Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja (P Q) ovat loogisesti ekvivalentit, siis että niillä on samat totuusarvot kaikilla atomilauseiden P ja Q totuusarvoyhdistelmillä. Menetelmä : Tehdään totuusarvotaulukko, jossa noille johdetuille lauseille saadaan identtiset totuusarvosarakkeet, tai muodostetaan noiden ekvivalenssilause ja osoitetaan se tautologiaksi. Menetelmä : Koetetaan muuntaa toinen lause siksi toiseksi käyttäen logiikan peruskaavoja (esim. de Morgan). Siis: (P Q) P ( ( Q)) P Q P Q, missä on myös käytetty monisteen kaavaa. Pistä perustelut kohdilleen!. Mitkä seuraavista ovat loogisesti ekvivalentteja lauseen P Q kanssa? a) (P Q) P, b) (P Q) Q, c) (P Q) E. Ratkaisu. Kaikki ovat ekvivalentteja! Voit tehdä totuusarvotaulukon, johon laitat kaikki esiintyvät lauseet ja verrata sarakkeita. Tai sitten oikein määritelmän mukaisesti: voit tehdä noista pareittain ekvivalenssilauseita ja todeta ne tautologioiksi. 3. Onko seuraava reaalilukuja koskeva päättely johdonmukainen: = tai = y. Jos = y, on = z. z. Siis =. Ratkaisu. Merkitään peruslauseita P : =, Q : = y ja R : = z. Premissit A k ja johtopäätös B ovat silloin: A : P Q A : Q R A 3 : R B: P Päättelyn (A A A 3 ) B totuusarvotaulukko: A A A 3 A A A 3 B (A A A 3 ) B P Q R P Q Q R R P T T T T T E E T T T T E T E T E T T T E T T T E E T T T E E T T T T T T E T T T T E E E T E T E T E T E E T E E T E T E E E T E E E E T T E E T Päättely on johdonmukainen, koska päättelylause on tautologia.
4. Onko seuraava päättely johdonmukainen: Happamuusindikaattori fenolftaleiini värjäytyy punaiseksi tai ei värjäydy lainkaan. Jos fenolftaleiini värjäytyy punaiseksi, neste on emäs. Siispä: Jos fenolftaleiini ei värjäydy, neste ei ole emäs. Ratkaisu. Merkitään peruslauseita P : Fenolftaleiini värjäytyy punaiseksi. Q: Fenolftaleiini ei värjäydy. R: Neste on emäs. Premissit A k ja johtopäätös B ovat silloin: A : P Q A : P R B: Q R Päättelyn (A A ) B totuusarvotaulukko: A A A A B (A A ) B P Q R R P Q P R Q Q T T T E T T T E E T T E T T E E T T T E T E T T T T T T E E T T E E T T E T T E T T T E E E T E T T T T T T E E T E E T T T T E E E T E T T T T Päättely ei ole johdonmukainen, koska päättelylause ei ole tautologia. 5. Olkoon A suljettu väli [, 4] ja B avoin väli ], [. Olkoon P joukossa A määritelty lausefunktio P () : 3 + >. Olkoon Q joukossa B määritelty lausefunktio Q(y) : y y. Esitä piirroksen avulla ne joukot, joissa ovat tosia a) P () Q(y), b) P () Q(y), c) P () Q(y), d) P () Q(y). Ratkaisu. Ratkaistaan epäyhtälöitä vastaavat yhtälöt: 3 + = = =, y y = = =. Ottamalla huomioon, että ne ovat ylöspäin aukeavia paraabeleja päätellään, että lause P () on tosi välin [, ] ulkopuolella ja Q(y) on tosi välillä [, ]. Ajatellaan aluksi ilman rajoitusta joukkoihin A ja B. Seuraavat kuviot näyttävät mille pareille (, y) tasossa on totta P () ja mille Q(y): - P() tosi pisteissä (, y) Q(y) tosi pisteissä (, y) 3 4 3 4 -
Ajatellaan joukko A koordinaatistoon vaaka-akselille ja B pystyakselille ja rajoitetaan tarkastelu suorakulmioon A B = [, 4] ], [. Seuraavissa kuvissa tuon suorakulmion sisälle jäävät viivoitetut alueet ovat lauseiden ratkaisujoukot, ts. niissä lauseet ovat tosia: - 3 4-3 4-3 4-3 4 6. Muodosta joukossa R R määritellystä lausefunktioista P (, y) : y = kvanttoreita käyttäen lauseet kaikilla mahdollisilla tavoilla ja selvitä niiden totuusarvot. Ratkaisu. Jos muuttujat pidetään annetussa järjestyksessä, on 4 erilaista tapausta. Jos myös käänteinen järjetys tarkastellaan, kuten tavallista on, erilaisia on periaatteessa 8 kpl. Kuitenkin tapaukset y ja y ovat samanarvoisia, samoin tapaukset y ja y. R, y R: y = ; epätosi, sillä esimerkiksi P (, ) : ; siis vastaesimerkillä! R, y R: y = ; epätosi, sillä esimerkiksi P (, y) : y ; tämä voitaisiin todeta osoittamalla sen negaatio todeksi, näinhän oikeastaan tehtiinkin löytämällä arvo = niin ettei y mahda mitään... R, y R: y = ; epätosi, sillä sen negaatio on tosi; kutakin R vastaa esimerkiksi y :=, joille P (, ) : =. esimerkiksi P (, y) : y. R, y R: y = ; tosi, sillä esimerkiksi P (, ) : =. y R, R: y = ; tosi; mielivaltaista y R kohti luku := y + on sellainen, että P ( y +, y) : y + y =. y R, R: y = ; epätosi, sillä sen negaatio on tosi; kutakin y R vastaa esimerkiksi := y, joille P (y, y) : y y =. 3
7. Osoita: ε >, n ε N: n > n ε 8 < ε, n+ toisin sanoen: Osoita, että valittiinpa ε > kuinka pieneksi hyvänsä, aina on olemassa luonnollinen luku n ε, jota suuremmilla n N pätee 8 n+ < ε. Ratkaisu. Ratkaistaan epäyhtälö aluksi reaalisena (voidaan olettaa ): 8 + < ε + > 8 ε > 8 ε, mikä on reaaliluku. Valitaan sellainen n ε N, että n ε 8 (ainahan voidaan valita ε annettua reaalilukua suurempi luonnollinen luku, vaikkapa luvun kokonaisosa +). Epäyhtälö pätee nyt kaikilla lukua n ε N suuremmilla luonnollisilla luvuilla, siis 8 n+ < ε kaikilla n > n ε. 8. Jatkuvuuden negaatio: siis mitä tarkoittaa olla epäjatkuva? Reaalifunktion jatkuvuus tietyssä pisteessä määritellään seuraavasti: Olkoon reaalifunktio f määritelty avoimella välillä I := ]a, b[, joka sisältää luvun R. Funktio f on jatkuva pisteessä, jos ε >, δ ε >, R : I < δ ε f() f( ) < ε. Miten ilmaistaan se, että f ei ole jatkuva pisteessä? Ratkaisu. Tehtävässä olevassa tilanteessa funktio f ei ole jatkuva pisteessä, jos on totta ( ε >, δ ε >, R : I < δ ε f() f( ) < ε) eli ε >, δ ε >, R : I < δ ε f() f( ) ε Mitäkö se on? Funktion kaikki arvot f() eivät lähesty rajatta arvoa f( ), vaikka lähestyisikin lukua ; on siis olemassa sellainen raja ε >, että funktion arvoja jää välin [f( ) ε, f( )+ε] ulkopuolelle oltiinpa vaikka kuinka lähellä pistettä, siis vaikka kuinka pienellä välillä ] δ, +δ[. Lyhyesti: On olemassa raja ε > niin, että jokaiselta -keskiseltä väliltä löytyy jokin luku I, jossa funktion arvo on ainakin ε:n etäisyydellä luvusta f( ). 9. Olkoot A := {a, b}, B := {c} ja C := {a, c, d}. a) Muodosta A C, C A ja A B C. b) Määritä kaikki sellaiset joukot D, joille C D ja D C. Ratkaisu. a) A C = {a, b} {a, c, d} = {(a, a), (a, c), (a, d), (b, a), (b, c), (b, d)} C A = {a, c, d} {a, b} = {(a, a), (a, b), (c, a), (c, b), (d, a), (d, b)} A B C = {a, b} {c} {a, c, d} = {(a, c, a), (a, c, c), (a, c, d), (b, c, a), (b, c, c), (b, c, d)} b) Itse asiassa voidaan todistaa ihan yleisesti: Lause. Jos A ja B ovat epätyhjiä joukkoja, niin A B = B A jos ja vain jos A = B. Todistus. Jos ja vain jos -lause voidaan todistaa osoittamalla seuraamukset molempiin suuntiin (kerralla tai) erikseen: ) Jos A = B, on tietysti A B = B A. ) Oletetaan, että A B = B A. Huomaa, että oletimme joukot A ja B epätyhjiksi, jolloin tulojoukotkin ovat epätyhjiä. 4
Antiteesi: A B. Silloin joukossa A on joku alkio, joka ei ole joukossa B tai joukossa B on joku alkio, joka ei ole joukossa A. Todistetaan näytteeksi edellinen tapaus: Olkoon a A alkio, joka ei ole joukossa B. Koska B, valitaan sieltä yksi alkio b. Äskeisen oletuksen mukaan se ei voi olla a. Nyt pari (a, b) A B, mutta (a, b) / B A, koska a / B. Siis olisikin A B B A. Tämä on ristiriita oletuksemme kanssa, joten antiteesi ei voi olla totta, eli ei voi olla olematta A = B. Jos A B tapahtuu niin, että joukossa B on joku alkio, joka ei ole joukossa A, toimitaan vastaavalla tavalla (tai sovelletaan yllä olevaa käänteisrelaatioihin... ). Olkoot B k := [k, k+] suljettuja välejä kaikilla k N. Laske joukot a) ( n ) B k n= k= b) ( n B k ). n= k= Ratkaisu. Nyt B = [, ], B = [, 3],..., B n = [n, n+],..., joten n B k = [, ] [, 3] [n, n+] = [, n+], k= ja tämä jono on laajeneva jono sisäkkäisiä joukkoja, kun n kasvaa. Näiden kaikkien leikkaus on siten B = [, ]. Leikkausjoukkojen jono on B = [, ], B B = {} ja muut tyhjiä. Siis (sattumoisin) näiden kaikkien yhdiste on B (B B ) = [, ]. Siis: ( n ) B k = [, ] = n= k= ( n B k ).. Olkoon A perusjoukon X aito epätyhjä osajoukko. Määritellään relaatio n= k= Ry ( A = y) ( A y A). Osoita, että R on ekvivalenssi, mutta ei osittainen järjestys joukossa X. Ratkaisu. Selvästikin ehto on sellainen, että se määrää tarkasti jokaisen parin, y X relaatiossaolon, joten R X X. Ehto suomeksi: kaikki joukon A ulkopuoliset alkiot ovat relaatiossa vain itsensä kanssa, mutta joukon A alkiot kaikki keskenään. Tarkastetaan refleksiivisyys, symmetrisyys ja transitiivisuus. Merkitään ehtoja lyhyesti P (, y) := A = y, Q(, y) := A y A, jolloin Ry P (, y) Q(, y). E) Olkoon X mielivaltainen. Silloin A tai A, ja tarkasteltuina erikseen: ) Jos A, niin Q(, ) on tosi ja siis R. ) Jos A, niin P (, ) on tosi ja siis R. E) Olkoot, y X ja Ry. On taas kaksi mahdollisuutta: ) Jos toteutuu P (, y), niin A = y. Mutta silloin myös y A y = eli P (y, ). ) Jos toteutuu Q(, y), niin A y A. Mutta silloin y A A eli Q(y, ). 5
Siis joka tapauksessa P (y, ) Q(y, ) ja siten yr. E3) Olkoot, y, z X sekä Ry ja yrz. Koska Ry, on P (, y) tai Q(, y) tosi. ) Jos P (, y), niin A = y, joten y A. Koska yrz, on P (y, z) tai Q(y, z), joista edellisen nojalla käy vain P (y, z), ja siten = y = z. Näin ollen A = z eli P (, z), ja nyt Rz. ) Jos Q(, y), niin A y A. Koska yrz ja y A, on ainoa mahdollisuus Q(y, z), joten z A. Siis A z A eli Q(, z), ja nytkin Rz. Relaatio on siis ekvivalenssi, ekvivalenssiluokkia ovat A ja kukin yksiö {}, kun A. Relaatio ei ole yleensä osittainen järjestys. Se ei nimittäin ole antisymmetrinen, jos A on vähintäin kahden alkion joukko: Jos X := {,, 3} ja A := {, }, niin R ja R.. Olkoon f : A B injektio. Oletetaan, että joukossa B on osittainen järjestys, eli että pari (B, ) on osittain järjestetty joukko. Osoita, että joukossa A määritelty relaatio R: Ry f() f(y) on osittainen järjestys. Tämä osoittaa, että injektiossa maalijoukon järjestys indusoi järjestyksen lähtöjoukkoon. Ratkaisu. Määrittelynsä nojalla R on todella relaatio joukossa A eli R A A. J) Refleksiivisyys. Jokaiselle A on R, koska joukossa B on refleksiivinen: f() f(). J) Antisymmetrisyys. Oletetaan, että Ry ja yr. Silloin f() f(y) ja f(y) f(). Koska on antisymmetrinen, seuraa f() = f(y). Koska f on oletuksen mukaan injektio, on oltava = y. J3) Transitiivisuus. Oletetaan, että Ry ja yrz. Silloin f() f(y) ja f(y) f(z). Relaation transitiivisuuden nojalla f() f(z). Relaation R määrittelyn nojalla on Rz. Kohtien J-3) perusteella R on osittainen järjestys. 3. Todista luentomonisteen Lauseen 4.8.4 kohdat a) ja b): Lause 4.8.4. Olkoon (E, ) osittain järjestetty joukko. a) Joukossa E on korkeintaan yksi pienin ja yksi suurin alkio. b) Osajoukolla F E on korkeintaan yksi infimum ja supremum. c) Joukossa E on pienin alkio jos ja vain jos E on alhaalta rajoitettu. Vastaava pätee suurimmalle alkiolle. Ratkaisu. a) Kukin voi muotoilla todistuksen tapauksen suurin alkio, kun todistamme väitteen pienimmälle alkiolle: Epäsuorasti antiteesillä. Vastaoletus: On enemmän kuin yksi pienin alkio, jolloin otetaan niistä kaksi a ja b, a b. Koska a on pienin, on a b. Koska b on pienin, on b a. Antisymmetrisyyden nojalla onkin nyt a = b, mikä on vastoin tekemäämme vastaoletusta. Täten väite ei voi olla olematta tosi. b) Sama tilanne: perustellaan tässä pienimmän ylärajan eli supin tapaus. Jos olisi kaksi supiksi kelpoista alkiota, niin olisi ylärajojen joukolla kaksi eri pienintä alkiota. Mutta kohdan a) mukaan tämä on mahdotonta. Huom! Ylärajojen joukko, joka tässä ei ole tyhjä, on itsekin osittain järjestetty joukko, kun siinä on koko joukosta E periytyvä (rajoittumana). 6
Todistetaan nyt sitten myös c)-kohta. c) Olkoon joukossa E pienin alkio a. Silloin se on eräs alaraja ja E on alhaalta rajoitettu. Olkoon E alhaalta rajoitettu. Silloin sillä on alarajana jokin alkio b E. Mutta tämähän kelpaa silloin pienimmäksi alkioksi! Huomaa, että tässä puhuttiin itse joukon E alarajoista, ei sen osajoukkojen! 7