JReleaser Yksikkötestaus ja JUnit. Mikko Mäkelä 6.11.2002

JReleaser Yksikkötestaus ja JUnit. Mikko Mäkelä 6.11.2002 JReleaser Yksikkötestaus ja JUnit Mikko Mäkelä 6.11.2002 Sisältö Johdanto yksikkötestaukseen JUnit yleisesti JUnit Framework API (TestCase, TestSuite) Testien suorittaminen eri työkaluilla Teknisiä käytäntöjä

Lisätiedot

Käyräparven kohtisuorat leikkaajat

Käyräparven kohtisuorat leikkaajat Käyräparven kohtisuorat leikkaajat Käyräparven kohtisuoriksi leikkaajiksi kutsutaan toista käyräparvea, jonka käyrät leikkaavat ensinmainitun parven käyrät kohtisuorasti jokaisessa leikkauspisteessä. Kahden

Lisätiedot

Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 6: Python

Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 6: Python Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 6: Python 15. helmikuuta 2009 Merkkijonot Yleistä Käsittely Muotoiltu tulostus Tiedostot Käsittely Lukeminen Kirjoittaminen Modulit Käyttö Seuraava luento

Lisätiedot

Näin järjestän ohjelmointikurssin, vaikka en ole koskaan ohjelmoinut www.helsinki.fi

Näin järjestän ohjelmointikurssin, vaikka en ole koskaan ohjelmoinut www.helsinki.fi Näin järjestän ohjelmointikurssin, vaikka en ole koskaan ohjelmoinut Ohjelmointikurssin järjestäminen Helsingin yliopiston Ohjelmoinnin MOOC-kurssimateriaalin avulla 15.4.2016 1 Linkki Tietojenkäsittelytieteen

Lisätiedot

Tieteellinen laskenta I (Scientific Computing I)

Tieteellinen laskenta I (Scientific Computing I) Tieteellinen laskenta I (Scientific Computing I) koodi: 53398, laajuus: 5 op Johdanto Johdanto (kuva:@work.chron.com) Klikkaa tätä www merkkiä Pääset siinä mainitun aiheen www-sivulle Kurssin kotisivu

Lisätiedot

Johdatus edistyneeseen web-kehitykseen. Juuso Lappalainen

Johdatus edistyneeseen web-kehitykseen. Juuso Lappalainen Johdatus edistyneeseen web-kehitykseen Juuso Lappalainen Tällä kurssilla tehdyt sivut - Staattisia html-sivuja, joissa ei ole tiedon tallennusta, backendia tai mitään muutakaan ihmeellistä. - Käyttäjä

Lisätiedot

Tämän lisäksi listataan ranskalaisin viivoin järjestelmän tarjoama toiminnallisuus:

Tämän lisäksi listataan ranskalaisin viivoin järjestelmän tarjoama toiminnallisuus: Dokumentaatio, osa 1 Tehtävämäärittely Kirjoitetaan lyhyt kuvaus toteutettavasta ohjelmasta. Kuvaus tarkentuu myöhemmin, aluksi dokumentoidaan vain ideat, joiden pohjalta työtä lähdetään tekemään. Kuvaus

Lisätiedot

Virtualisointiympäristössä on kolme pääosaa: isäntä (host), virtualisointikerros ja vieras (guest).

Virtualisointiympäristössä on kolme pääosaa: isäntä (host), virtualisointikerros ja vieras (guest). 1 Virtualisoinnin avulla voidaan purkaa suora linkki suoritettavan sovelluksen (tai käyttöjärjestelmän tms.) ja sitä suorittavan laitteiston välillä. Näin saavutetaan joustavuutta laitteiston käytössä.

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Mathematica 4.1 Front End

Mathematica 4.1 Front End Mathematica 4.1 Front End Mathematica 4.1:n käyttöliittymä sisältää suuren määrän ominaisuuksia, jotka mahdollistavat laskenta-arkkien muotoilemisen ulkoasultaan painokelpoiseen muotoon. Hyvä esimerkki

Lisätiedot

Järjestelmän asetukset. Asetustiedostojen muokkaaminen. Pääkäyttäjä eli root. Järjestelmänhallinnan työkalut

Järjestelmän asetukset. Asetustiedostojen muokkaaminen. Pääkäyttäjä eli root. Järjestelmänhallinnan työkalut Järjestelmän asetukset Järjestelmänhallinnan työkalut Ubuntussa järjestelmän hallintaan ja asetusten muokkaamiseen tarkoitetut ohjelmat on koottu Järjestelmä-valikon alle Asetukset- ja Ylläpito -alavalikoista

Lisätiedot

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa.

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11. Geometria Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11.1 Valikot ja näppäintoiminnot Kun valitset päävalikosta Geometry, näyttö tyhjenee ja näkyviin ilmestyy uusi painikevalikko

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

Ubuntu tunkkausta En US / Helsinki asennuksen jälkeen jotta loki5ac toimisi oikein Winen päällä.

Ubuntu tunkkausta En US / Helsinki asennuksen jälkeen jotta loki5ac toimisi oikein Winen päällä. Ubuntu tunkkausta En US / Helsinki asennuksen jälkeen jotta loki5ac toimisi oikein Winen päällä. Tämä siis vain Ubuntu käyttäjille jotka ovat valinneet asennuksessa kieleksi Englanti ja paikaksi Helsinki...

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

OHJELMOINNIN POHJUSTUSTA PÄÄTTELYÄ JA ERI VAIHTOEHTOJEN TUTKIMISTA

OHJELMOINNIN POHJUSTUSTA PÄÄTTELYÄ JA ERI VAIHTOEHTOJEN TUTKIMISTA OHJELMOINNIN POHJUSTUSTA PÄÄTTELYÄ JA ERI VAIHTOEHTOJEN TUTKIMISTA Aihepiirejä: erilaiset yhdistelmät kuten ovikoodit, autojen rekisteritunnukset ja numerolukot, erilaiset reitit ja väritykset, säveltäminen,

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences Johdatus L A TEXiin 7. Taulukot ja kuvat Dept. of Mathematical Sciences Taulukot I Taulukkomaiset rakenteet tehdään ympäristöllä tabular Ympäristön argumentiksi annetaan sarakemäärittely, joka on kirjaimista

Lisätiedot

Moottorin kierrosnopeus Tämän harjoituksen jälkeen:

Moottorin kierrosnopeus Tämän harjoituksen jälkeen: Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,

Lisätiedot

TTY TKT-1110 Mikroprosessorit TKT. HEW-ohjeet ver 1.0

TTY TKT-1110 Mikroprosessorit TKT. HEW-ohjeet ver 1.0 Johdanto Nämä ohjeet opastavat sinut tekemään kurssiin TKT-1110 Mikroprosessorit liittyvät harjoitustyöt. Ohjeet sisältävät kolme osiota. Ensimmäisenä esitellään projektin luonti, mikä tehdään ainoastaan

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Verkkosivut perinteisesti. Tanja Välisalo 11.2.2009

Verkkosivut perinteisesti. Tanja Välisalo 11.2.2009 Verkkosivut perinteisesti Tanja Välisalo 11.2.2009 WWW-sivujen vieminen omaan kotisivutilaan yliopiston mikroverkossa https://salasana.jyu.fi Klikkaa painiketta Activate WWW Klikkaa painiketta Activate

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Muilla kielillä: English Suomi Pong-peli, vaihe 3 Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Jaetaan ohjelma pienempiin palasiin (aliohjelmiin) Lisätään peliin maila (jota ei voi vielä

Lisätiedot

Pintamallintaminen ja maastomallinnus

Pintamallintaminen ja maastomallinnus 1 / 25 Digitaalisen arkkitehtuurin yksikkö Aalto-yliopisto Pintamallintaminen ja maastomallinnus Muistilista uuden ohjelman opetteluun 2 / 25 1. Aloita käyttöliittymään tutustumisesta: Mitä hiiren näppäintä

Lisätiedot

E-kirjan kirjoittaminen

E-kirjan kirjoittaminen 1 E-kirjan kirjoittaminen Ohjeet e-kirjan kirjoittamiseen Tämän ohjeistuksen tavoitteena on auttaa sinua luomaan yksinkertainen e-kirja (pdftiedosto) asiakkaallesi. Kirja näyttää hänelle kuinka hyvin ymmärrät

Lisätiedot

1. NetBeans-ohjelman asennus ja käyttöönotto pva

1. NetBeans-ohjelman asennus ja käyttöönotto pva 1. NetBeans-ohjelman asennus ja käyttöönotto 11.7.2016 pva NetBeans on ohjelmointiympäristö, IDE (Integrated Development Environment) jonka avulla opiskelemme laiteläheistä C-ohjelmointia. Oletus Sinulla

Lisätiedot