SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma
|
|
- Elsa Toivonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta tuleva valokimppu hajotetaan prismalla tai hilalla Dispersio = aallonpituusväli/pituusväli tyypillisesti nm/mm (objektiivi-prisma 50 nm/mm) Spektri-erotuskyky R = λ/ λ miten lähekkäiset sp-viivat erotetaaan galaksien spektrit R 1000 Aurinko jopa R = Heijastus- ja läpäisyhilat suuri dispersio, heijastus ei absorbtiota Tähtitieteen perusteet, Luento 5,
2 INTERFEROMETRIT Alunperin radiotähtititeessä käytetty menetelmä: yhdistetään kahdesta tai useammasta teleskoopista tuleva valo erotuskyky vastaa teleskooppien välimatkan kokoisen teleskoopin erotuskykyä (mutta ei valonkeräyskyvyltään) Haastavaa: valorintamien oltava samassa vaiheessa! ESO VLT 2001 voidaan mitata tähtien halkaisijoita Tähtitieteen perusteet, Luento 5,
3 3.4 Radioteleskoopit Radioikkuna 1mm - 100m (300GHz - 3MHz) Karl Jansky 1932: Linnunradan keskustan säteily (dipoli-antenni; 14.6 metrin taajuus) Paraboloidi-antennit (Grote Reber m antenni) Esim. 76 metrin Jodrell Bank (Englanti 1955) neutraali vety HI 21 cm säteily CO-molekyyli 2.6mm Huom: radioteleskoopit eivät muodosta kuvaa, kaikki säteily kerätään vahvistimeen Tärkeitä löytöjä: Linnunradan pyöriminen, kvasaarit, pulsarit Erotuskyky huono vrt. optisiin teleskooppeihin θ = λ/d Esim. Maailman suurin radioteleskooppi Arecibo (Puerto Rico) D=305 m, λ = 21 cm θ 2.5 mm-alueella päästään jopa 5 (tällöin parabolin muodon oltava oikea 0.1mm tarkkuudella) Tähtitieteen perusteet, Luento 5,
4 Radio-interferometria Yhdistetään samassa useiden radioteleskooppien signaali erotuskyky vastaa antennien välimatkan suuruista antennia Apertuuri-synteesi: Antennit liikuteltavia, muuttuvasta inteferenssikuviosta saadaan konstruoitua kohteen kirkkausjakauma VLA (Very Large Array) 27 * 25 metrin antennia, New Mexico) VLBI (Very Long Baseline interferometry) eri mantereilla olevat teleskoopit ALMA = ESO:n mm-alueen teleskooppikenttä Tähtitieteen perusteet, Luento 5,
5 3.5. Muuta aallonpituusalueet Täysin erilainen Linnunrata aallonpituudesta riippuen: optinen: (550 nm) tähtien säteily, pölyn absorbtio radio: (HI atomäärinen vety 21 cm) kaasupilvet keskittyneet kiekon tasoon infrapuna: (IRAS-satelliitti µm) tähtien säteilyn kuumentama pöly röntgen: (ROSAT-satelliitti nm) kuuma kaasu, supernova-jäännökset gamma: (Compton-satelliitti 1e-5 nm) suurienergiset partikkelit törmäävät tähtienväliseen kaasuun Tähtitieteen perusteet, Luento 5,
6 Röntgen-havainnot Aallonpituus nm (photonien energia 1e2-1e5 ev) Ilmapallot Rakettilento 1962: Ensimmäiset röntgen-havainnot (6 min!) 1970:lta lähtien satelliitit UHURU, Einstein, Chandra, XMM-Newton Chandra Ilmaisimet perustuvat hipaisevaan heijastukseen Detektorina esim. tuikelaskuri Tähtitieteen perusteet, Luento 5,
7 Gamma-säteily Aallonpituus alle 0.01 nm Energia 1e5-1 e14 Fermi 1960:lla Linnunrata, Gamma-purkaukset (vakoilusatelliitit julkaistiin vasta 1973!) Voidaan havaita myös maanpinnalta: suurienerginen fotoni hiukkas-antihiukkaspari voi liikkua ilmakehän (ei tyhjön) valonnopeutta nopeammin Tserenkov-säteily näkyvän valon alueella Esim. MAGIC-teleskooppi La Palmalla: Tähtitieteen perusteet, Luento 5,
8 Ultravioletti-säteily Aallonpituus nm tähtienvälisen aineen absorbtio rajoittaa näkyvyyttä Linnunradan tasossa alle 100 pc Satelliitteja esim. IEU (1978) GALEX : tärkeä tulos. galaksien kiekot ulottuvat UV:ssä optisia laajemmalle alueelle Infrapunasäteily Aallonpituusalue µm Teleskoopin periaate sama kuin optisella alueella (käytettävä vain peilejä!) Taivas erittäin kirkas IR-alueella (ilmakehän vesihöyry) havaittava sekä kohdetta että taustaa reduktiot työläämpiä Observatoriot korkealla vuoristossa Lentokoneeseen sijoitetut observatoriot (Kuiper Airborne observatory) Satelliitit: IRAS, Spitzer, Herchel COBE, WMAP = kosminen taustasäteily Tähtitieteen perusteet, Luento 5,
9 3.6 Muita energiamuotoja Kosmiset säteet energeettisiä partikkeleita: ev (vertaa suurimmat kiihdyttimet ev = T ev ) (yläraja vastaa pesäpalloa!) ionisoituneita atomiytimiä (protoneja 90%, heliumytimiä 10%) suuntajakaumaa ei voida päätellä (varatut hiukkaset muuttavat suuntaa Linnunradan magneettikentässä) syntyneet supernovaräjähdyksissä? Maan päällä havaittavat kosmiset säteet ovat ilmakehässä syntynyttä sekundaari-säteilyä Neutriinot Varauksettomia, hyvin pienimassaisia hiukkasia Syntyvät tähtien sisällä ydinreaktioissa (tärkeitä!) Reagoivat vain heikon vuorovaikutuksen kautta (ei vahvaa ydinvoimaa, sähkömag. voimaa havaitseminen erittäin vaikeaa gravitaatio kyllä muttta sillä ei merkitystä) Radiokemialliset menetelmät: tetrakloorieteeni, neutriino muuttaa klooriatomin Neutriinot väliaineessa Ilmaisimet syvissä kaivoksissa radioaktiiviseksi argoniksi, joka havaitaan Tserenkov säteily (esim. Kamiokande) eliminoidaan kosmisen säteilyn vaikutus Laguna-hanke Pyhäsalmen kaivokseen - valitettavasti ei näytä toteutuvan Tähtitieteen perusteet, Luento 5,
10 V väite: energeettiset neutrinot liikkuvat valoa nopeammin? Osoittautui vääräksi! ( löysä kaapeli... ) Myös Suuressa Magellanin pilvessä havaittu supernova 1987: neutriinot havaittiin samanaikaiseti valon kanssa Gravitaatiosäteily syntyy kiihtyvässä liikkeessä olevista massoista (supernovaräjähdys, musta-aukko kaksoistähti...) toistaiseksi ei varmoja havaintoja Detektoreja: Weber in sylinteri alumiinisylinteri, alkaa värähdellä g-aaltojen osuessa siihen mitataan jännitykset LIGO (Laser interferometric Gravitational Wave observatory): mittaa 25 km päässä olevien peilien välimatkan (=avaruuden geometrian) muutoksia Suunniteltu: LISA satelliitti (ei lennä) Tähtitieteen perusteet, Luento 5,
11 4. FOTOMETRISET PERUSKÄSITTEET JA MAGNITUDIT 4.1. Peruskäsitteitä Intensiteetti I ν = pinnan lapi kulkeva sateilyenergia pinta ala avaruuskulma taajuusvali aikavali de ν = I ν cos θ da dν dω t intensiteetin yksikkö = W/m 2 /Hz/sterad (W = J/s) Kokonaisintensiteetti I = R 0 I ν dν Energiavuo L = säteilyenergia/aikayksikkö (=teho W) Vuontiheys F = säteilyenergia/aikayksikkö/pinta-ala ( W/m 2 ) Eo on kokonaisvuo; tietyllä taajuusvälillä: L ν, F ν 1 Jansky (Jy) = W/m 2 Hz 1 Mitä detektorit mittaavat? Energiamäärää = vuontiheys integrointuna mittausajan ja detektorin pinta-alan yli Tähtitieteen perusteet, Luento 5,
12 Vuontiheyden ja intensiteetin yhteys: R 1 F ν = da dν dt S de ν = R S I ν cos θ dω integrointi yli kaikkien suuntien Tärkeä erikoistapaus: Säteily isotrooppista (I suunnasta riippumaton) Kokonaisvuontiheys F = R S I cos θ dω = I R s cos θ dω sijoitetaan pallokoordinaattien avulla lausuttu avaruuskulma dω F = I R π θ=0 R 2π cos θ sin θ dθ dφ = 0 φ=0 integraali häviää koska (cos θ sin θ) pariton funktio välillä 0, π Eli ei säteilyn nettovirtausta (integraali yli kaikkien suuntien) Lasketaan pinnan läpi kulkevan säteilyvuon tiheys (integraali yli puolipallon) F = I R π/2 θ=0 = 2π I R 2π φ=0 cos θ sin θ dθ dφ = 2π I R π/2 cos θ sin θ dθ θ=0 π/2 1 θ=0 2 sin2 θ = πi (Isotrooppinen säteily) Tähtitieteen perusteet, Luento 5,
13 Säteilyn intensiteetti ei riipu etäisyydestä Havaittava intensiteetti: I = de cos θ da dω dt sijoitetaan de = Icosθ da dωdt da = dω = I = dω r2 cosθ da cos θ r 2 Icosθ da dωdt cos θ dω r 2 cosθ da cos θ r 2 dt I Tähtitieteen perusteet, Luento 5,
14 Tähden avaruuskulmaan ω säteilemä energiavuo L ω = ωr 2 F jossa F etäisyydellä r havaittu vuontiheys Kokonaisvuo L= säteilylähdettä ympäröivän suljetun pinnan läpi kulkeva vuo = Luminositeetti (luminosity) yksikkö W Säteilylähteen ulkopuolella: säteilyä ei synny eikä häviä Luminositeetti riippumaton etäisyydestä, Jos kappale (esim tähti) säteilee isotrooppisesti etäisyydellä r jakaantunut pinta-alalle 4πr 2 L = 4πr 2 F Vuontiheys heikkenee 1/r 2 F = L 4πr 2 Tähtitieteen perusteet, Luento 5,
15 Pintakirkkaus Havaittaessa pintakohteita: Pintakirkkaus B = F/ω hav = vuontiheys/(havaitsijan näkemä avaruuskulmayksikkö) Pintakirkkaus ei riipu etäisyydestä: Edellä: vuontiheys F 1/r 2 lähteen avaruuskulma ω hav = A/r 2 B vakio Tähtitieteen perusteet, Luento 5,
16 Tähtitieteen perusteet esimerkki 4.2 Havaittu pintakirkkaus on yhtäsuuri kuin säteilyn intensiteetti Aurinkovakio = Auringon vuontiheys Maassa = 1370 W/m 2 Auringon pintakirkkaus Tähtitieteen perusteet, Luento 5,
17 Säteilyn energiatiheys u = säteilyenergian määrä/tilavuusykikkö R u = 1 c S Idω Merkitään pintaa da vastaan kohtisuorasta avaruuskulmasta dω tulevan säteilyn intensiteettiä I. Ajassa dt säteily etenee matkan cdt täyttää tilavuuden dv = c dt da Säteilyn energia de = I da dω dt = c 1 I dω dv energiatiheys du = de/dv = 1 c I dω Integroidaan yli kaikkien suuntien. Isotrooppisen säteilyn energiatiheys: u = 4π c I Tähtitieteen perusteet, Luento 5,
18 4.2 Näennäiset magnitudit Ihmissilmä reagoi valoon logaritmisesti valonmäärä 2x, 4x 8x,... aistitaan tasavälisinä muutoksina (sama koskee muitakin aisteja) Hipparkhos 150 eaa: jakoi tähdet 6 luokkaan kirkkauden perusteella kirkkaimmat 1, himmeimmät paljain silmin näkyvät 6 Pogson 1856 täsmällisempi formulointi: 5 kirkkausluokkaa vastaa 100 kertaista muutosta, 1 kirkkausluokka vastaa : 100 1/ Magnitudin määritelmä vuontiheyden F avulla: Vuontiheys F 0 vastaa m = 0 m = 2.5 log 10 F F 0 Sopusoinnussa Pogson n kanssa: oletetaan magnitudit m 1, m 2, vastaavat vuontiheydet F 1, F 2 F eo. kaavasta m 1 m 2 = 2.5 log 1 F log 2 F F 10 = 2.5 log 1 0 F 10 0 F 2 Eli jos F 2 = 100F 1 m 2 m 1 = 2.5 log = = 5 kuten pitääkin Käänteinen relaatio. F/F 0 = m Kirkkaimmat tähdet: Sirius m=-1.5 Täysikuu -12.5, Aurinko Tähtitieteen perusteet, Luento 5,
19 Magnitudeja ei voi laskea yhteen, käytettävä vuontiheyksiä: F tot = P i F i m tot = 2.5 log 10 `P i m i Tähtitieteen perusteet, Luento 5,
1 Perussuureiden kertausta ja esimerkkejä
1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.
Lisätiedot4 Fotometriset käsitteet ja magnitudit
4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan
LisätiedotRadioastronomian käsitteitä
Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotHavaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 11. Muut aaltoalueet 1. 2. 3. 4. 5. 6. Gamma Röntgen Ultravioletti Lähiinfrapuna Infrapuna
LisätiedotXFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
LisätiedotSähkömagneettinen säteily ja sen vuorovaikutusmekanismit
Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.
LisätiedotNeutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto
Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.
LisätiedotTähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia. Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan
Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan Ilmakehän läpäisykyky - radioikkuna: λ 0.3mm 15 m Radioastronomia
LisätiedotPlanck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio
Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz
LisätiedotGravitaatioaallot - uusi ikkuna maailmankaikkeuteen
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi
LisätiedotHavaitsevan tähtitieteen pk I, 2012
Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
Lisätiedot11. Astrometria, ultravioletti, lähiinfrapuna
11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän
LisätiedotAurinko. Tähtitieteen peruskurssi
Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S
LisätiedotKosmos = maailmankaikkeus
Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita
LisätiedotHavaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
LisätiedotMIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma
MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen
LisätiedotTähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen
LisätiedotValo ja muu sähkömagneettinen säteily
Valo ja muu sähkömagneettinen säteily Valon luonne Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valoaallot eivät
LisätiedotKokeellisen tiedonhankinnan menetelmät
Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein
LisätiedotTähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi
Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein
LisätiedotSuojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009
Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia
Lisätiedot16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)
16. Tähtijoukot Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot 10 5 10 6 tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947:
LisätiedotHavaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta
LisätiedotHavaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.
LisätiedotRadioastronomia harjoitustyö; vedyn 21cm spektriviiva
Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)
LisätiedotHavaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotHavaitsevan tähtitieteen peruskurssi I, yhteenveto
Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin
LisätiedotTarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
LisätiedotTähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily
Lisätiedot- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR)
86 Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
LisätiedotYHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät 2008
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: J. Lehtinen Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
LisätiedotKäyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
Lisätiedot7.4 Fotometria CCD kameralla
7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion
LisätiedotLeptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
LisätiedotFYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA
FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät 2007
Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
LisätiedotSupernova. Joona ja Camilla
Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät 2012
Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Luennoitsijat: FT Thomas Hackman & FT Veli-Matti Pelkonen Luentoajat: To 14-16, periodit 3-4 Kotisivu: http://www.helsinki.fi/astro/opetus/kurssit/havaitseva
LisätiedotTähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,
Lisätiedot2. MITÄ FOTOMETRIA ON?
Fotometria Tekijät: Hänninen Essi, Loponen Lasse, Rasinmäki Tommi, Silvonen Timka ja Suuronen Anne Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine: Fysiikka
Lisätiedot12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot
12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013
LisätiedotAine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
LisätiedotReferenssit ja näytteenotto VLBI -interferometriassa
Referenssit ja näytteenotto VLBI -interferometriassa Jan Wagner, jwagner@kurp.hut.fi Metsähovin radiotutkimusasema / TKK Eri taajuuksilla sama kohde nähdään eri tavalla ts. uutta tietoa pinta-ala D tarkkuustyötä
LisätiedotMAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006
MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:
LisätiedotFriedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö
Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin
LisätiedotRadioastronomian perusteita
Radioastronomian perusteita Anne Lähteenmäki & Merja Tornikoski Tämä tiivistelmä on koottu valikoiden Aalto-yliopiston Radioastronomian kurssin materiaaleista eikä se näin ollen ole täydellinen, vaan keskittyy
LisätiedotFysiikan maanalaisen tutkimuksen nykytila Suomessa
Fysiikan maanalaisen tutkimuksen nykytila Suomessa 1. kosmisten säteiden koe EMMA 2. LAGUNA-infrastruktuuritutkimus Timo Enqvist Oulun yliopisto Oulun Eteläisen instituutti IX Kerttu Saalasti -seminaari,
LisätiedotAlbedot ja magnitudit
Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen
LisätiedotVALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014
VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.
Lisätiedot3 Havaintolaitteet. 3.1 Ilmakehän vaikutus havaintoihin
3 Havaintolaitteet 3.1 Ilmakehän vaikutus havaintoihin Vain pieni osa sähkömagneettisesta säteilystä pääsee ilmakehän läpi. aallonpituus 0.001 nm 0.01 nm 0.1 nm 1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm
LisätiedotValon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
LisätiedotMAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET
MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko
LisätiedotXFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
LisätiedotHarjoitukset (20h): Laskuharjoitukset: 6x2h = 12h Muut harjoitukset (ryhmätyöskentely): 8h Luentomateriaali ja demot:
Tähtitieteen perusteet (5 op): FT Pasi Nurmi/Tuorlan Observatorio, pasnurmi@utu.fi Luento-opetus ja seminaarit (30h): Aikataulu Ma 12.15-17 Ti 12.15-17 Ke 12.15-17 To 12.15-17 Pe 12.15-17 1.vko Luennot
LisätiedotHavaitsevan tähtitieteen peruskurssi I
Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Lisätiedot13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe )
13.3 Supernovat Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L nähdään suurilta etäisyyksiltä tärkeitä etäisyysmittareita Raskaiden alkuaineiden synteesi (useimmat > Fe ) Kirkkausmaksimi:
LisätiedotKosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
LisätiedotHydrologia. Säteilyn jako aallonpituuden avulla
Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna
LisätiedotHavaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen
Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu Luento 9.4.2015, V-M Pelkonen 1 1. Luennon tarkoitus Havaintoaikahakemuksen (teknisen osion) valmistelu Mitä kaikkea pitää ottaa
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotRADIOMETRIAN PERUSTEET
.1.003 RADIOMETRIAN PERUSTEET Kari Jokela Kalvo 1 OPTINEN RADIOMETRIA Käsittelee optisen säteilyenergian emittoitumista etenemistä väliaineessa siirtymistä optisen laitteen sisällä ilmaisua sähköiseksi
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotLinnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum
Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 4: Stellaaristatistiikka, 03/10/2016 Peter Johansson/ Linnunradan rakenne Luento 4 03/10/16 1 Tällä luennolla käsitellään 1. Tähtien jakauma
LisätiedotValo ja muu sähkömagneettinen säteily
Valo ja muu sähkömagneettinen säteily Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valohiukkanen eli fotoni on
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotAtomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
LisätiedotVastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.
Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol
LisätiedotCERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén
CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotMaan ja avaruuden välillä ei ole selkeää rajaa
Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta
LisätiedotHavaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik)
Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik) 11. Uusi havaintoteknologia 1. Suuret teleskoopit 2. Monipeili- ja mosaiikkiteleskoopit 3. Aktiivinen ja adaptiivinen optiikka
LisätiedotUrSalo. Laajaa paikallista yhteistyötä
UrSalo Laajaa paikallista yhteistyötä Ursalon ja Turun Ursan yhteistyö Tähtipäivät 2011 ja Cygnus 2012 Kevolan observatorio Tähtitieteen kurssit Yhteistyössä Salon kansalaisopiston ja Tuorlan tutkijoiden
LisätiedotNOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin
NOT-tutkielma ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin 2 Johdanto Osallistuimme NOT-projektiin, joka on tähtitiedeprojekti lukiolaisille. Projektiin kuului tähtitieteen
Lisätiedot5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys
LisätiedotKosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos
Kosmologian yleiskatsaus Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Päämääriä Kosmologia tutkii maailmankaikkeutta kokonaisuutena. Kehitys,
LisätiedotRadiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne
Radiokontinuumi Centaurus A -radiogalaksi Cassiopeia A -supernovajäänne Radiosäteilyn lähteet Molekyyleillä ja atomeilla on diskreettejä energiatiloja, joiden väliset siirtymät lähettävät viivasäteilyä,
LisätiedotVALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014
VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa
Lisätiedot15. Tähtienvälinen aine
15. Tähtienvälinen aine Interstellaarinen materia: galaksien sisällä Intergalaktinen materia: galaksien välillä Yleisiä ominaisuuksia: 1) Interstellaarisen aineen määrä: tähtienvälinen kaasu n. 10% Linnunradan
LisätiedotTähtitieteen pikakurssi
Tähtitieteen pikakurssi Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on
LisätiedotCCD-kamerat ja kuvankäsittely
CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate
LisätiedotRefraktorit Ensimmäisenä käytetty teleskooppi-tyyppi
Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Galilei 1609 Italiassa, keksitty edellisenä vuonna Hollannissa(?) vastasi teatterikiikaria (kupera objektiivi, kovera okulaari) Kepler 1610: tähtititeellinen
LisätiedotTyö 2324B 4h. VALON KULKU AINEESSA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
LisätiedotHavaitsevan tähtitieteen peruskurssi I Johdanto
Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti:
LisätiedotYdin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotSäteily ja suojautuminen Joel Nikkola
Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa
LisätiedotSPEKTROMETRI, HILA JA PRISMA
FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
Lisätiedot9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria
9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin
Lisätiedot