Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Samankaltaiset tiedostot
k S P[ X µ kσ] 1 k 2.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

11 Raja-arvolauseita ja approksimaatioita

Todennäköisyyslaskenta, syksy Petri Koistinen Matematiikan ja tilastotieteen laitos Helsingin yliopisto

4.1 Diskreetin satunnaismuuttujan odotusarvo

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Sovellettu todennäköisyyslaskenta B

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset

Reaalifunktioista 1 / 17. Reaalifunktioista

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Tilastomatematiikka Kevät 2008

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Taustatietoja ja perusteita

Matematiikan tukikurssi

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

3.6 Su-estimaattorien asymptotiikka

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

Moniulotteisia todennäköisyysjakaumia

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Matemaattisen analyysin tukikurssi

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

3. Teoriaharjoitukset

8.1 Ehdolliset jakaumat

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Satunnaismuuttujien muunnokset ja niiden jakaumat

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

Täydellisyysaksiooman kertaus

Matematiikan tukikurssi

0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.

1 Lineaariavaruus eli Vektoriavaruus

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

Markov-ketjut pitkällä aikavälillä

Karamatan epäyhtälö. Majoroinnista. Markku Halmetoja Mäntän lukio

Todennäköisyyslaskun kertaus. Heliövaara 1

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

, tuottoprosentti r = X 1 X 0

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

2 Funktion derivaatta

2 Konveksisuus ja ratkaisun olemassaolo

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Ilkka Mellin (2008) 1/5

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

802320A LINEAARIALGEBRA OSA I

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

031021P Tilastomatematiikka (5 op) viikko 3

Konvergenssilauseita

MS-A0102 Differentiaali- ja integraalilaskenta 1

Ominaisvektoreiden lineaarinen riippumattomuus

Matematiikan tukikurssi

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Yleistä tietoa kokeesta

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

Insinöörimatematiikka D

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Mat Sovellettu todennäköisyyslasku A

6. laskuharjoitusten vastaukset (viikot 10 11)

Johdatus tekoälyn taustalla olevaan matematiikkaan

Positiivitermisten sarjojen suppeneminen

Matematiikan peruskurssi 2

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

Ratkaisuehdotus 2. kurssikokeeseen

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

Derivaattaluvut ja Dini derivaatat

Poistumislause Kandidaatintutkielma

MS-A0004/A0006 Matriisilaskenta

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Avaruuden R n aliavaruus

Keskihajonta ja korrelaatio

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

V ar(m n ) = V ar(x i ).

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikko 7

Erilaisia Markov-ketjuja

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

8.1 Ehdolliset jakaumat

Matematiikan tukikurssi

Transkriptio:

6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida monimutkaista asiaa paljon helpommin ymmärrettävän asian avulla. Todennäköisyyslaskennassa epäyhtälöitä käytetään tyypillisesti teorian apuna (esim. raja-arvotulosten johtaminen), mutta niille löytyy myös konkreettisempia sovelluksia (esim. algoritmien ominaisuuksien analysointi).

Epäyhtälöiden käytöstä Kiinnitä huomiota seuraaviin asioihin: Millä oletuksilla epäyhtälö on voimassa? Kumpi suuruusjärjestys asioiden välillä vallitsee? Usein matemaattinen argumentointi perustuu siihen, että muotoa a b oleva tulos johdetaan pitkän epäyhtälöketjun a a 1 a k b avulla. Jos tässä ketjussa yksikin -merkki on kirjoitettu vahingossa väärin päin, niin koko argumentilta putoaa pohja pois.

6.1 Markovin ja Tšebyševin epäyhtälöt Lause 6.1 (Markovin epäyhtälö) Olkoon X 0 sm, jonka odotusarvo on olemassa. Tällöin P(X a) EX a, a > 0 Todistus. Määritellään sm Y kaavalla { 0, kun 0 X < a, Y = a 1 [a, ) (X ) = a, kun X a. Koska Y X, on EX EY = 0 P(Y = 0) + a P(Y = a) = a P(X a).

Tšebyševin epäyhtälö Lause 6.2 (Tšebyševin epäyhtälö) Olkoon X sm, jonka odotusarvo on µ ja varianssi σ 2 on olemassa Tällöin P( X µ t) σ2 t 2 t > 0. Erityisesti, jos σ 2 > 0, niin P( X µ k σ) 1 k 2 k > 0. Todistus. Sovelletaan Markovin epäyhtälöä sm:aan Y = (X µ) 2.

Heikko suurten lukujen laki Engl. weak law of large numbers, WLLN. Lauseessa esiintyvää satunnaismuuttujien suppenemisen lajia kutsutaan stokastiseksi suppenemiseksi. Lause 6.3 (Heikko suurten lukujen laki) Olkoon X 1, X 2,... jono riippumattomia sm:ia, joilla on sama odotusarvo µ = EX i ja varianssi σ 2 = var X i <. Tällöin keskiarvojen X n = 1 n X i n muodostama jono ( X n ) konvergoi stokastisesti kohti arvoa µ, eli P( X n µ ɛ) n i=1 0, kaikilla ɛ > 0.

Heikon suurten lukujen lain todistus Olkoon ɛ > 0 annettu. Koska E X n = µ, niin Tšebyševin epäyhtälön nojalla var X n = 1 n 2 nσ2 = σ2 n, P( X n µ ɛ) σ2 nɛ 2 n 0.

6.2 Konveksit funktiot ja Jensenin epäyhtälö Funktio on konveksi, jos sen kuvaaja jää jokaisen jänteensä alapuolelle. Funktio on konkaavi, jos sen kuvaaja on jokaisen jänteensä yläpuolella. Yleensä funktiot eivät ole konvekseja eikä konkaaveja.

Konveksisuuden tarkka määritelmä Seuraavassa määritelmässä sana väli tarkoittaa mitä tahansa suljettua, avointa tai puoliavointa äärellistä tai ääretöntä väliä. Jos I on väli ja x, y I, niin myös pisteitä x ja y yhdistävän janan pisteet λx + (1 λ)y, 0 λ 1 kuuluvat välille I. Määritelmä 6.1 (Konveksi funktio, konkaavi funktio) Olkoon I R väli. Funktio g : I R on konveksi, jos g(λx + (1 λ)y) λg(x) + (1 λ)g(y), kaikilla x, y I ja kaikilla 0 λ 1. Funktio g : I R on konkaavi, jos g on konveksi.

Esimerkkejä Funktiot x 2, e x ja x ovat konvekseja koko reaaliakselilla. Funktio 1/x on konveksi, kun x > 0. Funktio log x on konkaavi funktio, kun x > 0. Affiini funktio a + bx on sekä konveksi että konkaavi koko reaaliakselilla.

Konveksin funktion jänteiden kulmakertoimet Seuraavassa lauseessa esiintyy erotusosamääriä, jotka kannattaa tulkita geometrisesti g:n jänteiden kulmakertoimien avulla. Piirrä kuva. Lause 6.4 Olkoon I avoin väli. Funktio g : I R on konveksi, jos ja vain jos kaikilla a < b < c, joille a, b, c I pätee epäyhtälö g(b) g(a) b a g(c) g(b). (6.1) c b Todistus. Puolet tästä harjoitustehtävä.

Konveksisuuden tarkistaminen derivaatan avulla Lause 6.5 (Konveksisuustarkistimia) Olkoon I R avoin väli, ja g : I R funktio. (a) Jos g on jatkuvasti derivoituva ja g on kasvava (ja molemmat ominaisuudet ovat voimassa koko I :llä), niin g on konveksi. (b) Jos g on kahdesti derivoituva I :llä, ja g (x) 0 kaikilla x I, niin g on konveksi. Todistus. a-kohta käydään läpi taululla. b-kohta: Jos g 0 välillä I, niin g on kasvava välillä I, joten a-kohdan nojalla g on konveksi.

Diskreetti versio Jensenin epäyhtälöstä Jos g : I R on konveksi, niin konveksin funktion määritelmästä saadaan helposti induktiolla johdettua epäyhtälö n n g( p i x i ) p i g(x i ), (6.2) i=1 joka pitää paikkansa, kun kukin x i I ja kukin p i 0 ja i p i = 1. Jos X on diskreetti sm siten, että P(X = x i ) = p i, niin tämä voidaan kirjoittaa g(ex ) Eg(X ) Lineaarikombinaatiota x = i p ix i, jossa painot p i ovat ei-negatiivisia ja summautuvat ykköseksi, kutsutaan pisteiden x 1,..., x n konveksiksi kombinaatioksi. Tietenkin myös konveksi kombinaatio x I. i=1

Konveksin funktion kuvaaja on tangenttinsa yläpuolella Lause 6.6 Jos I R on avoin väli ja g : I R on konveksi funktio, ja m I, niin voidaan valita luku k siten, että g(x) g(m) + k(x m), x I. Todistus. Liitutaululla. Todistuksesta nähdään, että mikäli g on derivoituva pisteessä m, niin pitää valita k = g (m), jolloin epäyhtälön oikea puoli on on tangentin yhtälö pisteessä m.

Jensenin epäyhtälö Lause 6.7 (Jensenin epäyhtälö) Olkoon I R avoin väli, ja g : I R konveksi funktio. Jos X on sm, jonka arvot ovat I :ssä (tn:llä yksi), ja EX sekä Eg(X ) ovat olemassa, niin g(ex ) Eg(X ) (6.3) Todistus. Koska µ = EX I, niin voidaan valita luku k siten, että Siis todennäköisyydellä yksi g(x) g(µ) + k(x µ), x I. g(x ) g(µ) + k(x µ), ja Jensenin epäyhtälö seuraa ottamalla odotusarvo puolittain.

Esimerkki Jensenin epäyhtälön soveltamisesta Funktio g(x) = x 2 on konveksi, joten Jensenin epäyhtälön mukaan g(ex ) = (EX ) 2 E(X 2 ) = Eg(X ), mikäli kyseiset odotusarvot ovat olemassa. Tästä seuraa arvio var X = E(X 2 ) (EX ) 2 0, minkä tietenkin tiesimme ennestään varianssin ominaisuuksien perusteella. Tämä toimii myös hyvänä muistisääntönä Jensenin epäyhtälön suunnalle : kuvaus g(x) = x 2 on konveksi ja varianssi on 0, joten Eg(X ) g(ex ) 0.

6.3 Hölderin epäyhtälö Lause 6.8 Olkoot p, q > 1 sellaisia lukuja, että 1 p + 1 q = 1. Tällöin E XY (E X p ) 1 p (E Y q ) 1 q Todistus. Liitutaululla.

6.4 Cauchyn-Schwarzin epäyhtälö, kovarianssi ja korrelaatio Cauchyn-Schwarzin epäyhtälö on Hölderin epäyhtälön se erikoistapaus, jossa p = q = 2: E XY EX 2 EY 2. Tämä epäyhtälö voi joissakin tapauksissa olla voimassa muodossa E XY, mikä ei kerro mitään mielenkiintoista. Jos sekä EX 2 < että EY 2 <, niin silloin yläraja on äärellinen, ja saadaan tulos E(XY ) E XY EX 2 EY 2. (6.6)

Cauchy-Schwarz ja kovarianssi Oletetaan nyt, että satunnaismuuttujilla X ja Y on äärelliset varianssit, σ 2 X = var X ja σ2 Y = var Y. Niiden kovarianssi cov(x, Y ) määritellään odotusarvona cov(x, Y ) = E ( X EX )(Y EY ) Tämä odotusarvo on äärellinen, sillä kun Cauchyn-Schwarzin epäyhtälöä sovelletaan satunnaismuuttujien X EX ja Y EY tuloon, niin saadaan epäyhtälö cov(x, Y ) σ X σ Y. (6.7) Tässä ylärajana on muuttujien keskihajontojen tulo.

Korrelaatiokerroin Mikäli σ X > 0 ja σ Y > 0, niin X :n ja Y :n korrelaatiokerroin (jota merkitään usein corr(x, Y ) tai ρ XY ) määritellään kaavalla corr(x, Y ) = ρ XY = ρ = cov(x, Y ) σ X σ Y. (6.8) Cauchyn-Scwarzin epäyhtälön nojalla corr(x, Y ) 1. Jos corr(x, Y ) > 0, jolloin myös cov(x, Y ) > 0, niin sanotaan että X ja Y ovat positiivisesti korreloituneita. Jos corr(x, Y ) < 0, jolloin myös cov(x, Y ) < 0, niin sanotaan että X ja Y ovat negatiivisesti korreloituneita. Jos corr(x, Y ) = 0, jolloin myös cov(x, Y ) = 0, niin sanotaan, että X ja Y eivät korreloi (lineaarisesti) tai että ne ovat (lineaarisesti) korreloimattomia.

Minkowskin epäyhtälö Hölderin epäyhtälöstä seuraa Minkowskin epäyhtälö (E X + Y p ) 1/p (E X p ) 1/p + (E Y p ) 1/p (6.5) Kun p = 2, Minkowskin epäyhtälö esimerkiksi kertoo, että jos X ja Y ovat satunnaismuuttujia, joilla on äärellinen varianssi, niin myös satunnaismuuttujalla X + Y on äärellinen varianssi. Edelleen se kertoo, että σ X +Y σ X + σ Y.

Momenttiemäyhtälöt ja epäyhtälöt Lause 6.9 Olkoon X sm ja M(t) = Ee Xt sen momenttiemäfunktio. Jokaisella a R, P(X a) inf t>0 e at M(t) Momenttiemäfunktio sekä kumulanttiemäfunktio (momenttiemäfunktion logaritmifunktio) ovat konvekseja funktioita. Todistus. Liitutaululla. Osa harjoitustehtäviä :)