Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016
Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton osajoukko, niin on olemassa vektorit v k+1,..., v k+m V siten, että {v 1, v 2,..., v k, v k+1,..., v k+m } on V :n kanta. Erityisesti pätee: Jos dim(v ) = n ja {v 1,..., v n } V on lineaarisesti riippumaton, niin se on V :n kanta. Kantojen tärkein ominaisuus on seuraava: Jos B = {b 1, b 2,..., b n } on vektoriavaruuden V kanta, niin jokainen vektori v V voidaan esittää muodossa v = c 1 b 1 + c 2 b 2 + + c n b n täsmälleen yhdellä tavalla. Matriisilaskenta 2/11
Kannanvaihto 1/4 Tarkastellaan tilannetta, jossa tunnetaan vektorin esitys kannassa B = {b 1, b 2,..., b n } ja halutaan vaihtaa toiseen kantaan U = {u 1, u 2,..., u n }. Lasketaan, miten uudet koordinaatit saadaan lausuttua vanhojen avulla. Merkitään vektorin v koordinaatteja näissä kannoissa [v] B = (β 1,..., β n ) ja [v] U = (η 1,..., η n ). Oletetaan, että vanhat kantavektorit b j on lausuttu uusien kantavektoreiden u i avulla b j = s ij u i, j = 1,..., n. (1) i=1 Matriisilaskenta 3/11
Kannanvaihto 2/4 Tällöin saadaan v = η i u i = i=1 β j b j = j=1 j=1 β j s ij u i = i=1 ( ) s ij β j u i. i=1 j=1 Koska vektorin koordinaatit (kannassa U ) ovat yksikäsitteiset, on oltava η i = s ij β j, i = 1,..., n. (2) j=1 Matriisilaskenta 4/11
Kannanvaihto 3/4 Merkitään S = s 11... s 1n... s n1... s nn Tällöin koordinaattien välinen yhtälö (2) voidaan kirjoittaa [v] U = S [v] B. (3) Siten uudet koordinaatit saadaan matriisilla S kertomalla vanhoista, kun S :n sarakkeina on vanhojen kantavektoreiden koordinaattivektorit uudessa kannassa. Matriisilaskenta 5/11
Kannanvaihto 4/4 Matriisia S kutsutaan kannanvaihtomatriisiksi ja se siis välittää yhtälön (3) mukaisesti koordinaattimuunnoksen. Kannanvaihtomatriisi on aina kääntyvä, ja vanhat koordinaatit saadaan uusista kaavalla [v] B = S 1 [v] U. Matriisilaskenta 6/11
Ortogonaalisuus ja ortonormaalius 1/2 Oletetaan, että v 1, v 2 V ovat vektoreita ja niiden sisätulo on määritelty. Tällöin vektoreita v 1, v 2 sanotaan keskenään ortogonaalisiksi (kohtisuoriksi), jos pätee v 1, v 2 = 0. Vastaavasti vektoreja v 1,..., v n V sanotaan ortogonaalisiksi, jos v i, v j = 0 aina kun i j. Vektoreja v 1,..., v n V sanotaan ortonormaaleiksi, jos { 0, i j, v i, v j = 1, i = j. Matriisilaskenta 7/11
Ortogonaalisuus ja ortonormaalius 2/2 Ortonormaalius siis tarkoittaa sitä, että vektorit ovat keskenään kohtisuorassa ja lisäksi jokaisen niistä normi (pituus) on 1. Huom. Ortogonaaliset (ja ortonormaalit) vektorit ovat lineaarisesti riippumattomia. Matriisilaskenta 8/11
Ortonormaali kanta 1/2 Seuraavaksi pohditaan, miten mistä tahansa lineaarisesti riippumattomasta vektorijonosta B = {v 1, v 2,..., v n } saadaan ortonormaali. Huom. Vektorijono B on vektoriavaruuden V = span B kanta. Vektoriavaruuden ortonormaali kanta on mahdollisimman siisti, ts. se on yleensä helpoin käsitellä sekä laskujen että teoreettisten tulosten kannalta. Matriisilaskenta 9/11
Ortonormaali kanta 2/2 Ortonormaalin kannan löytämiseen on seuraava erittäin hyödyllinen algoritmi, jota kutsutaan Gram-Schmidtin ortogonalisoimiseksi. Algoritmissa vektoreista B = {v 1, v 2,..., v n } siis muodostetaan ortonormaali kanta U = {u 1, u 2,..., u n } avaruudelle V. Matriisilaskenta 10/11
Gram-Schmidtin ortogonalisointialgoritmi 1. Valitaan aluksi u 1 := v 1 / v 1. Saadaan avaruuden span{v 1 } ortonormaali kanta. 2. Jatketaan rekursiivisesti: Kun {u 1,..., u k } on vektoriavaruuden span{v 1,..., v k } ortonormaali kanta, voidaan valita w k+1 := v k+1 v k+1, u 1 u 1 v k+1, u 2 u 2... v k+1, u k u k. Nyt w k+1, u j = v k+1, u j v k+1, u j u j, u j = 0 kaikilla j = 1,..., k, koska u i, u j = 0 aina kun i j, ja u j, u j = 1. Voidaan siis valita u k+1 := w k+1 / w k+1. 3. Toistetaan edellistä askelta, kunnes on käyty läpi kaikki vektorit {v 1, v 2,..., v n }. Näin saadaan ortonormaali kanta. Matriisilaskenta 11/11