Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä kulman α sinin tarkka arvo, kun cos α 8 ja 80º < α < 90º. Pitkä matematiikka 9, WSOY
Testaa taitosi :n ratkaisut. a) Koska 60 60 + 70, niin sin 60 sin 70. sin 60 cos80 ( ). a) b) y 0,75 y x 0,5 x. Trigonometristen funktioiden Pythagoraan lauseen mukaan sin α + cos α sin α cos α ( ) 8 9 64 55. 64 Siis 55 55 sin α tai 64 8 55 55 sin α. 64 8 Koska 80º < α < 90º, niin 55 sin α. 8 Pitkä matematiikka 9, WSOY
Testaa taitosi. Ratkaise yhtälö asteen tarkkuudella. a) sin α 0,7 b) tan α,5. Käytä hyväksi kosinin tarkkoja arvoja ja määritä kaikki kulmat, joille cos α.. Ratkaise yhtälö cos α cos α Pitkä matematiikka 9, WSOY
Testaa taitosi :n ratkaisut. a) α 46 + n 60 tai α 80 46 + n 60 α 46 + n 60 tai α 4 + n 60, missä n on kokonaisluku. α b) 68 + n 80 α 04 + n 540, missä n on kokonaisluku.. α 5 + n 60 tai α 5 + n 60, missä n on kokonaisluku.. cosα cosα α α + n 60 α n 60 α n 60 tai tai tai α α + n 60 5α n 60 α n 7 missä n on kokonaisluku. Pitkä matematiikka 9, WSOY 4
Testaa taitosi. Mikä kulman suuruus on asteina, jos kulman suuruus radiaaneina on a),5 b) 4π? 5 c) Ilmaise kulman suuruus radiaaneina (tarkka arvo).. Määritä funktion x 5cos jakson pituus. Mikä funktion suurin arvo on?. Ratkaise yhtälö. Ilmoita vastaus radiaaneina kahden desimaalin tarkkuudella. a) sin x 0, b) cos (x +,7) 0,8 Pitkä matematiikka 9, WSOY 5
Testaa taitosi :n ratkaisut,5. a) 80 5 π 4 b) 80 44 5 c) π π π 80 5 5. Jakson pituus on 4π. Funktion suurin arvo on 5 5.. a) x 0, 4 + nπ tai x π ( 0,4) + nπ x 0, 4 + nπ tai x, 48 + nπ, missä n on kokonaisluku. b) x +,7 0, 6 + nπ tai x +,7 0, 6 + nπ x, 08 + nπ tai x, 4 + nπ, missä n on kokonaisluku. Pitkä matematiikka 9, WSOY 6
Testaa taitosi 4. Derivoi funktio. a) 6 cos x b) sin 5x c) tan x. Määritä funktion f x) sin x cos x b) derivaatan arvo kohdassa π 4 ( a) tarkka arvo kohdassa c) derivaattafunktion nollakohdat. π 4 Pitkä matematiikka 9, WSOY 7
Testaa taitosi 4:n ratkaisut. a) D6cos x 6sin x b) Dsin 5x sin 5x cos5x 5 5sin 5xcos5x x c) Dtan cos x x cos x Dtan ( + tan x ) + tan x. a) f π π π ( ) sin cos ( ) 4 4 4 b) f '( x) sin x ( sin x) + cos x cos x sin x + cos x c) π π π f '( ) (sin ) + (cos ) 4 4 4 + 0 sin x + cos sin tan x 0 x cos x tan x x π x + nπ 4 tai tai : ( cos ) x, tan x + ( π x + nπ 4 ) π x + n π Pitkä matematiikka 9, WSOY 8
Testaa taitosi 5 n + 5. Määritä jonon a n ensimmäinen, toinen ja 99. jäsen. Onko luku jokin jäsen jonossa (a n )? Jos on, niin kuinka mones n + jäsen?. Muodosta aritmeettisen jonon, 7,,... lauseke a n f(n). Mikä jonon 7. jäsen on?. Aritmeettisen jonon (a n ) kuudes jäsen on 49 ja yhdestoista jäsen on 04. Mikä on jonon a) kahden peräkkäisen jäsenen erotus d b) ensimmäinen jäsen? Pitkä matematiikka 9, WSOY 9
Testaa taitosi 5:n ratkaisut + 5. a 4, + a + 5 + 99 + 5 0 ja a 99, 0 99 + 00 Koska yhtälöllä n + 5 n + n + 5 n + ei ole ratkaisua, luku ei ole jonon jäsen.. a + ( n ) d + ( n ) ( 4) 4n 5 a n + a 7 4 7 + 5 9. a) Ratkaistaan d. a 04 d a 6 49 + 5d + 5d b) Ratkaistaan ensimmäinen jäsen. a 6 49 a a a 6 + 5d + 5 Pitkä matematiikka 9, WSOY 0
Testaa taitosi 6. Muodosta geometrisen jonon 00, 480, 9... lauseke a n f(n). Mikä jonon. jäsen on?. Geometrisen jonon (a n ) ensimmäinen jäsen on 9 ja kuudes jäsen on 6. Mikä on jonon a) kahden peräkkäisen jäsenen suhde q b) yhdestoista jäsen?. Eläinpopulaation suuruus ensimmäisen tutkimusvuoden alussa oli 00. Kanta kasvaa joka vuosi luontaisesti 7 %, mutta aina vuoden lopussa kannasta muuttaa pois 00 eläintä. Olkoon a n populaation suuruus n. vuoden alussa. Kuvaile jono (a n ) rekursiivisesti. Mikä on populaation suuruus 9. vuoden alussa? Pitkä matematiikka 9, WSOY
Testaa taitosi 6:n ratkaisut. Ratkaistaan kahden peräkkäisen jäsenen suhde. 480 q 0,4 00 5 n n Jonon lauseke on a a q 00 0,. a 6 00 0,4, 0 n 4. a) Ratkaistaan q. 5 a a q 6 5 5 6 9q q q 7 7 5 0 0 5 0 5 b) a a q 9 ( 7) 9 7 9 7 44 n. a 00, a n,07 00 00, kun n. n a n 00 9 074 4 950 5 86 6 67 7 50 8 57 9 8 Pitkä matematiikka 9, WSOY
Testaa taitosi 7. Laske aritmeettisen summan 0 + +... + 67 arvo.. Laske geometrisen jonon, 4,, K sadasosan tarkkuudella. 8 6 viidentoista ensimmäisen jäsenen summan likiarvo. Kuinka paljon aikaa kuluu 0 000 metrin juoksuun, jos ensimmäinen ratakierros (400 m) juostaan 50 sekunnissa ja sen jälkeen jokaiseen seuraavaan kierrokseen kuluu % vähemmän aikaa kuin edelliseen? Pitkä matematiikka 9, WSOY
Testaa taitosi 7:n ratkaisut. Aritmeettisen jonon 0,, n. jäsenen lauseke on a n 0 + ( n ) n + 7. Ratkaistaan, kuinka mones jäsen luku 67 on. n + 7 n 67 0 Soveltamalla aritmeettisen summan kaavaa 0 + 67 saadaan 0 +... + 67 0 870 +.. Lasketaan jonon peräkkäisten jäsenten suhde. 4 q 6 5 6( ( ) ) S 5,6 ( ). Ajat muodostavat geometrisen summan S n a n + a n 50 + 0,97 50 + 0,97 50 + 5 50( 0,97 ) 665. 0,97 + 0,97 4 50 Aikaa kuluu noin 44 min 5 sekuntia. Pitkä matematiikka 9, WSOY 4