Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio on määrittelyjoukon korkeintaan yhden alkion kuva.
Edelleen sanomme, että f on surjektio, jos Y = f (X ) eli y Y : x X : y = f (x). Siis kuvaus on surjektio, jos sen maalijoukko on sama kuin arvojoukko eli maalijoukon jokainen alkio on määrittelyjoukon ainakin yhden alkion kuva.
Kuvaus f on, jos se on sekä injektio että surjektio. Tällöin maalijoukon jokainen alkio on määrittelyjoukon täsmälleen yhden alkion kuva. Siis f : X Y on jos ja vain jos pätee y Y :!x X : y = f (x).
Bijektion nuolikuviossa lähtö- ja maalijoukon alkioiden välillä on yksikäsitteinen vastavuus. Jokaisesta lähtöjoukon alkiosta lähtee ja jokaiseen maalijoukon alkioon tulee täsmälleen yksi nuoli. Taululla. Jos kuvaus ei ole, niin saamme n pienentämällä määrittely- ja maalijoukkoa sopivasti. Taululla.
Esimerkki. Funktio f : R R: f (x) = x 2 ei ole injektio, koska esimerkiksi f ( 1) = f (1) (ja yleensäkin vastalukujen kuvat ovat samat). Tämä funktio ei ole myöskään surjektio, koska se ei saa esimerkiksi arvoa 1 (eikä muitakaan negatiivisia arvoja). Kuviosta nähdään, että poistamalla maalijoukosta negatiiviset luvut saamme surjektion. Vastaavasti poistamalla määrittelyjoukosta (esim.) negatiiviset luvut saamme injektion. Siis funktio f : R +0 R +0 : f (x) = x 2 on. Huom. Kuvio ei kuitenkaan riitä väitteen perusteluksi!
Olkoon f : X Y kuvaus, jolloin f = { (x, y) X Y y = f (x) }. Relaatiolla f on aina käänteisrelaatio f 1 = { (y, x) Y X y = f (x) }, mutta se ei välttämättä ole kuvaus, vaikka f on kuvaus.
Jos f on, niin jokaista y Y vastaa täsmälleen yksi sellainen x X, että y = f (x). Siis tällöin f 1 on kuvaus, vieläpä. Kutsumme sitä f :n käänteiskuvaukseksi. Bijektion f : X Y käänteiskuvaus on siis f 1 : Y X ja y = f (x) x = f 1 (y).
Merkintöjen samanlaisuudesta huolimatta käänteiskuvausta ei saa sekoittaa alkukuvaan. Jos f : X Y on kuvaus ja B Y, niin f 1 (B) on X :n tietty osajoukko. Kuvausta f 1 ei kuitenkaan välttämättä ole olemassa (mutta käänteisrelaatio f 1 on). Jos taas f on, niin kuvaus f 1 on olemassa ja f 1 (B) merkityksessä joukon B alkukuva kuvauksessa f on sama kuin f 1 (B) merkityksessä joukon B kuva kuvauksessa f 1.
Esimerkki. Olkoon X = {1, 2, 3}, Y = {a, b, c} ja f : X Y kuvaus, jonka sääntö on f (1) = a, f (2) = b, f (3) = c. Kuvaus f on, ja käänteiskuvauksen f 1 : Y X sääntö on f 1 (a) = 1, f 1 (b) = 2, f 1 (c) = 3. Käänteiskuvauksen nuolikuvio saadaan kääntämällä nuolien suunnat. Taululla.
Analyysissa määritellään eräitä funktioita tiettyjen funktioiden käänteisfunktioina. Esimerkki. Funktio f : R +0 R +0 : f (x) = x n, missä R +0 = R + {0} ja n Z +, on. Sen käänteisfunktio on f 1 : R +0 R +0 : f 1 (y) = n y. Toisin sanoen, kun x 0, niin y = x n x = n y. Käänteiskuvauksenkin muuttujaa voidaan haluttaessa merkitä x:llä. Voidaan siis myös kirjoittaa f 1 (x) = n x.
Kuvausten f : X Y ja g : Y Z yhdistetty kuvaus eli kuvaustulo on kuvaus g f : X Z, jonka sääntö on (g f )(x) = g(f (x)). Siis (g f )(x) saadaan niin, että alkioon x sovelletaan ensin kuvaus f ja tulokseen f (x) sitten kuvaus g. Nuolikuviot siis liitetään yhteen. Taululla.
Huomautus. Kuvausten yhdistämisen merkintä on ristiriidassa relaatioiden yhdistämismerkinnän kanssa, koska relaatioiden f ja g yhdistettyä relaatiota merkitään f g. Ristiriidan syynä on merkinnän f (x) takaperoisuus : vaikka meillä on ensin alkio x, johon sitten sovelletaan kuvaus f, niin kirjoittamisjärjestys on päinvastainen: ensin f, sitten x.
Huomautus. Jotta kuvaukset f ja g voitaisiin yhdistää, niin f :n maalijoukon täytyy määritelmän mukaan olla sama kuin g:n määrittelyjoukko. Koska maalijoukot eivät useinkaan ole mielenkiintoisia ja niitä voidaan tarvittaessa muuttaa upotuskuvauksella, on syytä sallia kuvausten yhdistäminen silloinkin kun f :n maalijoukko ei ole g:n määrittelyjoukko, mutta näillä joukoilla on yhteisiä alkioita.
Seuraavissa esimerkeissä meitä kiinnostavat vain funktioiden lait, joten jätämme määrittely- ja maalijoukkojen miettimisen harjoitustehtäväksi. Esimerkki. Olkoon f (x) = sin x, g(x) = x 2. Tällöin (g f )(x) = g(sin x) = (sin x) 2 (f g)(x) = f (x 2 ) = sin x 2 (f f )(x) = sin sin x (g g)(x) = (x 2 ) 2 = x 4
Vastaavasti määrittelemme useamman kuin kahden kuvauksen yhdistämisen. Kuvausten f 1 : X 0 X 1, f 2 : X 1 X 2,. f n : X n 1 X n yhdistetty kuvaus eli kuvaustulo on kuvaus f n f 1 : X 0 X n, jonka sääntö on (f n f 1 )(x) = f n (f n 1 (... (f 2 (f 1 (x)))...)).
Esimerkki. Olkoon f (x) = x, g(x) = e x + x, h(x) = 1/(x + 2). Tällöin (h g f )(x) = h ( g ( f (x) )) = h ( g ( x )) = h ( e x + x ) = 1 e x + x + 2.
Kuvaustulo ei noudata vaihdantalakia. Sen sijaan se noudattaa liitäntälakia, sillä relaatioiden yhdistäminen on liitännäinen. Todistamme vielä liitännäisyyden erikseen kuvauksille. Koska ( h (g f ) ) (x) = h ( (g f )(x) ) = h ( g(f (x)) ) = (h g f )(x) ja ( (h g) f ) (x) = (h g)(f (x)) = h ( g(f (x)) ) = (h g f )(x), niin h (g f ) = (h g) f = h g f.