missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Samankaltaiset tiedostot
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

Johdatus diskreettiin matematiikkaan Harjoitus 1,

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

MS-A0402 Diskreetin matematiikan perusteet

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Miten osoitetaan joukot samoiksi?

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Loogiset konnektiivit

Johdatus matemaattiseen päättelyyn

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

1 sup- ja inf-esimerkkejä

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Vastaoletuksen muodostaminen

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

1 Määrittelyjä ja aputuloksia

Todistusmenetelmiä Miksi pitää todistaa?

1 Supremum ja infimum

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Joukot. Georg Cantor ( )

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Täydellisyysaksiooman kertaus

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

3 Lukujonon raja-arvo

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

3 Lukujonon raja-arvo

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

isomeerejä yhteensä yhdeksän kappaletta.

1. Logiikan ja joukko-opin alkeet

Ensimmäinen induktioperiaate

Analyysi I (mat & til) Demonstraatio IX

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Ensimmäinen induktioperiaate

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Johdatus matemaattiseen päättelyyn (5 op)

6 Relaatiot. 6.1 Relaation määritelmä

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

(2n 1) = n 2

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

Matematiikan tukikurssi, kurssikerta 1

1 sup- ja inf-esimerkkejä

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

Matematiikan tukikurssi

Lineaarikuvauksen R n R m matriisi

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Reaalifunktioista 1 / 17. Reaalifunktioista

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle

MS-A0402 Diskreetin matematiikan perusteet

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

LOGIIKKA johdantoa

Insinöörimatematiikka A

Johdatus matemaattisen analyysin teoriaan

Logiikka 1/5 Sisältö ESITIEDOT:

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet kurssin kotisivuilla.

Topologia IA, kesä 2017 Harjoitus 1

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Predikaattilogiikan malli-teoreettinen semantiikka

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Johdatus matemaattiseen päättelyyn

Matemaatiikan tukikurssi

Johdatus matemaattiseen päättelyyn

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Transkriptio:

Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja (P Q) ovat loogisesti ekvivalentit, siis että niillä on samat totuusarvot kaikilla atomilauseiden P ja Q totuusarvoyhdistelmillä. Menetelmä : Tehdään totuusarvotaulukko, jossa noille johdetuille lauseille saadaan identtiset totuusarvosarakkeet, tai muodostetaan noiden ekvivalenssilause ja osoitetaan se tautologiaksi. Menetelmä : Koetetaan muuntaa toinen lause siksi toiseksi käyttäen logiikan peruskaavoja (esim. de Morgan). Siis: (P Q) P ( ( Q)) P Q P Q, missä on myös käytetty monisteen kaavaa. Pistä perustelut kohdilleen!. Mitkä seuraavista ovat loogisesti ekvivalentteja lauseen P Q kanssa? a) (P Q) P, b) (P Q) Q, c) (P Q) E. Ratkaisu. Kaikki ovat ekvivalentteja! Voit tehdä totuusarvotaulukon, johon laitat kaikki esiintyvät lauseet ja verrata sarakkeita. Tai sitten oikein määritelmän mukaisesti: voit tehdä noista pareittain ekvivalenssilauseita ja todeta ne tautologioiksi. 3. Onko seuraava reaalilukuja koskeva päättely johdonmukainen: = tai = y. Jos = y, on = z. z. Siis =. Ratkaisu. Merkitään peruslauseita P : =, Q : = y ja R : = z. Premissit A k ja johtopäätös B ovat silloin: A : P Q A : Q R A 3 : R B: P Päättelyn (A A A 3 ) B totuusarvotaulukko: A A A 3 A A A 3 B (A A A 3 ) B P Q R P Q Q R R P T T T T T E E T T T T E T E T E T T T E T T T E E T T T E E T T T T T T E T T T T E E E T E T E T E T E E T E E T E T E E E T E E E E T T E E T Päättely on johdonmukainen, koska päättelylause on tautologia.

4. Onko seuraava päättely johdonmukainen: Happamuusindikaattori fenolftaleiini värjäytyy punaiseksi tai ei värjäydy lainkaan. Jos fenolftaleiini värjäytyy punaiseksi, neste on emäs. Siispä: Jos fenolftaleiini ei värjäydy, neste ei ole emäs. Ratkaisu. Merkitään peruslauseita P : Fenolftaleiini värjäytyy punaiseksi. Q: Fenolftaleiini ei värjäydy. R: Neste on emäs. Premissit A k ja johtopäätös B ovat silloin: A : P Q A : P R B: Q R Päättelyn (A A ) B totuusarvotaulukko: A A A A B (A A ) B P Q R R P Q P R Q Q T T T E T T T E E T T E T T E E T T T E T E T T T T T T E E T T E E T T E T T E T T T E E E T E T T T T T T E E T E E T T T T E E E T E T T T T Päättely ei ole johdonmukainen, koska päättelylause ei ole tautologia. 5. Olkoon A suljettu väli [, 4] ja B avoin väli ], [. Olkoon P joukossa A määritelty lausefunktio P () : 3 + >. Olkoon Q joukossa B määritelty lausefunktio Q(y) : y y. Esitä piirroksen avulla ne joukot, joissa ovat tosia a) P () Q(y), b) P () Q(y), c) P () Q(y), d) P () Q(y). Ratkaisu. Ratkaistaan epäyhtälöitä vastaavat yhtälöt: 3 + = = =, y y = = =. Ottamalla huomioon, että ne ovat ylöspäin aukeavia paraabeleja päätellään, että lause P () on tosi välin [, ] ulkopuolella ja Q(y) on tosi välillä [, ]. Ajatellaan aluksi ilman rajoitusta joukkoihin A ja B. Seuraavat kuviot näyttävät mille pareille (, y) tasossa on totta P () ja mille Q(y): - P() tosi pisteissä (, y) Q(y) tosi pisteissä (, y) 3 4 3 4 -

Ajatellaan joukko A koordinaatistoon vaaka-akselille ja B pystyakselille ja rajoitetaan tarkastelu suorakulmioon A B = [, 4] ], [. Seuraavissa kuvissa tuon suorakulmion sisälle jäävät viivoitetut alueet ovat lauseiden ratkaisujoukot, ts. niissä lauseet ovat tosia: - 3 4-3 4-3 4-3 4 6. Muodosta joukossa R R määritellystä lausefunktioista P (, y) : y = kvanttoreita käyttäen lauseet kaikilla mahdollisilla tavoilla ja selvitä niiden totuusarvot. Ratkaisu. Jos muuttujat pidetään annetussa järjestyksessä, on 4 erilaista tapausta. Jos myös käänteinen järjetys tarkastellaan, kuten tavallista on, erilaisia on periaatteessa 8 kpl. Kuitenkin tapaukset y ja y ovat samanarvoisia, samoin tapaukset y ja y. R, y R: y = ; epätosi, sillä esimerkiksi P (, ) : ; siis vastaesimerkillä! R, y R: y = ; epätosi, sillä esimerkiksi P (, y) : y ; tämä voitaisiin todeta osoittamalla sen negaatio todeksi, näinhän oikeastaan tehtiinkin löytämällä arvo = niin ettei y mahda mitään... R, y R: y = ; epätosi, sillä sen negaatio on tosi; kutakin R vastaa esimerkiksi y :=, joille P (, ) : =. esimerkiksi P (, y) : y. R, y R: y = ; tosi, sillä esimerkiksi P (, ) : =. y R, R: y = ; tosi; mielivaltaista y R kohti luku := y + on sellainen, että P ( y +, y) : y + y =. y R, R: y = ; epätosi, sillä sen negaatio on tosi; kutakin y R vastaa esimerkiksi := y, joille P (y, y) : y y =. 3

7. Osoita: ε >, n ε N: n > n ε 8 < ε, n+ toisin sanoen: Osoita, että valittiinpa ε > kuinka pieneksi hyvänsä, aina on olemassa luonnollinen luku n ε, jota suuremmilla n N pätee 8 n+ < ε. Ratkaisu. Ratkaistaan epäyhtälö aluksi reaalisena (voidaan olettaa ): 8 + < ε + > 8 ε > 8 ε, mikä on reaaliluku. Valitaan sellainen n ε N, että n ε 8 (ainahan voidaan valita ε annettua reaalilukua suurempi luonnollinen luku, vaikkapa luvun kokonaisosa +). Epäyhtälö pätee nyt kaikilla lukua n ε N suuremmilla luonnollisilla luvuilla, siis 8 n+ < ε kaikilla n > n ε. 8. Jatkuvuuden negaatio: siis mitä tarkoittaa olla epäjatkuva? Reaalifunktion jatkuvuus tietyssä pisteessä määritellään seuraavasti: Olkoon reaalifunktio f määritelty avoimella välillä I := ]a, b[, joka sisältää luvun R. Funktio f on jatkuva pisteessä, jos ε >, δ ε >, R : I < δ ε f() f( ) < ε. Miten ilmaistaan se, että f ei ole jatkuva pisteessä? Ratkaisu. Tehtävässä olevassa tilanteessa funktio f ei ole jatkuva pisteessä, jos on totta ( ε >, δ ε >, R : I < δ ε f() f( ) < ε) eli ε >, δ ε >, R : I < δ ε f() f( ) ε Mitäkö se on? Funktion kaikki arvot f() eivät lähesty rajatta arvoa f( ), vaikka lähestyisikin lukua ; on siis olemassa sellainen raja ε >, että funktion arvoja jää välin [f( ) ε, f( )+ε] ulkopuolelle oltiinpa vaikka kuinka lähellä pistettä, siis vaikka kuinka pienellä välillä ] δ, +δ[. Lyhyesti: On olemassa raja ε > niin, että jokaiselta -keskiseltä väliltä löytyy jokin luku I, jossa funktion arvo on ainakin ε:n etäisyydellä luvusta f( ). 9. Olkoot A := {a, b}, B := {c} ja C := {a, c, d}. a) Muodosta A C, C A ja A B C. b) Määritä kaikki sellaiset joukot D, joille C D ja D C. Ratkaisu. a) A C = {a, b} {a, c, d} = {(a, a), (a, c), (a, d), (b, a), (b, c), (b, d)} C A = {a, c, d} {a, b} = {(a, a), (a, b), (c, a), (c, b), (d, a), (d, b)} A B C = {a, b} {c} {a, c, d} = {(a, c, a), (a, c, c), (a, c, d), (b, c, a), (b, c, c), (b, c, d)} b) Itse asiassa voidaan todistaa ihan yleisesti: Lause. Jos A ja B ovat epätyhjiä joukkoja, niin A B = B A jos ja vain jos A = B. Todistus. Jos ja vain jos -lause voidaan todistaa osoittamalla seuraamukset molempiin suuntiin (kerralla tai) erikseen: ) Jos A = B, on tietysti A B = B A. ) Oletetaan, että A B = B A. Huomaa, että oletimme joukot A ja B epätyhjiksi, jolloin tulojoukotkin ovat epätyhjiä. 4

Antiteesi: A B. Silloin joukossa A on joku alkio, joka ei ole joukossa B tai joukossa B on joku alkio, joka ei ole joukossa A. Todistetaan näytteeksi edellinen tapaus: Olkoon a A alkio, joka ei ole joukossa B. Koska B, valitaan sieltä yksi alkio b. Äskeisen oletuksen mukaan se ei voi olla a. Nyt pari (a, b) A B, mutta (a, b) / B A, koska a / B. Siis olisikin A B B A. Tämä on ristiriita oletuksemme kanssa, joten antiteesi ei voi olla totta, eli ei voi olla olematta A = B. Jos A B tapahtuu niin, että joukossa B on joku alkio, joka ei ole joukossa A, toimitaan vastaavalla tavalla (tai sovelletaan yllä olevaa käänteisrelaatioihin... ). Olkoot B k := [k, k+] suljettuja välejä kaikilla k N. Laske joukot a) ( n ) B k n= k= b) ( n B k ). n= k= Ratkaisu. Nyt B = [, ], B = [, 3],..., B n = [n, n+],..., joten n B k = [, ] [, 3] [n, n+] = [, n+], k= ja tämä jono on laajeneva jono sisäkkäisiä joukkoja, kun n kasvaa. Näiden kaikkien leikkaus on siten B = [, ]. Leikkausjoukkojen jono on B = [, ], B B = {} ja muut tyhjiä. Siis (sattumoisin) näiden kaikkien yhdiste on B (B B ) = [, ]. Siis: ( n ) B k = [, ] = n= k= ( n B k ).. Olkoon A perusjoukon X aito epätyhjä osajoukko. Määritellään relaatio n= k= Ry ( A = y) ( A y A). Osoita, että R on ekvivalenssi, mutta ei osittainen järjestys joukossa X. Ratkaisu. Selvästikin ehto on sellainen, että se määrää tarkasti jokaisen parin, y X relaatiossaolon, joten R X X. Ehto suomeksi: kaikki joukon A ulkopuoliset alkiot ovat relaatiossa vain itsensä kanssa, mutta joukon A alkiot kaikki keskenään. Tarkastetaan refleksiivisyys, symmetrisyys ja transitiivisuus. Merkitään ehtoja lyhyesti P (, y) := A = y, Q(, y) := A y A, jolloin Ry P (, y) Q(, y). E) Olkoon X mielivaltainen. Silloin A tai A, ja tarkasteltuina erikseen: ) Jos A, niin Q(, ) on tosi ja siis R. ) Jos A, niin P (, ) on tosi ja siis R. E) Olkoot, y X ja Ry. On taas kaksi mahdollisuutta: ) Jos toteutuu P (, y), niin A = y. Mutta silloin myös y A y = eli P (y, ). ) Jos toteutuu Q(, y), niin A y A. Mutta silloin y A A eli Q(y, ). 5

Siis joka tapauksessa P (y, ) Q(y, ) ja siten yr. E3) Olkoot, y, z X sekä Ry ja yrz. Koska Ry, on P (, y) tai Q(, y) tosi. ) Jos P (, y), niin A = y, joten y A. Koska yrz, on P (y, z) tai Q(y, z), joista edellisen nojalla käy vain P (y, z), ja siten = y = z. Näin ollen A = z eli P (, z), ja nyt Rz. ) Jos Q(, y), niin A y A. Koska yrz ja y A, on ainoa mahdollisuus Q(y, z), joten z A. Siis A z A eli Q(, z), ja nytkin Rz. Relaatio on siis ekvivalenssi, ekvivalenssiluokkia ovat A ja kukin yksiö {}, kun A. Relaatio ei ole yleensä osittainen järjestys. Se ei nimittäin ole antisymmetrinen, jos A on vähintäin kahden alkion joukko: Jos X := {,, 3} ja A := {, }, niin R ja R.. Olkoon f : A B injektio. Oletetaan, että joukossa B on osittainen järjestys, eli että pari (B, ) on osittain järjestetty joukko. Osoita, että joukossa A määritelty relaatio R: Ry f() f(y) on osittainen järjestys. Tämä osoittaa, että injektiossa maalijoukon järjestys indusoi järjestyksen lähtöjoukkoon. Ratkaisu. Määrittelynsä nojalla R on todella relaatio joukossa A eli R A A. J) Refleksiivisyys. Jokaiselle A on R, koska joukossa B on refleksiivinen: f() f(). J) Antisymmetrisyys. Oletetaan, että Ry ja yr. Silloin f() f(y) ja f(y) f(). Koska on antisymmetrinen, seuraa f() = f(y). Koska f on oletuksen mukaan injektio, on oltava = y. J3) Transitiivisuus. Oletetaan, että Ry ja yrz. Silloin f() f(y) ja f(y) f(z). Relaation transitiivisuuden nojalla f() f(z). Relaation R määrittelyn nojalla on Rz. Kohtien J-3) perusteella R on osittainen järjestys. 3. Todista luentomonisteen Lauseen 4.8.4 kohdat a) ja b): Lause 4.8.4. Olkoon (E, ) osittain järjestetty joukko. a) Joukossa E on korkeintaan yksi pienin ja yksi suurin alkio. b) Osajoukolla F E on korkeintaan yksi infimum ja supremum. c) Joukossa E on pienin alkio jos ja vain jos E on alhaalta rajoitettu. Vastaava pätee suurimmalle alkiolle. Ratkaisu. a) Kukin voi muotoilla todistuksen tapauksen suurin alkio, kun todistamme väitteen pienimmälle alkiolle: Epäsuorasti antiteesillä. Vastaoletus: On enemmän kuin yksi pienin alkio, jolloin otetaan niistä kaksi a ja b, a b. Koska a on pienin, on a b. Koska b on pienin, on b a. Antisymmetrisyyden nojalla onkin nyt a = b, mikä on vastoin tekemäämme vastaoletusta. Täten väite ei voi olla olematta tosi. b) Sama tilanne: perustellaan tässä pienimmän ylärajan eli supin tapaus. Jos olisi kaksi supiksi kelpoista alkiota, niin olisi ylärajojen joukolla kaksi eri pienintä alkiota. Mutta kohdan a) mukaan tämä on mahdotonta. Huom! Ylärajojen joukko, joka tässä ei ole tyhjä, on itsekin osittain järjestetty joukko, kun siinä on koko joukosta E periytyvä (rajoittumana). 6

Todistetaan nyt sitten myös c)-kohta. c) Olkoon joukossa E pienin alkio a. Silloin se on eräs alaraja ja E on alhaalta rajoitettu. Olkoon E alhaalta rajoitettu. Silloin sillä on alarajana jokin alkio b E. Mutta tämähän kelpaa silloin pienimmäksi alkioksi! Huomaa, että tässä puhuttiin itse joukon E alarajoista, ei sen osajoukkojen! 7