Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360
Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero Keskinopeuden ja hetkellisen nopeuden ero Kiihtyvyys, keskikiihtyvyys ja hetkellinen kiihtyvyys Mikä on ratakäyrä ja miten se esitetään? (Relativistinen) liikemäärä
Nopea kertaus vektoreista: Miksi vektoreita tarvitaan fysiikassa? Mikä on vektori? Mitkä fysiikan suureet ovat vektoreita? Suure, jolla on vain pituus, on skalaari Energia, työ lämpötila 3
Pikakertaus vektoreilla laskemisesta: Skalaarilla kertominen: n A = n A x i + A y j = na x i + na y j Yhteen- (ja vähennys)lasku: A + B = A x i + A y j + B x i + B y j = (A x +B x ) i + (A y +B y ) j Miten homma toimii (x,y,z) -notaatiossa? 4
Vektorien yhteen- ja vähennyslasku Tässä on vektori A: Tässä on vektori B: Tässä on vektori A + B: Tässä on vektori A B:
Paikka ja paikan muutos Paikkavektori r kertoo, missä kappale sijaitsee (x,y,z)-koordinaatistossa: r = x i + y j + z k Paikan muutosta kuvaa siirtymävektori r r = r 2 r 1 r 1 r 2
Koordinaatisto z y x
Vauhti (speed) & nopeus (velocity) Nopeus: vektori ( v) Nopeudella on aina sekä suunta että suuruus v Vauhti: skalaari ( v ) Vauhti on nopeuden itseisarvo eli nopeusvektorin pituus usein kyllä puhutaan vauhdin sijaan nopeuden suuruudesta, nopeuden magnitudista tai nopeuden itseisarvosta
Kysymys Kuvassa on esitetty kappaleen paikka ajan funktiona. Tällöin kappaleen nopeuksille eri ajanhetkinä pätee: x A) v 1 < v 2 < v 3 B) v 2 < v 1 < v 3 C) v 3 < v 2 < v 1 D) Jokin muu vastaus t 1 t 2 t 3
x [m] 50 40 30 20 Esimerkki: keskinopeus 10 Tehtävänä on määrittää keskinopeus aikavälillä t=1...5 s, kun kuljettu matka (x) ajan (t) funktiona on: 1 2 3 4 5 t [s]
Keskinopeus (average velocity) Keskinopeus (average velocity): v avg = r t, missä r = paikan muutos, t = ajan muutos 1-ulotteinen erikoistapaus: v avg = x t Huom: nyt suunnan kertoo etumerkki! (+/-)
Ratkaisu: keskinopeus keskinopeus aikavälillä t=1...5 s: x [m] 50 40 30 20 = v avg = x t 50 m 10 m = 10 m/s 5 s 1s 10 1 2 3 4 5 t [s]
Entä keskinopeus aikavälillä t=3.0...3.5 s? x [m] 50 40 30 20 10 1 2 3 4 5 t [s]
Määritä nopeus ajanhetkellä t=3 s x [m] 50 40 v avg 3s 3s + t = x 3s + t x(3s) 3s + t 3s 30 20 10 Jotta saadaan selville hetkellinen v, täytyy t -> 0 Tästä seuraa siis raja-arvo! 1 2 3 4 5 t [s]
Hetkellinen nopeus ja vauhti x t+ t x(t) v t = lim t 0 t = dx(t) dt eli x:n derivaatta t:n suhteen! Huom: hetkellinen nopeus -> derivaatan arvo lasketaan siis ajanhetkellä t (x,t) - kuvaajassa hetkellinen nopeus on käyrän tangentin kulmakertoimen arvo Hetkellinen vauhti on hetkellisen nopeuden itseisarvo
x [m] Eli nopeus ajanhetkellä t=3 s on (x,t)-kuvaajan tangentin kulmakerroin pisteessä t=3 s! 50 40 30 Kuvaajasta hetkellinen nopeus, kun t=3: 20 10 v = dx dt 20 m 2,5 s = 8 m/s 1 2 3 4 5 t [s]
Kysymys 1-ulotteisesti liikkuvan kappaleen paikka r on ajan t funktiona: r t = (A + Bt 2, 0,0) missä A = 5 m ja B = 2 m/s 2. Kun t = 1 s, kappaleen nopeus on siis: A) (0,0,0) m/s B) (2,0,0) m/s C) (5,0,0) m/s D) (7,0,0) m/s E) Ei mikään näistä [(4,0,0) m/s]
Rata r(t) Rata: niiden pisteiden joukko joiden kautta kappale kulkee Esimerkki ratakäyrästä: Punainen viiva = ratakäyrä Siniset pisteet = kappaleen sijainti sekunnin välein Musta nuoli = paikkavektori hetkellä t=6 s Violetti nuoli = nopeus hetkellä t=6s v(6s)
Esimerkki radasta, joka on vektori Olkoon kappaleen rata r t = (At 2, B sin t T, h), missä A = 1 m/s2, B = 1 m, T = 1 s, h = 1 m Miten nyt määritetään nopeus? Radan x-komponentti Radan y-komponentti
Vektorin derivointi Rata yleisesti: Joten: r t = x t, y t, z(t) = x t v t = d r dt = d dt = dx(t) dt x t = v x i + v y i + y t i + dy(t) dt j+v z k i + y t j + z(t) k j + dz(t) dt k j + z(t) k
Ratkaisu esimerkkiin: r t = (At 2, B sin t T, h) v t = (2At, B T cos t T, 0) Nopeuden x-komponentti: Nopeuden y-komponentti:
Ratakäyrä ja hetkellinen nopeus y y v v x v y r x y x Ratakäyrän tangentin kulmakerroin y y = t x x t Kun t 0: y t x t dy dt dx dt = v y v x Hetkellinen nopeus on siis ratakäyrän tangentin suuntainen x
Maailmanviivat (world lines)
Kysymys Kappaleen paikka on kuvaajan mukainen: Mikä alla olevista vastaa tällöin kappaleen nopeutta?
Kiihtyvyys Keskikiihtyvyys: a avg = v t Hetkellinen kiihtyvyys: a = dv dt = d dt d r dt = d2 r dt 2
Tasainen liike ja tasaisesti kiihtyvä liike Kun v(t) = VAKIO eli a t = 0 -> liike on tasaista Kun dv dt = VAKIO eli a t = VAKIO -> liike on tasaisesti kiihtyvää
[1] Muuri (kts. kuva) on yli 700 jalkaa (210 m) korkea[2]. Tormund tiputtaa muurilta järkäleen, jolta kestää 6.8 s osua maahan. Mikä on kappaleen keskinopeus ja keskikiihtyvyys (oletetaan tasainen kiihtyvyys)? [1] http://gameofthrones.wikia.com/wiki/beyond_the_wall [2] Martin, George R.R.: A Game of Thrones, Random House, USA, 1997 v avg = 0; 30,9; 0 m/s a avg = (0, 9,0) m/s 2
Liikemäärä Kokeellisesti havaitaan (esim. törmäyskokeessa), että kappaleen nopeus muuttuu vuorovaikutuksessa Muutos indikoi vuorovaikutusta! Lisäksi havaitaan, että kappaleen nopeus muuttuu sitä vähemmän, mitä suurempi massa kappaleella on Paremmin kappaleen liiketilaa kuvaava suure kuin pelkkä nopeus on liikemäärä p = γm v
Liikemäärä vektoreina v = m/s p = kgm/s v 1 = ( v, 0,0) p 1 = ( p, 0,0) v 2 = (0, v, 0) p 2 = (0, p, 0) v 4 = (0, v, 0) p 4 = (0, p, 0) p 14 = p 4 p 1 = 0, p, 0 p, 0,0 = p, p, 0 v 3 = (v, 0,0) p 3 = (p, 0,0) p 14 p 1 p 4
Milloin tarvitaan relativistista liikemäärää?
Minkä liikemäärän magnitudi on suurin? Rekan, joka ajaa 30 m/s, keilapallon, joka kulkee 3000 m/s, 2 :n kolikon, joka kulkee nopeudella 0.2c, vai protonin, joka kulkee nopeudella 0.999 c? A. p rekka > p pallo > p kolikko > p protoni B. p rekka > p kolikko > p pallo > p protoni C. p protoni > p kolikko > p pallo > D. p rekka > E. En tiedä p protoni > p kolikko > p rekka p pallo
Tulossa ensi viikolla: Voima ja impulssi Newtonin lait