13.3 Supernovat Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L nähdään suurilta etäisyyksiltä tärkeitä etäisyysmittareita Raskaiden alkuaineiden synteesi (useimmat > Fe ) Kirkkausmaksimi: parin viikon kuluessa räjähdyksestä Hidas himmeneminen, 10 000 km/s laajeneva kaasukuori, törmää ympäröivään kaasuun supernovajäännös Supernovajäännöksiä tunnetaan Linnunradassa n. 200 iät sadoista vuosista kymmeniin tuhansiin vuosiin sumun keskellä usein neutronitähti Rapusumu (M1): Kiinassa v. 1054 havaittu supernova Tyko Brahen supernova 1572 Keplerin supernova 1604 Arvioitu frekvenssi: 2/vuosisata edellisestä havaitusta kulunut 409 v! pölyn ekstinktio Linnunradan keskiosia vaikea havaita Esim. Sloan Supernova Survey 500 sn/vuosi Tähtitieteen perusteet, Luento 15, 03.05.2013 273
Supernovatyypit Luokittelu spektrin perusteella: Tyyppi I: ei vedyn viivoja Tyyppi II: vedyn viivat Alatyypit spektriominaisuuksien & valokäyrän perusteellla Tyyppi Ia : ionisoituneen piin absorbtioviivat kaksoistähti: materiaa virtaa seuralaisesta valkealle kääpiölle. Ylittää Chandrasekharin rajan 1.44 M luhistuu lämpötilan äkillinen kasvu fuusioreaktiot (tuottaa mm. Si) räjähdyksen kokonaisenergia 10 44 J 0.1c laajenemisnopeuksia kaasulle suurin osa energiasta neutriinoissa fotonien muodossa säteilty energia 10 42 J: valokäyrän laskeva osa: radioaktiivinen Ni Fe valokäyrän muoto liittyy absoluuttiseen kirkkauteen Sn Ia = standardikynttilä Tyyppi Ib (He viivoja) ja Ic (ei He viivoja) fysikaalisesti poikkeavat Ia tyypistä: kyseessä jättiläisvaiheen tähden räjähdys Ib: ei vetykuorta räjähdysvaiheessa IC: ei vety eikä He-kuorta (Wold-Rayet tähti) Tähtitieteen perusteet, Luento 15, 03.05.2013 274
Tyyppi II Vedyn viivoja spektrissä II-P - yleisin tyyppi, valokäyrässä tasanne (plateau) ennen räjähdystä tähti ( progenitor ) on ollut punainen ylijättiläinen (> 8M ) (pienempi massa valkoinen kääpiö) II-L - lineaarinen valokäyrä IIn - kapeat (narrow) vedyn viivat IIb - vedyn viivat lyhytikäiset, muistuttaa tyyppiä Ib Fysikaalinen luokittelu: Fuusiosupernovat (thermonuclear) 30% Tyyppi Ia: valkea kääpiö ylittää Chandarsekharin rajan luhistuminen kuumeneminen fuusioleimahdus Luhistumissupernovat (core collapse) 70% Kaikki muut tyypit: Ib, Ic, II jättiläisvaiheen tähden sisäosien luhistuminen, ulko-osien syökseminen ulospäin Tähtitieteen perusteet, Luento 15, 03.05.2013 275
Sn1987A: Tyypin II-P supernova Suuressa Magellanin pilvessä 23.2.1987 Luhistumisessa vapautuvat neutriinot pystyttiin havaitsemaan (24 kpl) Neutronitähti-jäännettä ei ole pystytty havaitsemaan Tyypin II core collapse malli oikea yllätys: sininen ylijättiläinen (ei punainen) eli pinnaltaan huomattavasti kuumempi ja kooltaan pienempi massivinen, hyvin metallipitoinen tähti? Tähtitieteen perusteet, Luento 15, 03.05.2013 276
Gamma-purkaukset (GRB = gamma ray burst) 1973 julkaistiin havainnot: teräviä gammasäteily-pulsseja eri puolilta taivasta Ei vastinetta optisessa tai röntgen-alueessa Jakauma taivaalla tasainen ei voi liittyä linnunradan kohteisiin Jälkihehku (afterglow) näkyvän valon alueella identifioitu galakseihin Kahta eri tyyppiä: Pitkät purkaukset: Liittyvät massiivisten tähtien supernova-purkauksiin (Ib, Ic) hypernova: maailmankaikkeuden kirkkaimpia kohteita kaukaisin punasiirtymällä z=9.4 Massat arviolta 100M säteily ei-isotrooppista vaan ohjautuu kapeaan keilaan lyhyet purkaukset: neutronitähtien törmäykset (menettävät rataenergiaansa gravitaatioenergiana törmäys) Tähtitieteen perusteet, Luento 15, 03.05.2013 277
14. Kompaktit tähdet Ei fuusiota kaasun paine ei pysty kumoamaan painovoimaa valkeat kääpiöt - degeneroituneen elektronikaasun paine neutronitähdet - degeneroituneen neutronikaasun paine mustat aukot - luhistuneet singulariteetiksi 14.1 Valkeat kääpiöt Tavallinen tähti: ionisoituneen kaasun paine & säteilypaine kuumissa tähdissä hydrostaattinen tasapaino gravitaation kanssa Ydinpolttoaineen loppuminen sisäosat tihentyvät elektronien degeneraatiosta aiheutuva paine pysäyttää tihentymisen, edellyttäen että massa on Chandrasekharin massaa M Ch 1.4M pienempi Tasapainossa valkean kääpiön säde kääntäen verrannollinen massan kuutiojuureen R M 1/3 tiheydet luokkaa 10 9 kg/m 3 (miljoona kertaa veden tiheys), säteet 0.01R eli 10 000 km luokkaa Kehitys: vähittäinen jäähtyminen. Himmeistä valkoisista kääpiöistä (T=5000K) alaraja-arvio maailmankaikkeuden iälle ( 12 Gyr) Mustia kääpiöitä ei vielä olemassa Ensimmäinen havainto: Sirius B Massa pääkomponentin ominaisliikkeen heilahteluista: M M Spektri 1915 korkea T eff 25000T pääteltiin että pieni kirkkaus L 0.00024L johtuu pienestä koosta ( 0.008R eli Maapalloa hieman pienempi) Varmistus 1925: spektriviivoissa näkyi suhteellisuusteorian ennustama painovoiman aiheuttama punertuminen Tähtitieteen perusteet, Luento 15, 03.05.2013 278
14.2 Neutronitähdet Baade & Zwicky 1934: supernovaräjähdys synnyttää neutronitähden Hämmästyttävän oikea ennuste! (neutroni löydetty vain pari vuotta aiemmin 1932) Mikäli ydinpolttoaineensa käyttäneen tähden luhistuvan ytimen massa suurempi kuin M Ch degeneroituneen elektronikaasun paine ei pysty tasapainottamaan gravitaatioluhistumista Tiheyden kasvaessa ytimien protonit muuttuvat neutroneiksi URCA-prosessissa (tuottaa myös neutrinoja) Neutronit vuotavat ytimistä kun ρ > 10 17 kg/m 3 ytimet hajonneet aineesta tullut neutronipuuroa (neutronien sisäinen tiheys n. 3 10 17 kg/m 3 ) Degeneroituneen neutronipuuron paine pysäyttää gravitaatioluhistumisen, edellyttäen että M < M OV Tyypilliset säteet 10 km luokkaa (tuhannesosa valkeista kääpiöistä), tiheydet 10 18 kg/m 3 (miljardi kertaa valkean kääpiön tiheys) Esim. Mikä on keskitiheys M = 1.4M, R = 8km (Tähtititeen perusteet kuva 14.2)? tilavuus 2 10 12 m 3 ja ρ = 1.4 2 10 30 /2 10 12 = 1.5 10 18 kg/m 3 5ρ neutroni Hieman suurehko, tyypillinen arvio 2ρ neutroni Rakenne (hyvin epävarma): Pinnassa ohut (pari cm!) kaasumainen atmosfääri metallinen kuori vaippa: suoprajohtavaa nestettä ydin: hyperoneja (raskaita hiukkasia), kvarkkeja, preoneja? Tähtitieteen perusteet, Luento 15, 03.05.2013 279
Pyörimisimpulssimomentin L ωr 2 säilyminen supernovaräjähdyksessä syntyvä neutronitähti pyörii aluksi hyvin nopeasti P 1/w R 2 esim. Aurinko kutistuisi 20 km säteiseksi pyörähdysaika 25 vrk (20 km/700 000 km) 2 = 0.002 s Pyörimisen hidastuminen: magneettikentän + ympäröivän plasman vuorovaikutus sähkömagneettinen säteily (havaitaan pulsarina) neutrinot, kosmiset säteet gravitaatiosäteily Pulsarit Hewish ja Bell 1967: toistuvia lyhyitä radiopulsseja lähettävä kohde (pulsari PSR B1919+21, aluksi LGM-1 ; Hewish jakoi Nobel 1974) Pulssien välinen aika 0.001 s - 1000 s Säteilyn synty: Neutronitähdellä voimakas magneettikenttä Varattujen hiukkasten liike synkrotronisäteily Nopeudet lähellä valonnopeutta kapea keila liikkeen suunnassa Magneettikentän tiheys suurin mag.napojen lähellä Magneettinen akseli ja pyörimisakseli vinossa magneettisen akselin suuntainen keila, nähdään jos pyyhkäisee havaitsijan suunnan yli Tähtitieteen perusteet, Luento 15, 03.05.2013 280
Rapu-sumun pulsari pulssin jakso 33 msec pikkukuvat 1 msec välein Yleensä pulsareita ei pystytä havaitsemaan optisella alueella (L 10 6 L ) HST-kuva: säteilykeilan törmäys ympäröivään kaasuun Tähtitieteen perusteet, Luento 15, 03.05.2013 281
14.3 Mustat aukot Räjähtävän tähden luhistuvan ytimen massa suurempi kuin M OV (Oppenheimerin-Volkoffin massa ) mikään tunnettu mekanismi ei pysty tasapainottamaan painovoiman aiheuttamaa puristusta luhistuu singulariteetiksi = musta aukko M OV = 1.5 3M teoreettinen arvio, epävarmuus aiheutuu huonosti tunnetusta materian tilanyhtälöstä, kun tiheys lähestyy neutronien sisäistä tiheyttä Havainnoista saatu alaraja: pulsari (=neutronitähti) PSR J1614 2230, massa 1.97 ± 0.04M Spekulaatioita: kvarkki-tähdet?, preoni-tähdet? Tähden alkuperäisen massan olta vähintää ă10m jotta lopputuloksena olisi musta-aukko Nimitys: pakonopeus ylittää valonnopeuden (Laplace 1700 luvulla!) v e = q 2GM R = c R S = 2GM c 2 jossa R s = Schwarzschildin säde (Yleinen suhteellisuusteoria sama kriittinen arvo) Auringon massainen musta aukko: R S 3km, käytännössä pienimpien tähdistä syntyneiden mustien aukkojen R S luokkaa 5-10 km Vertaa edellä: neutronitähtien säde vain hieman suurempi: neutronitähtien pinnalla pakonopeus jo lähellä valonnoputta ESIM. 15.2 Auringolle R S = 2GM c 2 = 2 6.67 10 11 1.989 10 30 (2.998 10 8 ) 2 m = 2950m Tähtitieteen perusteet, Luento 15, 03.05.2013 283
Mustien aukkojen havaitseminen: ainoastaan niihin putoavan materian säteilyn perusteella Kaksoistähtijärjestelmä: seuralaisesta Rochen rajan yli virtaava materia muodostaa kiekon aukon ympärille Sisäreunan lähellä nopeudet hyvin suuri kiekon kuumeneminen säteily röntgen-alueella materia voi säteillä jopa 40% lepomassastaan (peräisin gravitaatiopotentiaalienergiasta) Cygnus X-1: säteilyn vaihteluja jopa T =0.001 sekunnin skaalassa säteilylähteen koko alle T c =300 km neutronitähti tai musta aukko kaksoistähti: ylijättiläinen (25 M ) + näkymätön (10M ) komponentti suuri massa oltava musta aukko Tunnetaan > 20 mahdollista kaksoissyteemiä, jossa musta aukko komponettina Supermassiviset mustat aukot: galaksien ytimet kvasaarit Tähtitieteen perusteet, Luento 15, 03.05.2013 285
14.4 Röntgenkaksoistähdet Lähekkäiset kaksoistähdet: toinen komponentti neutronitähti tai musta aukko, toinen komponentti tavallinen tähti (seuralainen) materiavirta seuralaisesta voimakkaita röntgen-lähteitä Jaottelu systeemin fysikaalisen luonteen perusteella: Massiiviset röntgenkaksoistähdet (High-mass X-ray Binaries) HMXB Pienimassaiset röntgenkaksoistähdet (Low-mass X-ray Binaries) LMXB Massiviset: esim Cygnus X-1 edellä seuralaisen M > 10Msun voimakas tähtituuli seuralainen optisesti kirkas, helppo havaita lyhytikäisiä systeemejä 10 5 10 7 v Pienimassaiset: seuralaisen M < 1.2M materiaa vuotaa Rochen rajan yli (rata supistuu, tai seuralainen kasvaa) Kirkkain röntgen-alueella (kertymäkiekko) tunnetaan yli 100 Linnunradassa Jaottelu havaittavien ominaisuuksien perusteella Rontgenpulsarit - neutronitähti Rontgenpurkautuja - neutronitähti Röntgennovat - neutronitähti tai musta aukko Mikrokvasaarit - 1000 M musta aukko? Tähtitieteen perusteet, Luento 15, 03.05.2013 286
Röntgenpulsarit Havaitaan pulsseja röntgen-alueella, Jaksot sekunteja-kymmeniä minuutteja = pidempiä kuin radiopulsareissa Jakso lyhenee ajan mukana (radiopulsareilla pitenee) Massiviset HMXB: Röntgenpulsari osa kaksoistähteä, seuralaisella voimakas tähtituuli Aluksi neutronitähti on tavallinen radiopulsari, säteily estää seuralaisen massavuon pääsemisen neutronitähden pinnalle Pulsarin säteilemä energia pienenee seuralaisen massavirta pääsee törmäämään magneettisten napojen lähelle lähes valonnopeudella röntgensäteily (vrt radiopulsari: synkrotronisäteily) Neutronitähden pyörimenen näkyy pulssina Pienimassaiset järjestelmät SMXB: Seuralaisen massa vuotaa Roche-rajan yli Massavirtauksella sama suunta neutronitähden pyöriminen kiihtyy millisekuntipulsarit Suurin mahdollinen pyörimisnopeus vastaa n 1 millisekunnin periodia(keskipakoisvoima repisi neutronitähden hajalle) Tähtitieteen perusteet, Luento 15, 03.05.2013 287