Insinöörimatematiikka A



Samankaltaiset tiedostot
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Matematiikan pohjatietokurssi

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Tenttiin valmentavia harjoituksia

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

3 Yleinen toisen asteen yhtälö ja epäyhtälö

Miten osoitetaan joukot samoiksi?

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Insinöörimatematiikka A

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Matematiikan tukikurssi, kurssikerta 5

sin x cos x cos x = sin x arvoilla x ] π

Johdatus matemaattiseen päättelyyn

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Derivaatan sovellukset (ääriarvotehtävät ym.)

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

MAA2.3 Koontitehtävät 2/2, ratkaisut

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

y=-3x+2 y=2x-3 y=3x+2 x = = 6

Sähköinen koe (esikatselu) MAA A-osio

Matematiikan peruskurssi 2

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Matematiikan tukikurssi, kurssikerta 2

Tekijä Pitkä matematiikka

1. Logiikan ja joukko-opin alkeet

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

Reaalifunktioista 1 / 17. Reaalifunktioista

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

2 Funktion derivaatta

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Testaa taitosi 1: Lauseen totuusarvo

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

2 Raja-arvo ja jatkuvuus

Matematiikan tukikurssi

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

Matematiikan tukikurssi

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Integrointi ja sovellukset

4 Yleinen potenssifunktio ja polynomifunktio

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Luonnollisen päättelyn luotettavuus

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

2 Yhtälöitä ja epäyhtälöitä

Ratkaisuehdotus 2. kurssikoe

1.4 Funktion jatkuvuus

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Todistusmenetelmiä Miksi pitää todistaa?

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Matematiikan tukikurssi, kurssikerta 1

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Johdatus matemaattiseen päättelyyn

Ratkaisuehdotus 2. kurssikokeeseen

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Rationaalilauseke ja -funktio

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Reaalilukuvälit, leikkaus ja unioni (1/2)

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

(2n 1) = n 2

MATP153 Approbatur 1B Harjoitus 5 Maanantai

NELIÖJUURI. Neliöjuuren laskusääntöjä

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Paraabeli suuntaisia suoria.

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

Johdatus matematiikkaan

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

4.3. Matemaattinen induktio

Matemaattisen analyysin tukikurssi

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Loogiset konnektiivit

f(x) f(y) x y f f(x) f(y) (x) = lim

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Transkriptio:

Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I, 4 ) φ (I,, ) φ (φ ). Esitä johto φ ψ ( φ ψ) Gentzenin järjestelmässä. Ohje: käytä premissiin ainoata mahdollista eliminointisääntöä kahdella eri tavalla ja oleta lisäksi semanttisesti vastakkainen väittämä halutulle johtopäätökselle. Käytä tämän jälkeen disjunktion eliminointisääntöä. ) φ ψ 3) φ ψ (E ) ) φ φ (E ) (I, ) ( φ ψ) 4) ψ 3) φ ψ (E ) φ (E ) (E,, 4 ) 3. Johda kaava (I(s) ( x)(i(x) K(x))) K(s) tyhjästä oletusjoukosta. ) I(s) ( x)(i(x) K(x)) ) (E ) I(s) ( x)(i(x) K(x)) (( x)(i(x) K(x))) (E ) (E ) I(s) I(s) K(s) (E ) K(s) (I, ) (I(s) ( x)(i(x) K(x))) K(s) 4. Johda kaava ( x)φ ( x) φ tyhjästä oletusjoukosta. 3) ( x)φ ) (E ) φ φ (E ) ) ( x) φ (E, ) (I, ) ( x) φ (I, 3 ) ( x)φ ( x) φ 5. Onko olemassa tulkintaa, jossa kaava φ ( ψ η) (ψ η) on tosi? Muodostetaan kaikki mahdolliset tulkinnat seuraavassa taulukossa

φ ψ η ψ η φ ( ψ η) ψ η φ ( ψ η) (ψ η) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 mistä nähdään että toteuttavia tulkintoja on peräti seitsemän.. Selvitä päteekö (φ ψ) η = φ (ψ η). Muodostetaan totuustaulukko φ ψ η (φ ψ) η φ (ψ η) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 josta nähdään, että kysytty looginen seuraussuhde pätee (itse asiassa kumpaankin suuntan): Kaikki premissin mallit ovat myös johtopäätöksen malleja. 7. Olkoon q. Todista matemaattisella induktiolla, että kaikille n N. q k = n+ Induktion lähtökohtana käsitellään tapaus n =, jolloin väite saa muodon q k = mikä selvästikin pitää paikkansa. ()( + q) + q =, Oletetaan sitten (induktio-oletus) että väittämä on tosi arvolla n. Tästä oletuksesta lähtien väittämä voidaan johtaa arvolle n + seuraavalla tavalla: n+ q k = q k + q n+ = n+ + q n+ = n+ + ()qn+ = n+ 8. Todista matemaattisella induktiolla, että kaikille n N pätee k = n(n + )(n + ).

Tapauksessa n = väite saa muodon k = 3 =, joten väite on siis tosi tapauksessa n =. Oletetaan induktio-oletus, jonka mukaan väite on tosi tapauksessa n ja näytetään väite toteen tapauksessa n +. Tämä voidaan tehdä seuraavasti: n+ k = k + (n + ) = n(n + )(n + ) + (n + ) = ( n(n + ) + n + )(n + ) = (n + 7n + )(n + ) = (n + )(n + )(n + 3) = (n + )(n + + )((n + ) + ) 9. a) Jos A = {,, 3, 4}, mikä on A? A = {, {}, {}, {3}, {4}, {, }, {, 3}, {, 4}, {, 3}, {, 4}, {,, 3}, {,, 4}, {, 3, 4}, {, 3, 4}, {,, 3, 4}}. b) Onko joukossa [0, ) suurinta lukua? Ei ole. c) Esitä joukko ( n, + n ) n= mahdollisimman yksinkertaisessa muodossa. [, ] 0. Olkoot A ja B perusjoukon P osajoukkoja. Esitä muodollinen todistus sille, että A B = A B. Ohje: Valitse jokin x, joka kuuluu vasemmanpuoleiseen joukkoon, ja osoita määritelmiin perustuen, että se kuuluu myös oikeanpuoleiseen. Tee sitten samoin oikean ja vasemman roolit vaihdettuna. x A B x / A B x / A tai x / B x A tai x B x A B Seuraavia tehtäviä ei oteta huomioon demotehtävien kokonaismäärää laskettaessa, mutta niistä saa p jokaisesta (ylläolevista saa 0p jokaisesta). Niissä on selvitettävä, millä x:n reaalilukuarvoilla epäyhtälöt tai yhtälöt ovat voimassa.

. x + x +. Tapauksessa x epäyhtälö saa muodon x + x +, mikä on tosi kaikilla arvoilla x. Tapauksessa x < epäyhtälö saa muodon x x + 3 x x 3, mikä on tosi kaikilla arvoilla x <. Epäyhtälö on siis tosi kaikilla x:n arvoilla.. (x )() <. (x )() < (x )() < 0 (x ) (x )() < 0 3 x (x )() < 0 3. x + >. Lausekkeen x + arvo riippuu siitä, onko x+3 x+ negatiivinen vai positiivinen. Osoittajan ja nimittäjien merkit on helppo selvittää: 3 + + x + + osamäärä + + Näin ollen epäyhtälön käsittely jakautuu kolmeen osaan: A) x 3, B) 3 x < ja C) x >. A) x + < 0 ja epäyhtälö saa muodon mikä on epätosi. B) x + < 0 ja epäyhtälö saa muodon x + > < x + 3 <, x + > x 3 < x + 5 < x x > 5. C) Tässä tapauksessa x + > 0. Epäyhtälö saa muodon x + > > x + 3 >,

4. 5. mikä on tosi. Kokoamalla tiedot yhteen nähdään, että alkuperäinen epäyhtälö toteutuu, kun x > 5. x + x + 5 0. Tehtävän polynomifunktion kuvaaja on ylöspäin aukeava paraabeli, joten lauseke on negatiivinen nollakohtiensa välillä. Nollakohdat puolestaan ovat ±, joten reaalisia nollakohtia ei ole. Tämän vuoksi tehtävän epäyhtälö ei toteudu millään x:n reaalisilla arvolla. Toisin: Neliöksi täydentämisellä nähdään, että x + x + 5 = x + x + + 4 = (x + ) + 4 4, joten epäyhtälö ei voi toteutua millään x:n reaalisilla arvolla. e x + e x 3 = 0. Yhtälö voidaan kirjoittaa muotoon (e x ) + e x 3 = 0, jonka ratkaisu on e x = ± 4 ( 3) = ± 4 { 3, } Näistä ratkaisuista vain on mahdollinen, sillä e x > 0 kaikilla reaaliluvuilla. Yhtälöstä e x = saadaan x = 0.