SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma

Koko: px
Aloita esitys sivulta:

Download "SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma"

Transkriptio

1 SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta tuleva valokimppu hajotetaan prismalla tai hilalla Dispersio = aallonpituusväli/pituusväli tyypillisesti nm/mm (objektiivi-prisma 50 nm/mm) Spektri-erotuskyky R = λ/ λ miten lähekkäiset sp-viivat erotetaaan galaksien spektrit R 1000 Aurinko jopa R = Heijastus- ja läpäisyhilat suuri dispersio, heijastus ei absorbtiota Tähtitieteen perusteet, Luento 5,

2 INTERFEROMETRIT Alunperin radiotähtititeessä käytetty menetelmä: yhdistetään kahdesta tai useammasta teleskoopista tuleva valo erotuskyky vastaa teleskooppien välimatkan kokoisen teleskoopin erotuskykyä (mutta ei valonkeräyskyvyltään) Haastavaa: valorintamien oltava samassa vaiheessa! ESO VLT 2001 voidaan mitata tähtien halkaisijoita Tähtitieteen perusteet, Luento 5,

3 3.4 Radioteleskoopit Radioikkuna 1mm - 100m (300GHz - 3MHz) Karl Jansky 1932: Linnunradan keskustan säteily (dipoli-antenni; 14.6 metrin taajuus) Paraboloidi-antennit (Grote Reber m antenni) Esim. 76 metrin Jodrell Bank (Englanti 1955) neutraali vety HI 21 cm säteily CO-molekyyli 2.6mm Huom: radioteleskoopit eivät muodosta kuvaa, kaikki säteily kerätään vahvistimeen Tärkeitä löytöjä: Linnunradan pyöriminen, kvasaarit, pulsarit Erotuskyky huono vrt. optisiin teleskooppeihin θ = λ/d Esim. Maailman suurin radioteleskooppi Arecibo (Puerto Rico) D=305 m, λ = 21 cm θ 2.5 mm-alueella päästään jopa 5 (tällöin parabolin muodon oltava oikea 0.1mm tarkkuudella) Tähtitieteen perusteet, Luento 5,

4 Radio-interferometria Yhdistetään samassa useiden radioteleskooppien signaali erotuskyky vastaa antennien välimatkan suuruista antennia Apertuuri-synteesi: Antennit liikuteltavia, muuttuvasta inteferenssikuviosta saadaan konstruoitua kohteen kirkkausjakauma VLA (Very Large Array) 27 * 25 metrin antennia, New Mexico) VLBI (Very Long Baseline interferometry) eri mantereilla olevat teleskoopit ALMA = ESO:n mm-alueen teleskooppikenttä Tähtitieteen perusteet, Luento 5,

5 3.5. Muuta aallonpituusalueet Täysin erilainen Linnunrata aallonpituudesta riippuen: optinen: (550 nm) tähtien säteily, pölyn absorbtio radio: (HI atomäärinen vety 21 cm) kaasupilvet keskittyneet kiekon tasoon infrapuna: (IRAS-satelliitti µm) tähtien säteilyn kuumentama pöly röntgen: (ROSAT-satelliitti nm) kuuma kaasu, supernova-jäännökset gamma: (Compton-satelliitti 1e-5 nm) suurienergiset partikkelit törmäävät tähtienväliseen kaasuun Tähtitieteen perusteet, Luento 5,

6 Röntgen-havainnot Aallonpituus nm (photonien energia 1e2-1e5 ev) Ilmapallot Rakettilento 1962: Ensimmäiset röntgen-havainnot (6 min!) 1970:lta lähtien satelliitit UHURU, Einstein, Chandra, XMM-Newton Chandra Ilmaisimet perustuvat hipaisevaan heijastukseen Detektorina esim. tuikelaskuri Tähtitieteen perusteet, Luento 5,

7 Gamma-säteily Aallonpituus alle 0.01 nm Energia 1e5-1 e14 Fermi 1960:lla Linnunrata, Gamma-purkaukset (vakoilusatelliitit julkaistiin vasta 1973!) Voidaan havaita myös maanpinnalta: suurienerginen fotoni hiukkas-antihiukkaspari voi liikkua ilmakehän (ei tyhjön) valonnopeutta nopeammin Tserenkov-säteily näkyvän valon alueella Esim. MAGIC-teleskooppi La Palmalla: Tähtitieteen perusteet, Luento 5,

8 Ultravioletti-säteily Aallonpituus nm tähtienvälisen aineen absorbtio rajoittaa näkyvyyttä Linnunradan tasossa alle 100 pc Satelliitteja esim. IEU (1978) GALEX : tärkeä tulos. galaksien kiekot ulottuvat UV:ssä optisia laajemmalle alueelle Infrapunasäteily Aallonpituusalue µm Teleskoopin periaate sama kuin optisella alueella (käytettävä vain peilejä!) Taivas erittäin kirkas IR-alueella (ilmakehän vesihöyry) havaittava sekä kohdetta että taustaa reduktiot työläämpiä Observatoriot korkealla vuoristossa Lentokoneeseen sijoitetut observatoriot (Kuiper Airborne observatory) Satelliitit: IRAS, Spitzer, Herchel COBE, WMAP = kosminen taustasäteily Tähtitieteen perusteet, Luento 5,

9 3.6 Muita energiamuotoja Kosmiset säteet energeettisiä partikkeleita: ev (vertaa suurimmat kiihdyttimet ev = T ev ) (yläraja vastaa pesäpalloa!) ionisoituneita atomiytimiä (protoneja 90%, heliumytimiä 10%) suuntajakaumaa ei voida päätellä (varatut hiukkaset muuttavat suuntaa Linnunradan magneettikentässä) syntyneet supernovaräjähdyksissä? Maan päällä havaittavat kosmiset säteet ovat ilmakehässä syntynyttä sekundaari-säteilyä Neutriinot Varauksettomia, hyvin pienimassaisia hiukkasia Syntyvät tähtien sisällä ydinreaktioissa (tärkeitä!) Reagoivat vain heikon vuorovaikutuksen kautta (ei vahvaa ydinvoimaa, sähkömag. voimaa havaitseminen erittäin vaikeaa gravitaatio kyllä muttta sillä ei merkitystä) Radiokemialliset menetelmät: tetrakloorieteeni, neutriino muuttaa klooriatomin Neutriinot väliaineessa Ilmaisimet syvissä kaivoksissa radioaktiiviseksi argoniksi, joka havaitaan Tserenkov säteily (esim. Kamiokande) eliminoidaan kosmisen säteilyn vaikutus Laguna-hanke Pyhäsalmen kaivokseen - valitettavasti ei näytä toteutuvan Tähtitieteen perusteet, Luento 5,

10 V väite: energeettiset neutrinot liikkuvat valoa nopeammin? Osoittautui vääräksi! ( löysä kaapeli... ) Myös Suuressa Magellanin pilvessä havaittu supernova 1987: neutriinot havaittiin samanaikaiseti valon kanssa Gravitaatiosäteily syntyy kiihtyvässä liikkeessä olevista massoista (supernovaräjähdys, musta-aukko kaksoistähti...) toistaiseksi ei varmoja havaintoja Detektoreja: Weber in sylinteri alumiinisylinteri, alkaa värähdellä g-aaltojen osuessa siihen mitataan jännitykset LIGO (Laser interferometric Gravitational Wave observatory): mittaa 25 km päässä olevien peilien välimatkan (=avaruuden geometrian) muutoksia Suunniteltu: LISA satelliitti (ei lennä) Tähtitieteen perusteet, Luento 5,

11 4. FOTOMETRISET PERUSKÄSITTEET JA MAGNITUDIT 4.1. Peruskäsitteitä Intensiteetti I ν = pinnan lapi kulkeva sateilyenergia pinta ala avaruuskulma taajuusvali aikavali de ν = I ν cos θ da dν dω t intensiteetin yksikkö = W/m 2 /Hz/sterad (W = J/s) Kokonaisintensiteetti I = R 0 I ν dν Energiavuo L = säteilyenergia/aikayksikkö (=teho W) Vuontiheys F = säteilyenergia/aikayksikkö/pinta-ala ( W/m 2 ) Eo on kokonaisvuo; tietyllä taajuusvälillä: L ν, F ν 1 Jansky (Jy) = W/m 2 Hz 1 Mitä detektorit mittaavat? Energiamäärää = vuontiheys integrointuna mittausajan ja detektorin pinta-alan yli Tähtitieteen perusteet, Luento 5,

12 Vuontiheyden ja intensiteetin yhteys: R 1 F ν = da dν dt S de ν = R S I ν cos θ dω integrointi yli kaikkien suuntien Tärkeä erikoistapaus: Säteily isotrooppista (I suunnasta riippumaton) Kokonaisvuontiheys F = R S I cos θ dω = I R s cos θ dω sijoitetaan pallokoordinaattien avulla lausuttu avaruuskulma dω F = I R π θ=0 R 2π cos θ sin θ dθ dφ = 0 φ=0 integraali häviää koska (cos θ sin θ) pariton funktio välillä 0, π Eli ei säteilyn nettovirtausta (integraali yli kaikkien suuntien) Lasketaan pinnan läpi kulkevan säteilyvuon tiheys (integraali yli puolipallon) F = I R π/2 θ=0 = 2π I R 2π φ=0 cos θ sin θ dθ dφ = 2π I R π/2 cos θ sin θ dθ θ=0 π/2 1 θ=0 2 sin2 θ = πi (Isotrooppinen säteily) Tähtitieteen perusteet, Luento 5,

13 Säteilyn intensiteetti ei riipu etäisyydestä Havaittava intensiteetti: I = de cos θ da dω dt sijoitetaan de = Icosθ da dωdt da = dω = I = dω r2 cosθ da cos θ r 2 Icosθ da dωdt cos θ dω r 2 cosθ da cos θ r 2 dt I Tähtitieteen perusteet, Luento 5,

14 Tähden avaruuskulmaan ω säteilemä energiavuo L ω = ωr 2 F jossa F etäisyydellä r havaittu vuontiheys Kokonaisvuo L= säteilylähdettä ympäröivän suljetun pinnan läpi kulkeva vuo = Luminositeetti (luminosity) yksikkö W Säteilylähteen ulkopuolella: säteilyä ei synny eikä häviä Luminositeetti riippumaton etäisyydestä, Jos kappale (esim tähti) säteilee isotrooppisesti etäisyydellä r jakaantunut pinta-alalle 4πr 2 L = 4πr 2 F Vuontiheys heikkenee 1/r 2 F = L 4πr 2 Tähtitieteen perusteet, Luento 5,

15 Pintakirkkaus Havaittaessa pintakohteita: Pintakirkkaus B = F/ω hav = vuontiheys/(havaitsijan näkemä avaruuskulmayksikkö) Pintakirkkaus ei riipu etäisyydestä: Edellä: vuontiheys F 1/r 2 lähteen avaruuskulma ω hav = A/r 2 B vakio Tähtitieteen perusteet, Luento 5,

16 Tähtitieteen perusteet esimerkki 4.2 Havaittu pintakirkkaus on yhtäsuuri kuin säteilyn intensiteetti Aurinkovakio = Auringon vuontiheys Maassa = 1370 W/m 2 Auringon pintakirkkaus Tähtitieteen perusteet, Luento 5,

17 Säteilyn energiatiheys u = säteilyenergian määrä/tilavuusykikkö R u = 1 c S Idω Merkitään pintaa da vastaan kohtisuorasta avaruuskulmasta dω tulevan säteilyn intensiteettiä I. Ajassa dt säteily etenee matkan cdt täyttää tilavuuden dv = c dt da Säteilyn energia de = I da dω dt = c 1 I dω dv energiatiheys du = de/dv = 1 c I dω Integroidaan yli kaikkien suuntien. Isotrooppisen säteilyn energiatiheys: u = 4π c I Tähtitieteen perusteet, Luento 5,

18 4.2 Näennäiset magnitudit Ihmissilmä reagoi valoon logaritmisesti valonmäärä 2x, 4x 8x,... aistitaan tasavälisinä muutoksina (sama koskee muitakin aisteja) Hipparkhos 150 eaa: jakoi tähdet 6 luokkaan kirkkauden perusteella kirkkaimmat 1, himmeimmät paljain silmin näkyvät 6 Pogson 1856 täsmällisempi formulointi: 5 kirkkausluokkaa vastaa 100 kertaista muutosta, 1 kirkkausluokka vastaa : 100 1/ Magnitudin määritelmä vuontiheyden F avulla: Vuontiheys F 0 vastaa m = 0 m = 2.5 log 10 F F 0 Sopusoinnussa Pogson n kanssa: oletetaan magnitudit m 1, m 2, vastaavat vuontiheydet F 1, F 2 F eo. kaavasta m 1 m 2 = 2.5 log 1 F log 2 F F 10 = 2.5 log 1 0 F 10 0 F 2 Eli jos F 2 = 100F 1 m 2 m 1 = 2.5 log = = 5 kuten pitääkin Käänteinen relaatio. F/F 0 = m Kirkkaimmat tähdet: Sirius m=-1.5 Täysikuu -12.5, Aurinko Tähtitieteen perusteet, Luento 5,

19 Magnitudeja ei voi laskea yhteen, käytettävä vuontiheyksiä: F tot = P i F i m tot = 2.5 log 10 `P i m i Tähtitieteen perusteet, Luento 5,

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

4 Fotometriset käsitteet ja magnitudit

4 Fotometriset käsitteet ja magnitudit 4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 11. Muut aaltoalueet 1. 2. 3. 4. 5. 6. Gamma Röntgen Ultravioletti Lähiinfrapuna Infrapuna

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.

Lisätiedot

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.

Lisätiedot

Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia. Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan

Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia. Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan Ilmakehän läpäisykyky - radioikkuna: λ 0.3mm 15 m Radioastronomia

Lisätiedot

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz

Lisätiedot

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

11. Astrometria, ultravioletti, lähiinfrapuna

11. Astrometria, ultravioletti, lähiinfrapuna 11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen

Lisätiedot

Valo ja muu sähkömagneettinen säteily

Valo ja muu sähkömagneettinen säteily Valo ja muu sähkömagneettinen säteily Valon luonne Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valoaallot eivät

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) 16. Tähtijoukot Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot 10 5 10 6 tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947:

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, yhteenveto

Havaitsevan tähtitieteen peruskurssi I, yhteenveto Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily

Lisätiedot

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR)

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR) 86 Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät 2008

Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: J. Lehtinen Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

7.4 Fotometria CCD kameralla

7.4 Fotometria CCD kameralla 7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät 2007

Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva

Lisätiedot

Supernova. Joona ja Camilla

Supernova. Joona ja Camilla Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät 2012

Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Luennoitsijat: FT Thomas Hackman & FT Veli-Matti Pelkonen Luentoajat: To 14-16, periodit 3-4 Kotisivu: http://www.helsinki.fi/astro/opetus/kurssit/havaitseva

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

2. MITÄ FOTOMETRIA ON?

2. MITÄ FOTOMETRIA ON? Fotometria Tekijät: Hänninen Essi, Loponen Lasse, Rasinmäki Tommi, Silvonen Timka ja Suuronen Anne Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine: Fysiikka

Lisätiedot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

Referenssit ja näytteenotto VLBI -interferometriassa

Referenssit ja näytteenotto VLBI -interferometriassa Referenssit ja näytteenotto VLBI -interferometriassa Jan Wagner, jwagner@kurp.hut.fi Metsähovin radiotutkimusasema / TKK Eri taajuuksilla sama kohde nähdään eri tavalla ts. uutta tietoa pinta-ala D tarkkuustyötä

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin

Lisätiedot

Radioastronomian perusteita

Radioastronomian perusteita Radioastronomian perusteita Anne Lähteenmäki & Merja Tornikoski Tämä tiivistelmä on koottu valikoiden Aalto-yliopiston Radioastronomian kurssin materiaaleista eikä se näin ollen ole täydellinen, vaan keskittyy

Lisätiedot

Fysiikan maanalaisen tutkimuksen nykytila Suomessa

Fysiikan maanalaisen tutkimuksen nykytila Suomessa Fysiikan maanalaisen tutkimuksen nykytila Suomessa 1. kosmisten säteiden koe EMMA 2. LAGUNA-infrastruktuuritutkimus Timo Enqvist Oulun yliopisto Oulun Eteläisen instituutti IX Kerttu Saalasti -seminaari,

Lisätiedot

Albedot ja magnitudit

Albedot ja magnitudit Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

3 Havaintolaitteet. 3.1 Ilmakehän vaikutus havaintoihin

3 Havaintolaitteet. 3.1 Ilmakehän vaikutus havaintoihin 3 Havaintolaitteet 3.1 Ilmakehän vaikutus havaintoihin Vain pieni osa sähkömagneettisesta säteilystä pääsee ilmakehän läpi. aallonpituus 0.001 nm 0.01 nm 0.1 nm 1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

Harjoitukset (20h): Laskuharjoitukset: 6x2h = 12h Muut harjoitukset (ryhmätyöskentely): 8h Luentomateriaali ja demot:

Harjoitukset (20h): Laskuharjoitukset: 6x2h = 12h Muut harjoitukset (ryhmätyöskentely): 8h Luentomateriaali ja demot: Tähtitieteen perusteet (5 op): FT Pasi Nurmi/Tuorlan Observatorio, pasnurmi@utu.fi Luento-opetus ja seminaarit (30h): Aikataulu Ma 12.15-17 Ti 12.15-17 Ke 12.15-17 To 12.15-17 Pe 12.15-17 1.vko Luennot

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe )

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe ) 13.3 Supernovat Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L nähdään suurilta etäisyyksiltä tärkeitä etäisyysmittareita Raskaiden alkuaineiden synteesi (useimmat > Fe ) Kirkkausmaksimi:

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu Luento 9.4.2015, V-M Pelkonen 1 1. Luennon tarkoitus Havaintoaikahakemuksen (teknisen osion) valmistelu Mitä kaikkea pitää ottaa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

RADIOMETRIAN PERUSTEET

RADIOMETRIAN PERUSTEET .1.003 RADIOMETRIAN PERUSTEET Kari Jokela Kalvo 1 OPTINEN RADIOMETRIA Käsittelee optisen säteilyenergian emittoitumista etenemistä väliaineessa siirtymistä optisen laitteen sisällä ilmaisua sähköiseksi

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 4: Stellaaristatistiikka, 03/10/2016 Peter Johansson/ Linnunradan rakenne Luento 4 03/10/16 1 Tällä luennolla käsitellään 1. Tähtien jakauma

Lisätiedot

Valo ja muu sähkömagneettinen säteily

Valo ja muu sähkömagneettinen säteily Valo ja muu sähkömagneettinen säteily Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valohiukkanen eli fotoni on

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik)

Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik) Havaitsevan tähtitieteen pk 1 Luento 11: (kalvot: Jyri Näränen ja Mikael Granvik) 11. Uusi havaintoteknologia 1. Suuret teleskoopit 2. Monipeili- ja mosaiikkiteleskoopit 3. Aktiivinen ja adaptiivinen optiikka

Lisätiedot

UrSalo. Laajaa paikallista yhteistyötä

UrSalo. Laajaa paikallista yhteistyötä UrSalo Laajaa paikallista yhteistyötä Ursalon ja Turun Ursan yhteistyö Tähtipäivät 2011 ja Cygnus 2012 Kevolan observatorio Tähtitieteen kurssit Yhteistyössä Salon kansalaisopiston ja Tuorlan tutkijoiden

Lisätiedot

NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin

NOT-tutkielma. ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin NOT-tutkielma ~Janakkalan lukio 2013~ Jenita Lahti, Jenna Leppänen, Hilla Mäkinen ja Joni Palin 2 Johdanto Osallistuimme NOT-projektiin, joka on tähtitiedeprojekti lukiolaisille. Projektiin kuului tähtitieteen

Lisätiedot

5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys

Lisätiedot

Kosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos

Kosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos Kosmologian yleiskatsaus Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Päämääriä Kosmologia tutkii maailmankaikkeutta kokonaisuutena. Kehitys,

Lisätiedot

Radiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne

Radiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne Radiokontinuumi Centaurus A -radiogalaksi Cassiopeia A -supernovajäänne Radiosäteilyn lähteet Molekyyleillä ja atomeilla on diskreettejä energiatiloja, joiden väliset siirtymät lähettävät viivasäteilyä,

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

15. Tähtienvälinen aine

15. Tähtienvälinen aine 15. Tähtienvälinen aine Interstellaarinen materia: galaksien sisällä Intergalaktinen materia: galaksien välillä Yleisiä ominaisuuksia: 1) Interstellaarisen aineen määrä: tähtienvälinen kaasu n. 10% Linnunradan

Lisätiedot

Tähtitieteen pikakurssi

Tähtitieteen pikakurssi Tähtitieteen pikakurssi Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on

Lisätiedot

CCD-kamerat ja kuvankäsittely

CCD-kamerat ja kuvankäsittely CCD-kamerat ja kuvankäsittely Kari Nilsson Finnish Centre for Astronomy with ESO (FINCA) Turun Yliopisto 6.10.2011 Kari Nilsson (FINCA) CCD-havainnot 6.10.2011 1 / 23 Sisältö 1 CCD-kamera CCD-kameran toimintaperiaate

Lisätiedot

Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi

Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Refraktorit Ensimmäisenä käytetty teleskooppi-tyyppi Galilei 1609 Italiassa, keksitty edellisenä vuonna Hollannissa(?) vastasi teatterikiikaria (kupera objektiivi, kovera okulaari) Kepler 1610: tähtititeellinen

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I Johdanto

Havaitsevan tähtitieteen peruskurssi I Johdanto Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti:

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot