SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2)



Samankaltaiset tiedostot
SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet, 5 op

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

Mekaniikan jatkokurssi Fys102

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Länsiharjun koulu 4a

Luku 13. Kertausta Hydrostaattinen paine Noste

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

Luvun 12 laskuesimerkit

g-kentät ja voimat Haarto & Karhunen

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla

Sääilmiöt tapahtuvat ilmakehän alimmassa kerroksessa, troposfäärissä (0- noin 15 km).

Luku 13. Kertausta Hydrostaattinen paine Noste

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.

Mekaniikan jatkokurssi Fys102

HARJOITUS 4 1. (E 5.29):

Mekaniikan jatkokurssi Fys102

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

Mekaniikan jatkokurssi Fys102

2.3 Voiman jakaminen komponentteihin

Lämpöoppia. Haarto & Karhunen.

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

RATKAISUT: 19. Magneettikenttä

Fysiikan valintakoe , vastaukset tehtäviin 1-2

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

Lineaarialgebra MATH.1040 / voima

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

Mekaniikan jatkokurssi Fys102

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

Aineen olomuodot ja olomuodon muutokset

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa:

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

Mekaniikan jatkokurssi Fys102

Erkki Haapanen Tuulitaito

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

Kpl 2: Vuorovaikutus ja voima

Termodynamiikan suureita ja vähän muutakin mikko rahikka

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

Luento 16: Fluidien mekaniikka

FYSIIKAN HARJOITUSTEHTÄVIÄ

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3


3.4 Liike-energiasta ja potentiaalienergiasta

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Myös hiekan sideaine vaikuttaa sullonnan määrään. Hartsisideainehiekkojen sullontatarve on huomattavasti vähäisempi kuin bentoniittihiekkojen.

PAINOPISTE JA MASSAKESKIPISTE

Sähköstatiikka ja magnetismi

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Luvun 5 laskuesimerkit

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).

TEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

SMG 4500 Tuulivoima. Luentotiivistelmät

REAKTIOT JA ENERGIA, KE3. Kaasut

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste

2.5 Liikeyhtälö F 3 F 1 F 2

Liike pyörivällä maapallolla

PELASTUSKOIRA - ilmavirtausten perusteet

Kitka ja Newtonin lakien sovellukset

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Magneettikentät. Haarto & Karhunen.

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Luvun 10 laskuesimerkit

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

Mekaniikan jatkokurssi Fys102

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine

Muunnokset ja mittayksiköt

1.4 Suhteellinen liike

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE

Päällysveden sekoittuminen Jyväsjärvessä

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

1. Lähes neutraali rajakerros. 2. Epästabiili rajakerros. 3. Stabiili rajakerros

Transkriptio:

SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat 1 ILMANPAINE (1/2) Ilma kohdistaa voiman kaikkiin kappaleisiin, joiden kanssa se on kontaktissa. Unohdetaan ensin gravitaatio, ja tarkastellaan ilmaa suljetussa tilavuudessa. Suljetun tilavuuden seinämiin kohdistuva voima on seuraus tilavuuden sisällä olevien ilmamolekyylien satunnaisesta törmäilystä seinämiin. Mitä vilkkaampaa ilmamolekyylien liike on, sitä suuremman voiman ne seinämiin kohdistavat. Liikkeen vilkkautta saadaan kasvatettua lisäämällä suljetun tilavuuden ilmamolekyylien määrää tai nostamalla lämpötilaa. Lämpötilan muutos ei kuitenkaan vaikuta suljetussa tilavuudessa ilman tiheyteen (kg/m 3 ). Paine määritellään voimana pinta-alayksikköä kohti. Ilmanpaine tarkoittaa sitä voimaa pinta-alayksikköä kohti, jonka ilma kohdistaa sen kanssa kontaktissa olevaan kappaleeseen. 2 1

ILMANPAINE (2/2) Ilmakehä ei ole suljettu tilavuus, joten esimerkiksi lämpötilan muutos aiheuttaa tiheyden muutoksen. Lisäksi gravitaatiolla on hallitseva merkitys ilmanpaineeseen ilmakehässä. Tietyn kohteen ilmanpaine mitataan ilman painona pinta-alayksikköä kohti. Mitä korkeammalla merenpinnasta ollaan, sitä pienempi on ilman paino, sillä sitä vähemmän kohteen yläpuolella on ilmaa, johon gravitaatio vaikuttaa. Keskimääräinen ilmanpaine merenpinnan tasolla vastaa noin yhden kg:n massaa neliösenttimetrille: 2 1.0328746 kg 9.81 m s pavg 101325 Pa. 4 2 10 m Vaikka paineen SI-yksikkö on Pascal (N/m 2 ), ilmanpaine esitetään yleisimmin bareina: 1 Pa = 0.01 mbar p avg = 1.01325 bar = 1013.25 mbar. Pohdintaa: Jos merenpinnan tasolla sijaitsevan talon kattopinta-ala on 100 m 2 (10 6 cm 2 ), katon yläpuolella oleva ilma kohdistaa kattoon miljoonan kg:n massaa vastaavan voiman. Miksi talon katto ei romahda? 3 ILMANPAINEEN PYSTYSUUNTAISET MUUTOKSET Gravitaation seurauksena ilmakehän korkeimmat ilmanpainelukemat löytyvät merenpinnan tasolta, sillä maan vetovoima puristaa ilmaa sitä enemmän, mitä enemmän tarkastelukohdan yläpuolella on ilmamassaa. Mitä korkeampi on ilmanpaine, sitä suurempi on ilman tiheys, eli sitä suurempi on ilmamolekyylien määrä tilavuusyksikköä kohti. Ohuessa vuoristoilmassa on alhaisen ilmanpaineen vuoksi happimolekyylien määrä tilavuusyksikköä kohden pienempi kuin merenpinnan tasolla. Siksi myös hengittäminen tuntuu hankalammalta. Pystysuuntainen ilmanpaineen profiili esitetään yleensä standardin ilmakehän avulla, joka on malli todellisesta ilmakehästä. Standardi ilmakehä perustuu ilmakehän olosuhteiden keskiarvoistamiseen kaikilla leveyspiireillä kaikkina vuodenaikoina. 4 2

ILMANPAINEEN VAAKASUUNTAISET MUUTOKSET (1/2) Gravitaatio vaikuttaa ilmanpaineeseen vain pystysuunnassa, joten vaakasuuntaiset muutokset johtuvat lämpötilan ja ilmankosteuden muutoksista. Lämpötilan kasvu pienentää ilman tiheyttä, mikä edelleen pienentää ilman painoa pinta-alayksikköä kohti. Lämpötilan kasvu pienentää ilmanpainetta. Ilma sisältää aina kosteutta, joten vesimolekyyli kuuluu ilmamolekyyleihin. Ilmankosteuden muutokset aiheuttavat ilmamolekyylien massan muutoksen. Veden molekyylimassa on pienempi kuin hapella ja typellä. Koska vesimolekyyli ottaa ilmassa happi- tai typpimolekyylin paikan, ilmankosteuden lisääntyminen pienentää ilman massaa, mikä edelleen pienentää ilman painoa pinta-alayksikköä kohti. Ilmankosteuden kasvu pienentää ilmanpainetta. Vaakasuuntaiset ilmanpaineen muutokset määrittävät vallitsevan säätilan, vaikka ne ovatkin huomattavasti vähäisempiä kuin pystysuuntaiset muutokset. Pystysuunnassa ilmanpaine muuttuu useita satoja millibareja, kun noustaan muutaman kilometrin korkeudelle merenpinnasta. Vaakasuunnassa ilmanpaineen muutos jää lähes aina 100 mbarin alapuolelle. Sääkartoilla esitetyt ilmanpainelukemat ovat aina lukemia merenpinnan tasolta. 5 ILMANPAINEEN VAAKASUUNTAISET MUUTOKSET (2/2) Ilmavirtausten hajaantuminen ((a) ja (c)) ja suppeneminen ((b) ja (d)) aiheuttavat yleensä merkittäviä vaakasuuntaisia ilmanpaineen muutoksia. Yleisesti ottaen ei kuitenkaan voida sanoa, aiheuttavatko hajaantuminen ja suppeneminen ilmanpaineen nousua vai laskua. Molemmat ovat mahdollisia. Yleensä kuvan (b) mukainen suppeneminen synnyttää matalapaineen ja kuvan (a) mukainen hajaantuminen korkeapaineen. Toisaalta hajaantuminen (c) voi myös paikallisesti laskea ilmanpainetta, ja vastaavasti suppeneminen (d) voi nostaa sitä. 6 3

MATALA- JA KORKEAPAINEET Sääennusteiden ilmanpainekartat esittävät merenpinnan tason ilmanpainelukemia tasa-arvokäyrien, eli isobarien, avulla. Ilmanpaine pysyy vakiona tasaarvokäyrää pitkin kuljettaessa. Matalapaineen keskuksessa ilmanpaine on ympäristöään alhaisempi. Korkeapaineen keskuksessa ilmanpaine on ympäristöaan korkeampi. Absoluuttiset ilmanpainelukemat eivät kuitenkaan ole ilmavirtausten kannalta tärkeässä roolissa. Sen sijaan painegradientilla, eli paineen muutoksella pituusyksikköä kohti, on ratkaiseva rooli. Pohdintaa: Miten painegradientti käy ilmi ilmanpainekartasta? 7 TUULI LUONNONILMIÖNÄ Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen. Ilmavirtojen liikkeeseen vaikuttavia voimia voidaan luokitella viisi kappaletta: Painegradienttivoima Keskihakuvoima Coriolis-voima Kitka Gravitaatio 8 4

PAINEGRADIENTTIVOIMA Painegradientti poikkeaa nollasta, jos ilmanpaine muuttuu paikan suhteen. Painegradienttivoima saa ilmamolekyylit liikkeelle. Ilmiötasolla kyse on ilman tiheyserojen tasoittumisesta, jota luonnontieteissä kutsutaan yleisesti diffuusioksi. Ilmanpaineen absoluuttinen arvo ei vaikuta painegradienttiin. Ainoastaan ilmanpaineen muutoksella ja kohteiden välisellä etäisyydellä on merkitystä. Kuvan kaikissa tilanteissa painegradientin itseisarvo pysyy muuttumattomana, 0.02 mbar/m. Kuvassa (c) painegradientin suunta on vastakkainen kuviin (a), (b) ja (d) verrattuina. 9 KESKIHAKUVOIMA Newtonin I laki: kiihtyvässä liikkeessä olevaan kappaleeseen kohdistuu aina nollasta poikkeava nettovoima. Kaarevalla radalla oleva kappale on aina kiihtyvässä liikkeessä, sillä mahdollisesta vakiovauhdista huolimatta nopeuden suunta muuttuu jatkuvasti. Kun moukarinheittäjä irrottaa vaijerista, metallikuula lähtee tangentin suuntaan, jolloin vakionopeus on ideaalitilanteessa mahdollista. Ennen irrottamista heittäjä kohdistaa moukariin sisäänpäin vaikuttavan voiman, joka rajoittaa sen liikeradan ympyräksi. Tätä voimaa kutsutaan keskihakuvoimaksi. Keskihakuvoiman suunta on aina kaarevan radan keskipistettä kohti. Ilmavirtojen reitit ovat harvoin suoria, joten keskihakuvoima vaikuttaa myös tuuliin. Ilmavirtojen yhteydessä keskihakuvoima ei ole oma itsenäinen voimansa, vaan se on seuraus muiden voimien välisestä epätasapainosta. 10 5

CORIOLIS-VOIMA (1/3) 11 CORIOLIS-VOIMA (2/3) Punainen nuoli osoittaa ilmavirtauksen suuntaa. Kuvassa (a) suunta on tarkastelun alkuhetkellä ylhäältä alas (etelästä pohjoiseen) sekä avaruudessa olevan että maanpäällisen tarkkailijan silmin. Kuva (b) esittää samaa tilannetta hieman myöhemmin. Avaruudessa olevan tarkkailijan silmin ilmavirtauksen suunta on edelleen ylhäältä alas, mutta koska maapallon ilmansuuntakoordinaatisto kiertyy maapallon pyöriessä, maanpäällisen tarkkailijan silmin ilmavirtauksen suunta ei enää olekaan etelästä pohjoiseen. 12 6

CORIOLIS-VOIMA (3/3) Jos maapallo ei pyörisi, ilma virtaisi suoraan korkeapaineesta matalapaineeseen. Coriolis-ilmiö on seuraus maapallon pyörimisestä oman akselinsa ympäri. Pyörimissuunta on kohti itää, minkä vuoksi maapäällisen tarkkailijan silmin ilmavirtaus kaartuu pohjoisella pallonpuoliskolla oikealle ja eteläisellä vasemmalle. Mitä nopeammin ilma virtaa, sitä voimakkaammin Coriolis-ilmiö vaikuttaa. Mitä nopeammin ilma virtaa, sitä pidemmän matkan se kulkee aikayksikössä. Mitä pidemmän matkan ilma liikkuu, sitä suurempi on Coriolis-poikkeaminen. 13 KITKA (1/2) Kitka mielletään usein kiinteiden kappaleiden välistä liikettä vastustavaksi voimaksi. Kitka on kuitenkin merkittävä tekijä myös nesteiden ja kaasujen liikkeessä. Nesteen ja kaasun kitkaa kutsutaan viskositeetiksi. Pienessä mittakaavassa nesteen/kaasun kitka johtuu molekyylien satunnaisesta liikkeestä. Molekyyliviskositeetti ei erityisemmin vaikuta ilmavirtojen liikkeeseen. Suuressa mittakaavassa nesteen/kaasun kitka johtuu virtauksen pyörteistä. Pyörreviskositeetti vaikuttaa merkittävästi ilmavirtojen liikkeeseen. Kun ilmavirtaus kohtaa esteen, pyörteitä syntyy kuvan mukaisesti esteen taakse. Osa ilmavirtauksen liike-energiasta kuluu pyörteisiin, joten pyörreviskositeetti hidastaa ilmavirtauksia. 14 7

KITKA (2/2) Mitä epätasaisempi maan pinta on, sitä voimakkaammin pyörreviskositeetti hidastaa ilmavirtausta. Esimerkiksi pelto hidastaa ilmavirtausta vähemmän kuin metsä. Pyörreviskositeetti heikkenee nopeasti, kun etäisyys maan pinnasta kasvaa. Tästä syystä tuulen nopeus on sitä suurempi, mitä korkeammalle noustaan. Kun noustaan noin 1 km korkeudelle maan pinnasta, pyörreviskositeetti ei enää käytännössä vaikuta ilmavirtaukseen. Sitä ilmakerrosta, jossa pyörreviskositeetti hidastaa ilmavirtausta, kutsutaan rajakerrokseksi tai kitkakerrokseksi. Rajakerroksen paksuus on luokkaa 1 km.. 15 GRAVITAATIO Koska ilmavirrat koostuvat massallisista hiukkasista, gravitaatio vaikuttaa niiden liikkeeseen. Koska gravitaatiovoima vaikuttaa maan pintaa vastaan kohtisuorasti, gravitaatio ei vaikuta maan pinnan suuntaisten ilmavirtausten energiaan. Gravitaatio vaikuttaa laskeviin ja nouseviin ilmavirtauksiin. Hellejaksojen jälkeisiin koviin ukkosiin usein liittyvät syöksyvirtaukset ovat yksi esimerkki gravitaation vaikutuksesta ilmavirtauksiin. Syöksyvirtaus syntyy, kun sadepisarat haihtuvat pilven alapuolella kuivassa ilmassa. Haihtuminen sitoo energiaa, joten ilman lämpötila laskee paikallisesti. Samalla ilman tiheys kasvaa lämpövärähtelyn vaimentuessa. Syntynyt raskas ilma putoaa nopeasti alaspäin ja kääntyy vaakasuuntaiseksi kohdatessaan maan pinnan. 16 8