Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta kuinka z z 0 ) on olemassa. f(z) f(z 0 ) lim, merk f (z 0 ) = df z z 0 z z 0 dz (z 0) Esimerkki 1: Laske funktion f(z) = z 2 derivaatta f (z). Esimerkki 2: f(z) = z ei ole derivoituva.
Analyyttinen funktio Määritelmä Jos f on derivoituva jokaisessa pisteessä z 0 A, sanotaan että f on analyyttinen A:ssa. f on analyyttinen pisteessä z 0, jos f on analyyttinen jossakin z 0 :n ympäristössä (kiekossa) U(z 0,r) = {z C : z z 0 < r}. Lause 1 Jos f (z 0 ) on olemassa, niin f on jatkuva z 0 :ssa.
Ominaisuuksia Lause 2 Olkoot f ja g analyyttisiä A:ssa. Silloin (i) af + bg on analyyttinen A:ssa, a, b C (ii) fg on analyyttinen A:ssa, (fg) = f g + fg (af + bg) = af + bg, kaikilla (iii) jokainen polynomi P(z) = a 0 + a 1 z + +a n z n on analyyttinen C:ssä ja P (z) = a 1 + 2a 2 z + +na n z n 1 (iv) jos g(z) 0 kaikilla z A, niin f g on analyyttinen A:ssa ja ( ) f (z) = f (z)g(z) g (z)f(z) g [g(z)] 2 (v) Rationaalifunktio P(z) Q(z) = a0+a1z+ +anzn b 0+b 1z+ +b mz m on analyyttinen joukossa B = {z C : Q(z) 0}.
Ketjusääntö Lause 3 (Ketjusääntö) Olkoot f : A C ja g : B C analyyttisiä ja oletetaan että f(a) B. Tällöin g(f(z)) on analyyttinen A:ssa ja dg(f(z)) dz = g (f(z))f (z). Huom. Vaikka kompleksisella derivaatalla on paljon samanlaisia ominaisuuksia kuin tavallisella reaalifunktion derivaatalla, on myös eroja. jos f on olemassa, niin myös f :n kaikkien kertalukujen derivaatat ovat olemassa! (osoitetaan myöhemmin). Lisäksi, jos f (z 0 ) 0, niin arg f (z 0 ) ilmoittaa kuvauksen z f(z) kiertokulman ja f (z 0 ) venytyksen paikallisesti pisteessä z 0 (perustelu myöhemmin).
Konformikuvaus Käyrän tangentti Jos käyrä c : [a, b] C, c(t) = (x(t), y(t)) = x(t)+jy(t), on derivoituva, niin c (t) = (x (t), y (t)) = x (t)+jy (t), on käyrän tangentti pisteessä (x(t), y(t)) mikäli c (t) 0. Määritelmä Kuvaus (funktio) f : A C on konforminen pisteessä z 0 jos on olemassa sellaiset θ [0, 2π) ja r > 0 että jokaiselle käyrälle c(t) A jolle c(0) = z 0 ja c (0) 0, käyrä d(t) = f(c(t)) on derivoituva pisteessä t = 0 ja d (0) = r c (0), arg d (0) = arg c (0)+θ mod 2π. Kuvaus on konformikuvaus, jos se on konforminen jokaisessa pisteessä.
Konformisuus Konformikuvaus säilyttää toisiaan leikkaavien käyrien väliset kulmat (=tangenttien väliset kulmat), sillä arg d 1(0) arg d 2(0) = arg c 1(0) arg c 2(0).
Derivaatan geometrinen merkitys Lause 4 Jos f : A C on analyyttinen ja f (z 0 ) 0, niin f on konforminen pisteessä z 0 ja θ = arg f (z 0 ) sekä r = f (z 0 ). Todistus: d(t) = f(c(t)), d (t) = f (c(t))c (t) d (0) = f (z 0 )c (0), d (0) = f (z 0 ) c (0) r = f (z 0 ), arg d (0) = arg c (0)+arg f (z 0 ) Esimerkki 3 Tutki kuvauksen z f(z) = z 4 + 1 paikallista käyttäytymistä pisteessä z 0 = j. Esimerkki 4 Missä pisteissä f(z) = y jx on derivoituva ja mikä on derivaatta f (z)? Onko f(z) = y + jx derivoituva?
Cauchy-Riemannin yhtälöt Olkoon f(z) = u(x, y)+jv(x, y), z = x + jy, ja f määritelty avoimessa joukossa A C. Lause 5 Jos f (z 0 ) on olemassa, niin Cauchy-Riemannin yhtälöt u x = v y, u y = v x ovat voimassa ja f (z 0 ) = u x + j v x = v y j u y. Jos osittaisderivaatat u x, u y, v x, v y ovat olemassa ja jatkuvia A:ssa sekä toteuttavat Cauchy - Riemannin yhtälöt, niin f on analyyttinen A:ssa.
Cauchy ja Riemann ja
Todistus f (z 0 ) = lim z z0 f(z) f(z 0 ) z z 0, z 0 = x 0 + jy 0. Erikoisesti, kun z = x + jy 0 z 0 (eli x x 0 ), niin f(z) f(z 0 ) z z 0 = u(x,y 0)+jv(x,y 0 ) u(x 0,y 0 ) jv(x 0,y 0 ) x x 0 = u(x,y 0) u(x 0,y 0 ) x x 0 + j v(x,y 0) v(x 0,y 0 ) x x 0 u x (x 0,y 0 )+j v x (x 0,y 0 ), kun x x 0 f (z 0 ) = u x + j v x.
Tod. jatkuu Vastaavasti, kun z = x 0 + jy z 0 (eli y y 0 ), niin f(z) f(z 0 ) = u(x 0,y)+jv(x 0,y) u(x 0,y 0 ) jv(x 0,y 0 ) z z 0 j(y y 0 ) = u(x 0,y) u(x 0,y 0 ) + v(x 0,y) v(x 0,y 0 ) j(y y 0 ) y y 0 1 u j y + v y = v y j u y, kun y y 0 f (z 0 ) = v y j u y u x = v y ja u y = v x. Loppuosan todistus sivuutetaan.
Eksponenttifunktion analyyttisyys Lause 6 f(z) = e z on analyyttinen ja konforminen koko C:ssä ja d dz ez = e z Huom. Jos f (z) = 0, niin f ei ole välttämättä konforminen. Esimerkiksi kuvaus z z 2 = f(z) kaksinkertaistaa kulmat pisteessä z = 0. Huom. Jos konformikuvauksessa kulman merkki ei muutu, niin kuvaus on suoraan konforminen. Jos kuvauksessa kulman merkki muuttuu mutta suuruus säilyy, niin kuvaus on kääntäen konforminen - kuten esimerkiksi f(z) = z.
Napakoordinaattimuunnos ja analyyttisyys: z = a+re jϕ a C kiinteä x = a 1 + r cosϕ, y = a 2 + r sinϕ f(z) = u(x,y) + jv(x,y) = ũ(r,ϕ)+jṽ(r,ϕ), z = x + jy ũ r = u x cosϕ+u y sinϕ, ũ ϕ = u x r sinϕ+u y r cosϕ ṽ r = v x cosϕ+v y sinϕ, ṽ ϕ = v x r sinϕ+v y r cosϕ
C-R yhtälön napaesitys { u x = v y u y = v x { ũ ϕ = v y r sinϕ v x r cosϕ = rṽ r ũ r = v y cosϕ v x sinϕ = 1 r ṽϕ { ũ r = 1 r ṽϕ ũ ϕ = rṽ r Esimerkki 5 f(z) = ln z a +j Arg(z a) = Log(z a) = ln r + jϕ, 0 < ϕ < 2π = ũ + jṽ { ũ r = 1 r = 1 r ṽϕ ũ ϕ = 0 = rṽ r f(z) = Log(z a) on analyyttinen
Käänteisfunktion analyyttisyys Napakoordinaattimuunnoksessa r = x 2 + y 2, ϕ = arg(x + jy) rajoitutaan (C - R yhtälöiden ja analyyttisyystarkastelujen yhteydessä) arvoihin r > 0 ja 0 < ϕ < 2π (tai muuhun 2π:n pituiseen avoimeen väliin). Lause 7 Olkoon f analyyttinen avoimessa joukossa U ja f : U V sekä f (z) 0 kun z U. Oletetaan, että f 1 : V U on olemassa ja jatkuva. Tällöin f 1 on analyyttinen ja d dw f 1 (w) = 1 f (z), z = f 1 (w)
Logaritmin analyyttisyys Lause 8 Kun niin Log w = ln w +j Arg w, w 0, 0 < Arg w < 2π, d dw Log w = 1 w. Todistus: w = f(z) = e z on analyyttinen avoimessa joukossa U = C\{x + jy : x 0, y = 0} ja f (z) = e z 0 sekä f 1 (w) = Log w on jatkuva, joten d dw Log w = 1 d = 1 dz ez e z = 1 w. Kun log w:n haara on kiinnitetty ja epäjatkuvuuskohta poistettu, on vastaavasti d dw log w = 1 w.
Harmoninen funktio Funktio u = u(x, y) on harmoninen, jos u = 0 eli jos 2 u x 2 + 2 u y 2 = 0, ja jos u:n 2. kertaluvun osittaisderivaatat ovat jatkuvia. Lause 9 Analyyttisen funktion f = u + jv reaali- ja imaginaariosat ovat harmonisia. Kun f = u + jv ja f on analyyttinen, sanotaan että v on u:n konjugaattiharmoninen funktio. Esimerkki 6: Etsi kaikki analyyttiset funktiot f(z), joille Ref = x 3 3xy 2 + 2y.
Kohtisuorat käyräparvet Olkoon f = u + jv analyyttinen ja f (z) 0. Tasa-arvokäyrät u(x, y) = c v(x, y) = d. Tasa-arvokäyrien normaalit ( u u = x, u ) y ( v v = x, v ). y Analyyttisyydestä seuraa, että u v = 0, ts. käyrät leikkaavat kohtisuoraan.
Fysikaalinen tulkinta Esimerkki 7: Määrää funktion f(z) = log z reaaliosan tasa-arvokäyrät ja imaginaariosan tasa-arvokäyrät. Ratkaisun fysikaalinen tulkinta: Varaus q origossa luo sähkökentän, jota kuvaa kompleksinen potentiali f(z) = log z. Ref(z) = 1 2 log(x2 + y 2 ) on elektrostaattinen potentiaali. Imf(z) = arctan y x on virtausfunktio. Ulkoinen varaus liikkuu pitkin virtaviivaa eli virtausfunktion tasa-arvokäyrää pitkin.