5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1
5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys 4. Fokus 5. Kuvan laatuun vaikuttavia tekijöitä 6. Observatorion sijoituspaikka 7. Teleskooppeja 2
5.1 Teleskooppia kuvaavat perussuureet Tärkeimmät ominaisuudet: Tyyppi (peili vai linssi) Objektiivin halkaisija D Polttoväli f Havaintoihin vaikuttaa: Valonkeräyskyky Aukkosuhde f/d kuvaa teleskoopin valovoimaa Kuvan mittakaava polttotasossa, yleensä yksiköissä /mm tai /pix Erotuskyky (käytännössä ilmakehä rajoittaa) Silmällä havaitessa: Suurennus = f/f, jossa f on okulaarin 3
5.1 Teleskooppia kuvaavat perussuureet Esim. Tuorlan 1.05m teleskoopin erotuskyky on 0.13 Hubblen (2.4m) 0.06 ja NOTin 0.05 Yleensä seeing hyvälläkin paikalla 0.5-1.0, merenpinnan tasolla usein 3-5 Apupeilin pidike aiheuttaa diffraktiokuvion, joka hyvällä seeingillä ja/tai kirkkaiden tähtien kanssa voi aiheuttaa ongelmia 4
5.1 Teleskooppia kuvaavat perussuureet Mitat valitaan käyttötarkoituksen mukaan: Himmeät kohteet tai tarve hyvälle erotuskyvylle suuri D Laajat kohteet, pieni pintakirkkaus pieni f Pienet, mutta kirkkaat kohteet suuri f 5
5.2 Klassiset optiset ratkaisut Dioptriset eli linssiteleskoopit Kataoptiset eli peiliteleskoopit Katadioptriset eli sekä peilejä, että linssejä 6
5.2 Linssiteleskooppi + Umpinainen, tukeva rakenne + Huolto- ja säätövapaa + Ei apupeiliä - Pitkä ja näkökenttä pieni - Värivirheitä - Valmistaminen vaikeaa 7
5.2 Linssiteleskooppi Käytetään yleensä havaintoihin, joissa tarvitaan hyvää erotuskykyä (kaksoistähdet, planeetat, Aurinko, meridiaanikoneet) Swedish 1-m Solar Telescope, La Palma 8
5.2 Newtonin kaukoputki Pääpeili paraboloidi, apupeili tasopeili + Helppo valmistaa + Halpa - Instrumenttien asentaminen hankalaa - Voimakas koma - Aukkosuhde valittava isoksi, jotta apupeili ei kasva liian isoksi 9
5.2 Cassegrain teleskooppi Apupeili hyperboloidi Useimmat isot teleskoopit Cassegrain tai Ritchey-Chretien tyyppisiä (esim. VLT, Keck) Ritchey-Chretien teleskooppi on Cassegrainin parannettu muoto, jossa myös pääpeili on hyperboloidi 10
5.2 Cassegrain teleskooppi + Kompakti rakenne, helppo rakentaa vakaaksi + Instrumenttien asentaminen helppoa + Koma ja palloaberraatio pienempiä kuin Newtonissa + Ritchey-Chretien: ei komaa, eikä palloaberraatiota - Kuvakentän kaarevuus ja astigmatismi suurempia kuin vastaavassa Newtonissa - Ritchey-Chretien: korkea-asteiset pinnat vaikeita valmistaa - Fokusointi tehtävä tarkasti 11
5.2 Schmidt kamera Pallopeili + korjauslasi + Laaja kuvakenttä - Korjauslasi vaikea valmistaa - Yleensä umpinainen rakenne, lämpöongelmia - Kuvapinta kaareva (voidaan korjata) 12
5.2 Schmidt-Cassegrain + Lyhyt pitkästä polttovälistä huolimatta + Laaja ja lähes virheetön kuvakenttä - Vaikea valmistaa - kallis 13
5.2 Maksutov Sekä pääpeilin, että korjauslasin pinta pallopintoja Samat edut ja haitat kuin edellisellä 14
5.2 Erikoisuuksia Esim. kameran (kaupallisella) linssioptiikalla varustettuja CCD - kameroita SuperWASP 15
5.3 Teleskoopin pystytys Ekvatoriaalinen ja altatsimutaalineen eli atsimutaalinen Monta eri teknistä ratkaisua ekvatoriaaliseen pystytykseen: haarukka, saksalainen pystytys, englantilainen pystytys, hevosenkenkäpystytys (kuvat seuraavalla sivulla) 16
5.3 Teleskoopin pystytys 17
5.3 Teleskoopin pystytys 18
5.4 Fokus Primäärifokus Newton-fokus 19
5.4 Fokus Cassegrain fokus Hyöty: Minimoidaan peilien määrää Haitta: Mittalaite liikkuu Coude focus Hyöty: Mittalaite voi olla erillään teleskoopista 20
5.4 Fokus Nasmyth fokus Hyöty: Laite ei liiku Teleskoopissa voi olla useita instrumentteja kiinni samaan aikaan eri fokuksissa 21
5.5 Kuvan laatuun vaikuttavia tekijöitä Optisen systeemin valinta Hionnan laatu Tarkkuus oltava ~/10 (Hubble /20) Pääpeilin tuenta Aktiivinen optiikka Suojaus hajavaloa vastaan (baffling) 22
5.5 Kuvan laatuun vaikuttavia tekijöitä 23
5.5 Kuvan laatuun vaikuttavia tekijöitä Kirkkaan tähden hajavalo CCD-kuvassa NOT:n hajavalon vähentäminen (Grundahl & Sörensen, 1996) 24
5.5 Terminen suunnittelu Lämpölähteitä: Teleskooppi, peili, rakenteet Teleskooppirakennus Instrumentti Havaitsija Huoltorakennukset, ympäröivä observatorio Maaperä 25
5.5 Terminen suunnittelu Miten terminen suunnittelu näkyy kuvassa? 26
5.5 Terminen suunnittelu NOT: Terminen suunnittelu optimoitu 27
5.5 Terminen suunnittelu Termisen suunnittelun haasteita: Teleskoopin kontrollihuone 28
5.5 Mekaaninen suunnittelu Laakerointi Tasapainotus Värähtelyn estäminen Tuulen sietokyky Peilin materiaalilla oltava pieni lämpölaajenemiskerroin 29
5.6 Havaintopaikan valinta Pilvisiä öitä mahdollisimman vähän Kuiva ilmasto Sijainti korkealla (ohut ilmakehä, taivas tumma) Hyvä seeing Pieni valosaaste Ympäröivä infrastruktuuri Hyviä havaintopaikkoja: La Palma, Havaiji, Chile, Arizona, Australia, Etelä-Afrikka 30
5.6 Havaintopaikan valinta 31
5.7 Teleskooppeja Suomen suurimpia: Turlan Cassegrain 1.03 m Metsähovin Ritchey-Chretien 60 cm Maailman suurimpia Keck 1 ja 2, 10 m (Mauna Kea) GTC, 10.4 m (La Palma) VLT 1-4, 4 x 8.2 m (ESO-Paranal) Subaru, 8.2 m (Mauna Kea) LBT, 2 x 8.4 m (Mt. Graham) Gemini North & South, 8.1 m (Mauna Kea & Cerro Pachon) Tulevaisuuden hankkeita: GMT, 21.4 m (2016?, Mt. Graham) E-ELT, ~50 m (20??,?) 32