MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi



Samankaltaiset tiedostot
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Matematiikan tukikurssi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Matematiikka B1 - avoin yliopisto

1.7 Gradientti ja suunnatut derivaatat

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

MS-A0102 Differentiaali- ja integraalilaskenta 1

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

Analyysi I (sivuaineopiskelijoille)

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Differentiaali- ja integraalilaskenta 2

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

Matematiikan perusteet taloustieteilij oille I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

Matematiikka B1 - TUDI

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

1 Komparatiivinen statiikka ja implisiittifunktiolause

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

r > y x z x = z y + y x z y + y x = r y x + y x = r

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

sin(x2 + y 2 ) x 2 + y 2

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

1 Rajoittamaton optimointi

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Luento 8: Epälineaarinen optimointi

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

MATP153 Approbatur 1B Harjoitus 5 Maanantai

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Johdatus tekoälyn taustalla olevaan matematiikkaan

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

BM20A0300, Matematiikka KoTiB1

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

Matemaattinen Analyysi

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

Derivaatan sovelluksia

2.6 Funktioiden kuvaajat ja tasa-arvojoukot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Matemaattinen Analyysi

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Johdatus reaalifunktioihin P, 5op

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

Viikon aiheet. Funktion lineaarinen approksimointi

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

Vektorianalyysi II (MAT21020), syksy 2018

Matematiikan tukikurssi

Matemaattinen Analyysi

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

Matematiikka B3 - Avoin yliopisto

Johdatus tekoälyn taustalla olevaan matematiikkaan

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 23.

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 2: Liikkeen kuvausta

12. Hessen matriisi. Ääriarvoteoriaa

f(x) f(y) x y f f(x) f(y) (x) = lim

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Lineaarinen toisen kertaluvun yhtälö

SARJAT JA DIFFERENTIAALIYHTÄLÖT

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Vektorianalyysi I MAT21003

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

Jouni Sampo. 5. helmikuuta 2014

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Matematiikan tukikurssi

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

Luento 8: Epälineaarinen optimointi

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3

Kuinka määritellään 2 3?

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava

Transkriptio:

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 17

Motivaatio Seuraavaksi tutkitaan ketjusäännön d dx f ( g(x) ) = f ( g(x) ) g (x) yleistämistä usean muuttujan funktioille. Ketjusääntö liittyy suoraan myös moniin käytännön sovelluksiin. Esimerkiksi voidaan ajatella suuretta, joka riippuu useasta eri muuttujasta, ja tarkastella sen muutosta yhden muuttujan arvon (mahdollisesti epälineaarisissa) muutoksissa. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 2 / 17

Esimerkki 1 1/2 Retkeilijä liikkuu karttaa käyttäen mäkisessä maastossa. Olkoon (x, y) retkeilijän paikka kartalla ja z = f (x, y) kulloinenkin korkeus meren pinnasta. Olkoon r(t) = ( u(t), v(t) ) retkeilijän paikka kartalla hetkellä t. Retkeilijän paikan korkeus eli etäisuus meren pinnan tasosta hetkellä t on siis yhdistetty funktio z = f ( u(t), v(t) ) = g(t). Kuinka nopeasti retkelijän paikan korkeus muuttuu ajan kuluessa? Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 3 / 17

Esimerkki 1 2/2 Ilmeisestikin vastaus kysymykseen on funktion g(t) derivaatta. Lasketaan: g(t + h) g(t) f (u(t + h), v(t + h)) f (u(t), v(t)) lim = lim h 0 h h 0 h f (u(t + h), v(t + h)) f (u(t), v(t + h)) = lim h 0 h f (u(t), v(t + h)) f (u(t), v(t)) + lim h 0 h Yhden muuttujan ketjusäännön perusteella g (t) = f 1 ( u(t), v(t) ) u (t) + f 2 ( u(t), v(t) ) v (t). Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 4 / 17

Ketjusäännöt Olkoon z muuttujien x, y jatkuvasti derivoituva funktio (eli funktio, jolla on jatkuvat 1. kertaluvun osittaisderivaatat). Jos x, y ovat muuttujan t jatkuvasti derivoituvia funktioita, niin dz dt = z dx x dt + z dy y dt. Jos x, y ovat kahden muuttujan s, t jatkuvasti derivoituvia funktioita, niin z s = z x x s + z y y s ja z t = z x x t + z y y t. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 5 / 17

Huomautus (matriisimuoto) Edelliset kaavat voidaan kirjoittaa matriisimuodossa [ z s ] [ z t = z x z y ] [ x s y s x t y t Tämä esitystapa liittyy läheisesti myöhemmin esiteltävään Jacobin matriisiin. Matriisimuodosta voidaan myös helposti nähdä, miten kahdelle muuttujalle johdettu kaava yleistyy useamman muuttujan tapaukseen. ]. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 6 / 17

Esimerkki 2 1/2 Olkoon f : R 2 R jatkuvasti derivoituva. Etsitään Saadaan x f (x2 y, x + 2y) ja y f (x2 y, x + 2y). x f (x2 y, x + 2y) = f 1 (x 2 y, x + 2y) x (x2 y) +f 2 (x 2 y, x + 2y) (x + 2y) x = 2xyf 1 (x 2 y, x + 2y) + f 2 (x 2 y, x + 2y). Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 7 / 17

Esimerkki 2 2/2 Vastaavasti voidaan laskea y f (x2 y, x + 2y) = f 1 (x 2 y, x + 2y) y (x2 y) +f 2 (x 2 y, x + 2y) (x + 2y) y = x 2 f 1 (x 2 y, x + 2y) + 2f 2 (x 2 y, x + 2y). Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 8 / 17

Esimerkki 3 1/3 Lämpötila ilmakehässä ( C) riippuu paikasta (x, y, z) sekä ajasta t. Mallinnetaan lämpötilaa näistä parametreista riippuvana funktiona T (x, y, z, t). (a) Jos funktio T esittää sääpalloon liitetyn lämpömittarin mittaamaa lämpotilaa, määritetään T :n muutos ajan suhteen. (b) Määritetään lämpötilan muutos hetkellä t = 1, kun T (x, y, z, t) = xy (1 + t), 1 + z ja sääpallo etenee reittiä r(t) = (t, 2t, t t 2 ). Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 9 / 17

Esimerkki 3 2/3 (a) Koska lämpömittarin lukeman muutos riippuu kaikista neljästä parametrista, mitään niistä ei voida jättää huomiotta Lämpötilan muutoksen kaavaksi saadaan siten dt dt = T dx x dt + T dy y dt + T dz z dt + T t. (b) Koordinaattifunktioiden arvot hetkellä t = 1 ovat x = 1, y = 2 ja z = 0. Koordinaattifunktioiden derivaattojen arvot hetkellä t = 1 ovat dx dt = 1, dy dt = 2 ja dz dt = 1. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 10 / 17

Esimerkki 3 3/3 Siten hetkellä t = 1 saadaan Näin ollen, T x = T z = dt dt y 1 + z (1 + t) = 4, T y = xy (1 + z) 2 (1 + t) = 4, T t = x (1 + t) = 2, 1 + z xy 1 + z = 2. = 4 1 + 2 2 + ( 4) ( 1) + 2 = 14. t=1 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 11 / 17

Lineaariset approksimaatiot Yksiulotteisessa tapauksessa muotoa y = f (x) olevan funktion kuvaajan tangenttisuora L(x) pisteessä a saadaan kaavasta L(x) = f (a) + f (a)(x a). Tangenttisuoran lauseke antaa myös tavan approksimoida funktiota f pisteen a lähellä: f (x) L(x). Tapauksessa n = 2 saadaan funktiota f (x, y) approksimoiva tangenttitaso L(x, y), joka voidaan laskea osoittaisderivaattojen avulla kaavasta f (x, y) L(x, y) = f (a, b) + f 1 (a, b)(x a) + f 2 (a, b)(y b). Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 12 / 17

Esimerkki 4 1/2 Etsitään approksimaatio funktiolle pisteessä (2.2, 0.2). f (x, y) = 2x 2 + e 2y Approksimaation löytämiseksi on käytännöllistä linearisoida funktio pisteessä (2, 0). Aluksi saadaan f (2, 0) = 3. Funktion osittaisderivaatat ovat f 1 (x, y) = 2x 2x 2 + e 2y, f 1(2, 0) = 4 3. f 2 (x, y) = e 2y 2x 2 + e 2y, f 2(2, 0) = 1 3. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 13 / 17

Esimerkki 4 2/2 Siten L(x, y) = 3 + 4 3 (x 2) + 1 (y 0). 3 Haluttu approksimaatio siis on f (2.2, 0.2) L(2.2, 0.2) = 3 + 4 3 (2.2 2) + 1 ( 0.2 0) = 3.2. 3 Vertailun vuoksi funktion f (x, y) todellinen arvo pisteessä (2.2, 0.2) on noin 3.2172. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 14 / 17

Huomautuksia Toisin kuin yksiulotteisessa tapauksessa pelkkä osittaisderivaattojen olemassaolo ei riitä takaamaan edes funktion f (x, y) jatkuvuutta. Esim. Esim. { 0, kun x = 0 tai y = 0, f (x, y) = 1, muuten. f (x, y) = { 2xy x 2 + y 2, kun x 2 + y 2 > 0, 0, kun (x, y) = (0, 0). Siksi tilannetta on tarpeen analysoida tarkemmin. Halutaan ehto, joka kertoo milloin tangenttitaso L(x, y) on mielekäs approksimaatio funktiolle f (x, y) pisteen (a, b) lähellä. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 15 / 17

Differentioituvuus Lause Funktiota f (x, y) sanotaan differentioituvaksi pisteessä (a, b), jos f (a + h, b + k) f (a, b) h f 1 (a, b) k f 2 (a, b) lim = 0. (h,k) (0,0) h 2 + k 2 Saadaan seuraava tulos: Jos f 1, f 2 ovat jatkuvia jossakin pisteen (a, b) ympäristössä, niin f on differentioituva pisteessä (a, b). Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 16 / 17

Esimerkki 5 Lasketaan virhetermi f (x + h, y + k) f (x, y) h f 1 (x, y) k f 2 (x, y), kun f (x, y) = x 3 + xy 2. Osittaisderivaatoiksi saadaan f 1 (x, y) = 3x 2 + y 2 ja f 2 (x, y) = 2xy. Saadaan f (x + h, y + k) f (x, y) h f 1 (x, y) k f 2 (x, y) = (x + h) 3 + (x + h)(y + k) 2 x 3 xy 2 (3x 2 + y 2 )h 2xyk = 3xh 2 + h 3 + 2yhk + hk 2 + xk 2. Lausekeen h/k-termit lähestyvät nollaa samalla nopeudella kuin h 2 + k 2, kun (h, k) 0, joten differentioituvuuden määritelmä selvästi toteutuu. Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 17 / 17