Kertausluento Tilastollinen päättely II - 2. kurssikoe
Yleistä tietoa TP II -2. kurssikokeesta 2. kurssikoe maanantaina 6.5.2019 klo 12.00-14.30 jossakin Exactumin auditoriossa Kurssikokeeseen ilmoittaudutaan WebOodissa erikseen (ilmoittautumisaika kurssikokeeseen ei vielä alkanut) 1. kurssikokeen kurssisivu on https://courses.helsinki.fi/fi/mat22003/125775954. Tulokset laitan kyseiselle sivulle.
Kurssikokeen apuvälineistä 1. kurssikokeessa sallitut apuvälineet ovat 2. laskin sekä 3. lunttilappu. (MAOL-taulukoita ei sallita.) Lunttilapun pitää olla itse laadittu ja käsinkirijotettu (eli ei tietokoneella tulostettu, kuvattu, jne.) ainoa muu rajoitus koko: yksi A4-kokoinen arkki (molemmat puolet saa käyttää).
Erilliskokeesta ja sen luntista Päättely II:n erilliskokeessa saa käyttää laskinta, mutta ei omaa lunttia. Korvaavassa kokeessa sallitut apuvälineet olisivat samat kuin erilliskokeessa (ja samoin säädöksin kuin erilliskokeista) johtuen käytännön rajoitteista. Erilliskokeen tehtäväpaperin ohessa on minun (Petteri) laatima käsinkirjoitettu luntti. Tämän luntin laitan ennen erilliskoetta kurssisivulle. Tämä hieman tasaa tilannetta.
2. kurssikokeen Koealue 1. monisteen luvut 5-6 sekä luvusta 4 asiat, jotka eivät olleen 1. kurssikokeessa. 2. Harjoitukset 5a-bb 3. Kertaustehtävinä kannattaa laskea kaikki monisteen tehtävät luvuista 5-6 sekä mukana olvat kertaustehtävät Niiden ratkaisuehdotuksiin kannattaa myös perehtyä, mutta huom. kaikki ratkaisutavat käyvät. Ei ole yhtä malliratkaisua. :)
Kokeen arvostelusta Käytän arvionnissa perusperiaatetta palkitse onnistumisista, älä rankaise virheistä. Tämä tarkoittaa käytännössä, että 1. vaikka tehtävän ns. lopputulos olisi näennäisesti varsin etäällä optimisuorituksen lopputuloksesta, voi pisteitä tulla silti paljon. 2. Vastaavasti vaikka lopputulos olisikin oikea, niin onnistumisia voi olla vähänkin (esim. laskin antaa suoraan vastauksen). 3. Eli: kerro aina mitä olet tekemässä tai mitä mielestäsi tulisi tehdä :-) tämä kannattaa vaikka tehtävää et osaisikaan loppuun asti.
Kokeen arvostelun kestosta Tämä arvostelutapa on hidas Arvostelen itse kaikki kokeet, joten aikaa menee muutama viikko arvosteluun Laitan luultavasti Presemoon väliaikatietoja, kuinka pitkällä tarkastus on milloinkin (prosentteina).
Mitä kokeessa EI kysytä Keskustelua bayesiläisestä päättelystä ja Bayes-estimaattoreista
Ydinasioita (eli mitä olisi osattava) (1/4) Seuraavat aiheet ovat esiintyneet usein kurssikokeessa eri käsitteiden määritelmät ja selitykset tilastollisen mallin johtaminen (eli yptnf/ytf:n f Y selvittäminen) su-estimaatin tai su-estimaattorin selvittäminen perusteluineen
Ydinasioita (eli mitä olisi osattava) (2/4) su-estimaattorin asymptoottinen jakauma Fisherin informaation tai havaitun informaation laskeminen (eli kaikki mitä taatusti tarvitaan loppuosassa)
Ydinasioita (eli mitä olisi osattava) (3/4) tyhjentävän tunnusluvun etsiminen (faktorointikriteeri) voima, kriittinen alue ja muut tähän liittyvät käsitteet (tämä oli unohtunut) monotoninen uskottavuusosamäärä (tämä oli unohtunut) Jonkin kolmesta testisuureesta (uskottavuusosamäärä, Waldin testisuure, Raon (pistemäärä)testisuure) johtaminen kriittisen alueen määrääminen ja nollahypoteesin testaus eri testisuureilla (tämä tarvii taulukkoja ja laskinta)
Ydinasioita (eli mitä olisi osattava) (4/4) luottamusjoukon tai -välin määrääminen (yleensä ei tarvita numeerista väliä eli laskin ei ole välttämätön, mutta jos tarvitaan, niin tarvittavat taulukot on kokeen mukana) saranasuureet (mitä tarkoittaa, ja miten sen voi todeta (kertymäfunktio tiheysfunktio/pistetn-funktio)) uskottavuusosamäärän testisuureeseen perustuva approksimatiivinen luottamusjoukko Waldin testisuureeseen perustuva approksimatiivinen luottamusjoukko ja keskivirhe koko alkuosan käsitteistö :) ja niiden perustulokset (koska loppu rakentuu niille) tn-laskentaa!!
Jakaumista (1/3) Koska jakaumat ovat tärkeitä, niin muistin tueksi laitoin niitä tehtäväpaperin mukaan Opettele ne keskeiset jakaumat joita ei seuraavalla sivulla niin, että osaat kirjoittaa niiden ptnf:t/tf:t ja osaat johtaa sujuvasti niiden ominaisuuksia (mitä ne ovat, on jo pystyttävä arvaamaan/tietämään :)
Jakaumat tehtäväpaperin ohessa (2/3) Jakaumia: Satunnaismuuttuja X G(apple, ) noudattaa gammajakaumaa parametreilla apple > 0, > 0. Sen tiheysfunktio on f X (x; apple, )= apple (apple) xapple 1 e x 1{ x>0 }, odotusarvo EX = apple/ ja varianssi var X = apple/ 2. Riippumattomien gammajakautuneitten X i G(apple i, ) summa on gammajakautunut X 1 + + X n G( P apple i, ). Jos X G(apple, ) ja c>0 vakio, niin cx G(apple, /c). Satunnaismuuttuja Y Exp( ) noudattaa eksponenttijakaumaa parametrilla > 0. Tämä on gammajakauman erikoistapaus Exp( ) = G(1, ), ja sen tiheysfunktio on f Y (y; )= e y 1{ y>0 }, odotusarvo EY =1/ ja varianssi var Y =1/ 2. Eksponenttijakauman kertymäfunktio F Y (y) =(1 e y )1{ y>0 }. Satunnaismuuttuja Z 2 n noudattaa khiin neliön jakaumaa vapausasteella n>0. Tämä 2 on gammajakauman erikoistapaus n =G(n/2, 1/2) ja sen tiheysfunktio on siten odotusarvo EZ = n ja varianssi var Z =2n. f Z (z; n) = 2 n/2 (n/2) zn/2 1 e z/2 1{ z>0 }, Satunnaismuuttuja W Tas(a, b) noudattaa tasajakaumaa välillä (a, b), missä b > a. Sen tiheysfunktio on ( 1
F Y (y) =(1 e y )1{ y>0 }. Jakaumat tehtäväpaperin ohessa (3/3) Satunnaismuuttuja Z 2 n noudattaa khiin neliön jakaumaa vapausasteella n>0. Tämä 2 on gammajakauman erikoistapaus n =G(n/2, 1/2) ja sen tiheysfunktio on siten odotusarvo EZ = n ja varianssi var Z =2n. f Z (z; n) = 2 n/2 (n/2) zn/2 1 e z/2 1{ z>0 }, Satunnaismuuttuja W Tas(a, b) noudattaa tasajakaumaa välillä (a, b), missä b > a. Sen tiheysfunktio on ( 1 f W (w; a, b) = b a, kun a<w<b 0, muuten. Odotusarvo EW = 1 1 2 (a + b) ja varianssi var W = 12 (b a)2. Diskreetti satunnaismuuttuja W P(µ) noudattaa Poissonin jakaumaa parametrilla µ. Sen pistetodennäköisyysfunktio on ( e µ µ w /w!, kun w =0, 1, 2,... f W (w; µ) = 0, muuten. Odotusarvo EW = µ ja varianssi var W = µ. Riippumattomien Poisson-jakautuneitten satunnaismuuttujien X i P(µ i ) summa on Poisson-jakautunut X 1 + + X n P( P µ i ).
Kokeen aikana (1/2) Tee laskuissa järkevyystarkistuksia: onko laskemani tn p välillä 0 p 1? (Tiedämme, että tapahtuman todennäköisyys toteuttaa tuon aina) onko laskemani varianssi tai Fisherin informaatio varmasti 0? (Varianssi on sm:n (X EX) 2 odotusarvo, joten se on aina ei-negatiivinen ja apulauseen mukaan ainakin säännöllisen mallin Fisherin informaatio on pistemääräsm:n varianssi :) ) onko laskemani ei-negatiivisen satunnaismuuttujan odotusarvo varmasti 0? (edellisen kohdan yleistys :) onko kovarianssimatriisi (esimerkiksi Fisherin informaatio) varmasti symmetrinen ja positiivisesti semidefiniitti? onko johtamani uskottavuusfunktio varmasti 0?
Kokeen aikana (2/2) Jos törmäät laskussa hankalaan kohtaan ja/tai joudut aikapulaan niin selosta koepaperissa, millä strategialla olet laskua laskemassa Hyvästä strategiasta voi saada suuren osan jaossa olevista pisteistä.
Kokeeseen valmistautumisen aikaan / kokeen jälkeen kysymyksiä voi (ja kannattaa tehdä) presemon kautta. Pidempiäkin vastauksia voin antaa (mitkä kirjoitan käsin (tai jopa LaTeXilla), laitan tiedoston sivulle ja kerron siitä presemossa)