4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste täyttää siis jonkin ehdon, yleensä on kysymys jostakin etäisyysasiasta. Toisaalta, pistejoukon ulkopuolella ei ole yhtään ehdon täyttävää pistettä. Esim. 1 a) Janan keskinormaali on niiden pisteiden ura, jotka ovat yhtä kaukana janan kummastakin päätepisteestä b) Kulman puolittaja on niiden pisteiden ura, jotka ovat yhtä kaukana kulman kummastakin kyljestä. MÄÄRITELMÄ 7 Ympyräviiva Ympyräviiva on joukko pisteitä, joista jokainen on vakioetäisyydellä ( ympyrän säde R) kiinteästä pisteestä O, jota sanotaan ympyrän keskipisteeksi. Kun otetaan ympyräviivalta kaksi pistettä (esim. A ja B) ja yhdistetään nämä janalla, saadaan ympyrän jänne. Jos tämä jänne kulkee ympyrän keskipisteen kautta, sitä sanotaan halkaisijaksi. Se on jänteistä pisin ja siten halkaisija on kahden säteen mittainen.
Ympyrän jänne jakaa ympyrän kahteen segmenttiin. Kaksi ympyrän sädettä puolestaan jakaa ympyrän kahteen sektoriin. A A B B Kaikki ympyrät ovat yhdenmuotoisia. Vastinjanojen suhde on siis vakio, ja erityisen tärkeä onkin ympyrän kehän pituuden suhde ympyrän halkaisijaan. Se on eräs matematiikan tärkeimpiä vakiota (tosin näin sanotaan eräistä muistakin vakioista), ja sitä merkitään symbolilla π. joten ympyrän kehän pituus kehä halkaisija p d p R π, p πr Luvun π (pii) likiarvo on 3.14. Joillakin ihmisillä tapaa erikoisia piirteitä. Eräänlaisena erikoisuutena voidaan pitää sitä, miten joku muistaa ulkoa piin desimaaleja satakin kappaletta. Tämä luku on päättymätön, jaksoton desimaaliluku eikä sen desimaaliesitys siis koskaan pääty. Tietenkään ei ole mahdollista mitata ympyrän kehää ja halkaisijaa niin tarkoin, että piin likiarvon määrittäminen sitä kautta sadan merkitsevän numeron tarkkuudella olisi mahdollista, mutta ehkäpä opintojen jossain vaiheessa selviää, miten piin tarkkoja likiarvoja saadaan. Ympyrän pinta-alan lausekkeeseen voidaan yrittää päästä tietynlaisen rajamenettelyn avulla. Piirretään ympyrän sisään säännöllinen n-kulmio, jossa kaikki sivut ovat yhtä pitkät. Tämän n-kulmion voidaan ajatella koostuvan n:stä tasakylkisestä kolmiosta ( sektorin keskuskolmio) joista jokaisen kylki on ympyrän säteen mittainen ja kantaa voidaan merkitä vaikkapa kirjaimella k. Jokaisen tällaisen kolmion korkeuden voisi laskea Pythagoraan lauseen avulla, mutta se nyt
on tarpeetonta. Merkitään sitä kuitenkin kirjaimella h. Tällaisen n:stä kh nkh p h tasakylkisestä kolmiosta muodostuvan monikulmion ala n n, h R k missä p n on monikulmion piirin pituus. Kuvasta näet, että ympyrän sisään piirretty säännöllinen 6-kulmio peittää osan ympyrän alasta, mutta jos annetaan n:n rajattomasti kasvaa, niin n-kulmion piiri yhtyy sitä tarkemmin ympyrän kehään, mitä suurempi n on. Säännöllinen 1-kulmio ei varmaan enää piiriltään erottuisi ympyrän kehästä ainakaan kuvion mittakaavassa. Kun n rajattomasti kasvaa, monikulmion piiri lähestyy rajattomasti ympyrän kehää, ja jokaisen säännöllisen n-kulmion osana olevan yksittäisen kolmion korkeus lähestyy rajattomasti ympyrän sädettä, merkitään näin lim h R ja lim pn πr ja tällöin ympyrän pinta-ala pnh A lim πr R πr A πr
Yllä esiintynyt merkintä lim pn luetaan limes p n :stä, kun n lähestyy ääretöntä. Limes taitaa viitata latinalaisperäiseen sanaan, joka tarkoittaa rajaa. Merkintätapa vihjaa differentiaali- ja integraalilaskennan peruskäsitteeseen, rajaarvoon, johon tulevana lukuvuonna palataan. Ympyräkaaren pituuteen tai ympyrän alaan liittyvät sovellutukset ovat tavallisesti jonkinasteista keskuskulmaa vastaavan kaaren pituuden määrittäminen ja ympyräsektorin tai segmentin pinta-alan laskeminen. s Voisi ajatella kaaren pituutta verrannollisuuden kautta niin, että koska ympyrän kehän pituus on πr ja niin sanottu täysi kulma on 36 astetta, niin yhden asteen sektoria vastaavan kaaren pituus on ympyrän kehän 36:s osa. Jos sitten sektorin keskuskulman asteluku on α, tällaista kulmaa vastaava kaari tulee ymmärrettävästi α kertaiseksi. Keskuskulma Kaari α s 36 πr Siten on keskuskulman α asteluvun suhde täyden kulman astelukuun yhtä kuin sektorin kaaren pituuden suhde koko kehän pituuteen. Aivan vastaavasti voidaan päätellä sektorin pinta-alan suhtautuvan koko ympyrän pinta-alaan.
LAUSE 17 Olkoon ympyrän säde R ja sektorin keskuskulma α. Tällöin α sektorin kaaren pituus s πr 36 α sektorin pinta-ala Asekt πr 36 Esim. Ympyrän sektorin keskuskulma on 71 ja sektorin ala on 58 cm. Laske koko ympyrän ala ja sektorin kaaren pituus. Asekt α 36 A πr πr sekt 36 α 36 58cm Aymp πr 94.8...cm 71 A ymp R ± π 94.8... ± cm ± 9.675...cm, π joista vain positiivinen kelpaa säteeksi. Nyt sektorin kaaren pituus α 71 s πr π 9.675... cm 11.989... 36 36 cm. Vastaus: Ympyrän ala on noin 9 cm ja sektorin kaaren pituus on noin 1 cm.
Ympyrän segmentin alan laskemisessa on jo vähän enemmän työtä. keskuskolmio segmentti säde Jos ympyränsektori on (kuten kuvassa) vähemmän kuin puoliympyrä, niin segmentin ala saadaan vähentämällä sektorin alasta keskuskolmion ala. Näissä yhteyksissä kannattaa muistaa kolmion alan esitys muodossa, jossa se lausutaan kahden sivun ja välisen kulman sinin tulon puolikkaana. Yleensä nämä molemmat tunnetaan, onhan kolmion kylkinä ympyrän säde ja näiden välinen kulma sektorin keskuskulma. SEKTORI KESKUSKOLMIO SEGMENTTI Ympyräsektori voi olla puoliympyrää suurempikin. Tällöin sektorin alaan tulee lisätä kolmion ala. Tätä kolmiota on nyt hankala nimittää keskuskolmioksi.
SEKTORI + KOLMIO SEGMENTTI Esim. 3 Ympyrän säde R 1 cm ja sektorin keskuskulma on 71. segmentin ala. Laske Tilanne on ylemmän kuvan mukainen. Asegm Asekt Akeskkol 71 (1 cm) sin 71 π (1 cm) 36 71 sin 71 144 cm π 1.14... cm 36 Vastaus: Segmentin ala on noin 1 cm (n. 15% ympyrän alasta).