Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I, 4 ) φ (I,, ) φ (φ ). Esitä johto φ ψ ( φ ψ) Gentzenin järjestelmässä. Ohje: käytä premissiin ainoata mahdollista eliminointisääntöä kahdella eri tavalla ja oleta lisäksi semanttisesti vastakkainen väittämä halutulle johtopäätökselle. Käytä tämän jälkeen disjunktion eliminointisääntöä. ) φ ψ 3) φ ψ (E ) ) φ φ (E ) (I, ) ( φ ψ) 4) ψ 3) φ ψ (E ) φ (E ) (E,, 4 ) 3. Johda kaava (I(s) ( x)(i(x) K(x))) K(s) tyhjästä oletusjoukosta. ) I(s) ( x)(i(x) K(x)) ) (E ) I(s) ( x)(i(x) K(x)) (( x)(i(x) K(x))) (E ) (E ) I(s) I(s) K(s) (E ) K(s) (I, ) (I(s) ( x)(i(x) K(x))) K(s) 4. Johda kaava ( x)φ ( x) φ tyhjästä oletusjoukosta. 3) ( x)φ ) (E ) φ φ (E ) ) ( x) φ (E, ) (I, ) ( x) φ (I, 3 ) ( x)φ ( x) φ 5. Onko olemassa tulkintaa, jossa kaava φ ( ψ η) (ψ η) on tosi? Muodostetaan kaikki mahdolliset tulkinnat seuraavassa taulukossa
φ ψ η ψ η φ ( ψ η) ψ η φ ( ψ η) (ψ η) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 mistä nähdään että toteuttavia tulkintoja on peräti seitsemän.. Selvitä päteekö (φ ψ) η = φ (ψ η). Muodostetaan totuustaulukko φ ψ η (φ ψ) η φ (ψ η) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 josta nähdään, että kysytty looginen seuraussuhde pätee (itse asiassa kumpaankin suuntan): Kaikki premissin mallit ovat myös johtopäätöksen malleja. 7. Olkoon q. Todista matemaattisella induktiolla, että kaikille n N. q k = n+ Induktion lähtökohtana käsitellään tapaus n =, jolloin väite saa muodon q k = mikä selvästikin pitää paikkansa. ()( + q) + q =, Oletetaan sitten (induktio-oletus) että väittämä on tosi arvolla n. Tästä oletuksesta lähtien väittämä voidaan johtaa arvolle n + seuraavalla tavalla: n+ q k = q k + q n+ = n+ + q n+ = n+ + ()qn+ = n+ 8. Todista matemaattisella induktiolla, että kaikille n N pätee k = n(n + )(n + ).
Tapauksessa n = väite saa muodon k = 3 =, joten väite on siis tosi tapauksessa n =. Oletetaan induktio-oletus, jonka mukaan väite on tosi tapauksessa n ja näytetään väite toteen tapauksessa n +. Tämä voidaan tehdä seuraavasti: n+ k = k + (n + ) = n(n + )(n + ) + (n + ) = ( n(n + ) + n + )(n + ) = (n + 7n + )(n + ) = (n + )(n + )(n + 3) = (n + )(n + + )((n + ) + ) 9. a) Jos A = {,, 3, 4}, mikä on A? A = {, {}, {}, {3}, {4}, {, }, {, 3}, {, 4}, {, 3}, {, 4}, {,, 3}, {,, 4}, {, 3, 4}, {, 3, 4}, {,, 3, 4}}. b) Onko joukossa [0, ) suurinta lukua? Ei ole. c) Esitä joukko ( n, + n ) n= mahdollisimman yksinkertaisessa muodossa. [, ] 0. Olkoot A ja B perusjoukon P osajoukkoja. Esitä muodollinen todistus sille, että A B = A B. Ohje: Valitse jokin x, joka kuuluu vasemmanpuoleiseen joukkoon, ja osoita määritelmiin perustuen, että se kuuluu myös oikeanpuoleiseen. Tee sitten samoin oikean ja vasemman roolit vaihdettuna. x A B x / A B x / A tai x / B x A tai x B x A B Seuraavia tehtäviä ei oteta huomioon demotehtävien kokonaismäärää laskettaessa, mutta niistä saa p jokaisesta (ylläolevista saa 0p jokaisesta). Niissä on selvitettävä, millä x:n reaalilukuarvoilla epäyhtälöt tai yhtälöt ovat voimassa.
. x + x +. Tapauksessa x epäyhtälö saa muodon x + x +, mikä on tosi kaikilla arvoilla x. Tapauksessa x < epäyhtälö saa muodon x x + 3 x x 3, mikä on tosi kaikilla arvoilla x <. Epäyhtälö on siis tosi kaikilla x:n arvoilla.. (x )() <. (x )() < (x )() < 0 (x ) (x )() < 0 3 x (x )() < 0 3. x + >. Lausekkeen x + arvo riippuu siitä, onko x+3 x+ negatiivinen vai positiivinen. Osoittajan ja nimittäjien merkit on helppo selvittää: 3 + + x + + osamäärä + + Näin ollen epäyhtälön käsittely jakautuu kolmeen osaan: A) x 3, B) 3 x < ja C) x >. A) x + < 0 ja epäyhtälö saa muodon mikä on epätosi. B) x + < 0 ja epäyhtälö saa muodon x + > < x + 3 <, x + > x 3 < x + 5 < x x > 5. C) Tässä tapauksessa x + > 0. Epäyhtälö saa muodon x + > > x + 3 >,
4. 5. mikä on tosi. Kokoamalla tiedot yhteen nähdään, että alkuperäinen epäyhtälö toteutuu, kun x > 5. x + x + 5 0. Tehtävän polynomifunktion kuvaaja on ylöspäin aukeava paraabeli, joten lauseke on negatiivinen nollakohtiensa välillä. Nollakohdat puolestaan ovat ±, joten reaalisia nollakohtia ei ole. Tämän vuoksi tehtävän epäyhtälö ei toteudu millään x:n reaalisilla arvolla. Toisin: Neliöksi täydentämisellä nähdään, että x + x + 5 = x + x + + 4 = (x + ) + 4 4, joten epäyhtälö ei voi toteutua millään x:n reaalisilla arvolla. e x + e x 3 = 0. Yhtälö voidaan kirjoittaa muotoon (e x ) + e x 3 = 0, jonka ratkaisu on e x = ± 4 ( 3) = ± 4 { 3, } Näistä ratkaisuista vain on mahdollinen, sillä e x > 0 kaikilla reaaliluvuilla. Yhtälöstä e x = saadaan x = 0.