VASTAUSANALYYSI / HYVÄN VASTAUKSEN PIIRTEET



Samankaltaiset tiedostot
Lääketieteellisten tiedekuntien pääsykokeen vastausanalyysi Biologia Petri Ojala, FM Lahden lyseo

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Adrenaliini Mistä erittyy? Miten/Mihin vaikuttaa? Muita huomioita?

VASTAUSANALYYSI / HYVÄN VASTAUKSEN PIIRTEET

Tehtäviin 1 4 vastataan erilliselle optisesti luettavalle lomakkeelle. Muiden tehtävien vastaukset kirjoitetaan vastausmonisteeseen.

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.

Liikunta. Terve 1 ja 2

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe

5 LIUOKSEN PITOISUUS Lisätehtävät

BI4 IHMISEN BIOLOGIA

Lääkelaskuharjoituksia aiheittain

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20

VASTAUSANALYYSI / HYVÄN VASTAUKSEN PIIRTEET

Lääkelaskuharjoituksia aiheittain

Bioteknologian perustyökaluja

Luvun 12 laskuesimerkit

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Polar Pharma Oy Kyttäläntie 8 A Helsinki. puh info@polarpharma.fi

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Hiilihydraatit. Hiilihydraatteja pilkkovia entsyymejä on elimistössä useita.

Lääkelaskuharjoituksia aiheittain

KEMIA HYVÄN VASTAUKSEN PIIRTEET

Lääkelaskuharjoituksia aiheittain

Tasapainotilaan vaikuttavia tekijöitä

*2,3,4,5 *1,2,3,4,5. Helsingin yliopisto. hakukohde. Sukunimi. Tampereen yliopisto. Etunimet. Valintakoe Tehtävä 1 Pisteet / 30. Tehtävä 1.

Yksityiskohtaiset mittaustulokset

Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe Tehtävä 1 Pisteet / 15

Adrenaliini. Mistä erittyy? Miten/Mihin vaikuttaa? Muita huomioita?

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe

Ihmisen elimistön energiatalous

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Biomolekyylit ja biomeerit

VALINTAKOE 2014 Terveyden biotieteiden koulutusohjelmat/ty ja ISY

Vinkkejä opettajille ja odotetut tulokset SIVU 1

RUUANSULATUS. Enni Kaltiainen

Teoriatietoa lihasten toiminnasta, huollosta, palautumisesta ja aineenvaihdunnasta

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

Reaktiosarjat

Euglykeeminen ketoasidoosi

Väittämä Oikein Väärin. 1 Pelkistin ottaa vastaan elektroneja. x. 2 Tyydyttynyt yhdiste sisältää kaksoissidoksen. x

Perinnöllisyystieteen perusteita III Perinnöllisyystieteen perusteita. BI2 III Perinnöllisyystieteen perusteita 9. Solut lisääntyvät jakautumalla

Tehtävä 1. Avaruussukkulan kiihdytysvaiheen kiinteänä polttoaineena käytetään ammonium- perkloraatin ja alumiinin seosta.

VASTAUSANALYYSI / HYVÄN VASTAUKSEN PIIR- TEET

2. Reaktioyhtälö 3) CH 3 CH 2 COCH 3 + O 2 CO 2 + H 2 O

Määritelmät. Happo = luovuttaa protonin H + Emäs = vastaanottaa protonin

Terveysliikunta tähtää TERVEYSKUNNON ylläpitoon: Merkitystä tavallisten ihmisten terveydelle ja selviytymiselle päivittäisistä toimista KESTÄVYYS eli

Ihmiskeho. Ruoansulatus. Jaana Ohtonen Kielikoulu/Språkskolan Haparanda. söndag 16 februari 14

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Ylioppilastutkintolautakunta S tudentexamensnämnden

Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Insuliini on anabolinen hormoni, joka säätelee

Teddy 7. harjoituksen malliratkaisu syksy 2011

joka voidaan määrittää esim. värinmuutosta seuraamalla tai lukemalla

Avainsanat: BI5 III Biotekniikan sovelluksia 9. Perimä ja terveys.

Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Maha-suolikanava ja tyypin 2 diabetes

Fysiikan valintakoe , vastaukset tehtäviin 1-2

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

Veden ionitulo ja autoprotolyysi TASAPAINO, KE5

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty

y + 4y = 0 (1) λ = 0

Demo 5, maanantaina RATKAISUT

TESTITULOSTEN YHTEENVETO

Adrenaliini. -lisämunuainen -stressitilanteet. -käytetään lääkkeenä mm. sydänkohtaukset, äkilliset allergiset reaktiot.

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Seoksen pitoisuuslaskuja

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on

VASTAUSANALYYSI. 22 p. 12 p. 4 p. 11 p. 5 p. 5 p. 6 p. 9 p. 10 p. 12 p. 15 p. 9 p. 7 p. 8 p. 10 p. 11 p Yhteensä 156 p

Geenitekniikan perusmenetelmät

7. MAKSA JA MUNUAISET

PAINOPISTE JA MASSAKESKIPISTE

Tyypin 2 diabetes ja keho

Joensuun yliopisto Kemian valintakoe/

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

1.3 Prosenttilaskuja. pa b = 100

Mittaustarkkuus ja likiarvolaskennan säännöt

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio:

Aineenvaihdunta: Ruuansulatus

Sovelletun fysiikan pääsykoe

Luento 9 Kemiallinen tasapaino CHEM-A1250

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7.

Lasku- ja huolimattomuusvirheet - ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

Luvun 8 laskuesimerkit

HYVIÄ NEUVOJA, JOIDEN AVULLA. voit saada diabeteksesi hallintaan

KOE 6 Biotekniikka. 1. Geenien kloonaus plasmidien avulla.

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Äidin ja sikiön ongelmia

VASTAUSANALYYSI. 30 p. 6 p. 5 p. 10 p. 6 p. 9 p. 6 p. 5 p. 3 p. 10 p. 6 p. 4 p. 5 p. 5 p Yhteensä 128 p LÄÄKETIETEELLISTEN ALOJEN VALINTAKOE 27.5.

Spektrofotometria ja spektroskopia

a b c d

Transkriptio:

LÄÄKETIETEELLISTEN ALOJEN VALINTAKOE 20.5.2015 VASTAUSANALYYSI / HYVÄN VASTAUKSEN PIIRTEET Vastausanalyysi julkaistaan välittömästi valintakokeen päätyttyä. Analyysin tavoitteena on antaa valintakokeeseen osallistuville yleisluonteinen kuvaus kunkin valintakoetehtävän osalta arvostelun perusteena käytettävistä keskeisimmistä asiasisällöistä. Analyysi on suuntaa antava, ei täydellinen mallivastaus tai arvosteluperiaatteiden kuvaus. Lääketieteelliset tiedekunnat varaavat oikeuden täsmentää pisteytystä, pisteytysperiaatteita ja pisteytykseen vaikuttavia yksityiskohtia. Huom. Tehtävän 1A kohdassa c12 hyväksytään molemmat vaihtoehdot (homotsygootti/heterotsygootti).

Tehtävä 5 10 p a) 5 p Glukoosi kuljetetaan äidin verenkierron mukana istukkaan ja edelleen istukan nukkalisäkkeiden kautta sikiön verenkiertoon GLUT-kuljettimien (esim. GLUT3) avulla avustetulla diffuusiolla suuremmasta pitoisuudesta pienempään. Äidin ja sikiön verenkierrot eivät istukassa sekoitu. Glukoosi siirtyy sikiöön napalaskimon välityksellä. Sikiön soluihin glukoosi siirtyy GLUTavusteisesti (esim. GLUT1 GLUT4). Sikiön veren sokeripitoisuus kasvaa, ja sikiön oma insuliinituotanto kiihtyy. Äidin diabetes nopeuttaa sikiön kasvua, koska sikiön kohonnut verensokeri ja insuliinierityksen lisääntyminen saavat aikaan anabolisen vaikutuksen. b) 5 p Aikuisen ihossa ja alkion (alkiorakkula/blastokysti) sisäsolumassassa (alkionysty) on monikykyisiä/ useakykyisiä (pluripotentteja) kantasoluja. Nämä solut voidaan saada erilaistumaan haluttuun suuntaan muuttamalla kasvatusolosuhteita (säätelyaineet, kasvutekijät) tai siirtämällä niihin geenejä, joiden avulla solu saadaan erilaistumaan haiman β-soluiksi. Munasoluun, josta tuma on poistettu, voidaan siirtää potilaan somaattisen esim. ihosolun tuma ja näin palauttaa solu kantasoluksi (hoidollinen kloonaus). Saadut solut ovat potilaan omia soluja. Jos solut saadaan sopivissa kasvatusolosuhteissa ja kasvutekijöiden vaikutuksesta erilaistumaan haiman β-soluiksi ja siten tuottamaan insuliinia, niillä voidaan korvata tuhoutuneita haiman Langerhansin saarekesoluja. Tehtävä 6 9 p a) 5 p Sympaattinen aktivaatio ja adrenaliinin eritys lisämunuaisytimestä lisääntyvät, jolloin maksan glykogenolyysi käynnistyy. Glukoosia vapautuu maksan glykogeenivarastoista verenkiertoon (verensokeria kohottava vaikutus). Glukagonin eritys kasvaa ja insuliinin eritys vähenee. Glukagoni käynnistää maksan glykogenolyysin ja glukoosia vapautuu verenkiertoon (verensokeria kohottava vaikutus). Lihasten glykogeeni ei vapaudu glukoosina verenkiertoon. Fyysinen kuormitus (lihassupistukset) saa aikaan GLUT4-kuljettimien siirron soluliman varastorakkuloista solukalvolle, mikä tehostaa glukoosin ottoa lihassoluihin (verensokeria alentava vaikutus). Veren rasvahappojen käyttö tehostuu lihasten aerobisessa energia-aineenvaihdunnassa, mikä tasapainottaa verensokeria. b) 4 p Yöunen aikana insuliinin eritys vähenee, mikä hillitsee verensokerin laskua. Verensokeri pysyy vakaana maksan autoregulaation ansiosta: maksan glykogenolyysi käynnistyy, samoin glukoneogeneesi (glukoosia muistakin ravintoaineista, kuten maitohaposta, aminohapoista ja glyserolista). Glukoneogeneesi käynnistyy myös munuaisissa. Lyhytaikaisessa paastossa (yön yli) glykogenolyysi ja glukoneogeneesi (erityisesti maksassa) ovat yhtä merkittäviä.

Tehtävä 7 5 p Kahvi kaadetaan pois termospullosta, ja termospulloa käytetään reaktioastiana. Pulloon lisätään vettä, oliiviöljyä sekä rikottuja pankreatiinikapseleita tai pelkästään näiden sisältöä. Kapselit saa tarvittaessa rikottua kirurginveitsellä. Kapselien sisältämä lipaasi katalysoi öljyn triglyseridien hydrolyysiä, ja reaktion tuloksena syntyy rasvahappoja. Seokseen lisätään ruokasoodaa, jolloin syntyy saippuaa eli rasvahappojen natriumsuoloja. Valmistuksessa voi käyttää veden sijasta myös kahvia. Tehtävä 8 8 p a) 5 p Lähetti-RNA (mrna) on ensin käännettävä vastin-dna:ksi eli komplementaariseksi DNA:ksi (cdna), jota voidaan monistaa PCR:lla, pilkkoa restriktioensyymeillä ja ajaa näytteestä geelielektroforeesi. Kolmesta restriktioentsyymin AfeI katkaisukohdasta yksi (1) on hävinnyt mutaation myötä, yksi (1) sijaitsee intronissa, jota ei enää ole mrna:ssa eli alkuperäisessä potilasnäytteessä. Jäljelle jää siis yksi katkaisukohta, joten tutkittu näyte pilkkoutui kahteen osaan. (Sama lopputulos on pääteltävissä, jos PCR-monistuksen jälkeen näyte sekvensoidaan ja tehdään sekvenssivertailua annetulta alueelta). b) 3 p Juoste A. Muodostuvat juosteet ovat vastakkaissuuntaiset alkuperäisen DNA:n kanssa. Uusi juoste syntyy aina 5' 3'-suunnassa, koska DNA-polymeraasi pystyy liittämään uuden nukleotidin vain juosteessa valmiina olevan nukleotidin vapaaseen 3'-OH-ryhmään.

Tehtävä 9 6 p a) 2 p A = A 0 e λλ λ = ln 2 A 0 = AA λλ = AA T1 2 ln 2 t T1 2 0,693 21 24 d 660 MBq e 2,83 d 817 MBq 820 MBq b) 2 p Liuoksen aktiivisuus ke klo 09:00 A 09 = A 0 e λt 1 t 1 = ti klo 12:00 ke klo 09:00 eli 21 h A 12 = A 09 e λt 2 t 2 = ke klo 09:00 ke klo 12:00 eli 3 h A 12 = A 0 e λt 1e λt 2 = A 0 e λ(t 1+t 2 ) 660 MBq e 0,693 1 d 2,83 d 516 MBq tilavuus = 660 MBq 111 MBq ml 5,95 ml ominaisaktiivisuus klo 12:00 516 MBq 5,95 ml 86,72 MBq ml ruiskeen tilavuus = potilasannos/ominaisaktiivisuus 180 MBq 86,72 MBq ml 2,08 ml 2,1 ml c) 2 p A = A 0 e λλ, A = λλ, N = N 0 e λλ ΔN = N 0 N = N 0 N 0 e λλ = A 0 λ 1 e λλ ΔN = A 0 ln 2 1 e T1 2 ln 2 t T1 2 660 1061 s 0,693 1 e 0,693 2,83 d 21 24 d 45 10 12 hajoamista. 2,83 24 3600 s

Tehtävä 10 Kuva: 7 p Laskutoimitus: Voidaan ratkaista α 2 Snellin lain perusteella: Kuvan B kolmion hypotenuusa x voidaan nyt laskea: Sivuttaissiirtymä voidaan nyt laskea kuvan B kolmiosta, koska tiedämme yhden kulman ja hypotenuusan:

Tehtävä 11 12 p a) 2 p Pd-pitoisuus 10,0 ml osanäytteessä = 0,095 μg / 0,0100 l = 9,5 μg/l Palladiumpitoisuus näytteessä = (9,5 μg/l 0,0500 l) / 0,5052 g = 0,94 μg/g = 0,94 mg/kg b) 2 p Annostus 3,00 mg/kg 56 kg = 168 mg Infuusioliuoksen infliksimabipitoisuus: (30,0 ml 10 mg/ml) / 250 ml = 1,2 mg/ml Potilaalle annettiin 168 mg / 1,2 mg/ml = 140 ml = 0,14 l c) 2 p Annostus ensimmäisen kahden tunnin aikana 240 mg/h. Seuraavien 22 tunnin aikana yhteensä 3520 mg, eli 160 mg/h / 6,00 mg/ml = 26,66 ml/h = 26,7 ml/h. d) 3 p Ekvivalenttikohdassa liuoksessa on konjugaattiemästä (A ). Liuoksen kokonaistilavuus V tot = 250 ml + 25 ml = 275 ml Konjugaattiemäksen konsentraatio: c(a ) = c(ha) V(HA) V TTT = 18,18 mmol/l Reaktio: A H 2 O HA OH Konsentraatio tasapainossa (mmol/l) 18,18 x x x K b = [HA][OH ] [A ] = x x = K w = 1,008 10 14 mmm ( ) 2 l 0,01818 x K a 5,37 10 7 mmm/l x = [OH ] = 1,8464 10-5 mol/l = 1,85 10-5 mol/l e) 3 p n(co 2 ) = p V = R T 1,01325 bar 1,413 dm3 0,08314 bar dm3 mol K 273,15 K = 63,04 mmol m(c) = n(co 2 ) M(C) = 0,75716 g n(h 2 O) = m M = 43,575 mmol m(h) = 2 n(h 2O) M(H) = 0,08784 g m(o) = 1,00g m(c) m(h) = 0,155 g 15,5 m-%

Tehtävä 12 7 p I M = I Na + I K + I Cl = V M + V Na R 1 + V M V K R 2 + V M V Cl R 3 Viimeinen termi = 0, koska solun lepokalvopotentiaali on sama kuin Cl- ionin lepokalvopotentiaali eli V M = V Cl. I M = 0 V M + V Na R 1 + V M V K R 2 = 0 R 2 = V M V K V M + V Na R 1 71 mv 88 mv R 2 = 1000,0 Ω 130 Ω 71 mv + 61 mv (Lukuarvot on sijoitettava itseisarvoina.) Tehtävä 13 9 p a) (3 p) Haiman yläpinnan syvyys eli rasvakudoksen paksuus (d 1 =3,0 cm) saadaan suoraan kuvasta A. Kasvaimen yläpinnan syvyys (d 2 ) voidaan laskea aikaviiveiden sekä äänen nopeuden avulla. Kuvasta B nähdään aikaviiveet haiman yläpinnalla (ensimmäinen pulssi, t 1 ) sekä kasvaimen yläpinnalla (toinen pulssi, t 2 ). Kaavaliitteen taulukosta saadaan äänen nopeudeksi haimakudoksessa (c 2 ) 1560 m/s. Syvyyttä laskettaessa tulee muistaa, että äänipulssin täytyy edetä kahteen suuntaan - ultraäänianturilta rajapinnalle sekä rajapinnalta takaisin anturille. Tällöin kysytylle syvyydelle voidaan kirjoittaa yksinkertainen yhtälö: t d 2 = d 1 + (d 2 d 1 ) = d 1 + c 2 t 1 2 2 0,04482 m 4,5 cm = 0,030 m + 1560 m s 60 10 6 s 41 10 6 s 2 b) (6 p) Kaavaliitteessä vaimennuskertoimien yksikkö oli virheellinen, oikea yksikkö on m -1. Sekä oikeilla yksiköillä että kaavaliitteen virheellisillä yksiköillä lasketut vastaukset hyväksytään. Lasku vaimennuskertoimen yksiköllä cm 1 Olkoon alkuperäinen ultraäänipulssin paine p 0. Rasvakudos (paksuus d 1 = 3,0 cm) vaimentaa ultraäänipulssin paineamplitudia eksponentiaalisen vaimenemislain mukaisesti. Rasvakudoksen vaimennuskerroin (α 1 ) saadaan kaavaliitteen taulukosta ja se on 6,91 cm -1. Saapuessaan rasvakudoksesta haiman yläpintaan ultraäänipulssin paine (p 1 ) on: p 1 = p 0 e α 1d 1 = p 0 e 6,91 1 cc 3,0cc 9,933 10 10 p o

Rasvakudoksen ja haiman rajapinnalla osa ultraäänipulssin paineamplitudista heijastuu takaisin ja osa läpäisee rajapinnan. Läpäisykerroin (T) määrittää läpimenneen paineamplitudin suhteellisen suuruuden. Lasketaan ultraäänen läpäisykerroin rasvakudoksen ja haimakudoksen rajapinnalle. Kaavaliitteen taulukosta saadaan rasvakudoksen akustiseksi impedanssiksi (Z 1 ) 1,35 10 6-1 kg m -2 s ja haimakudoksen akustiseksi impedanssiksi (Z 2 ) 1,72 10 6 kg m -2 s -1. Läpäisykerroin on siis: T = 1 R = 1 Z 2 Z 1 = 1 1,72 106 1,35 10 6 Z 2 +Z 1 1,72 10 6 +1,35 106 1 0,1205 = 0,8795 (2 p) Näin ollen rajapinnan läpäissyt paineamplitudi on: p 2 = Tp 1 = 0,8795 9,933 10 10 p o 8,736 10 10 p o Haimakudos (paksuus d 2 - d 1 = 1,5 cm) edelleen alentaa paineamplitudia eksponentiaalisen vaimenemislain mukaisesti. Haimakudoksen vaimennuskerroin (α 2 ) saadaan kaavaliitteen taulukosta ja se on 11,17 cm -1. Saapuessaan haimakudoksesta kasvaimen yläpintaan ultraäänipulssin paine on: p 3 = p 2 e α 2d 2 = 8,736 10 10 p o e 11,17 1 cc 1,5 cc 4,621 10 17 p o Eli saapuessaan kasvaimen yläpinnalle n. 5 10 15 % alkuperäisen ultraääniaallon paineamplitudista on jäljellä ennen heijastusta ja läpäisyä haiman ja kasvaimen rajapinnalla. Lasku vaimennuskertoimen yksiköllä m 1 Olkoon alkuperäinen ultraäänipulssin paine p 0. Rasvakudos (paksuus d 1 = 3,0 cm) vaimentaa ultraäänipulssin paineamplitudia eksponentiaalisesti vaimenemislain mukaisesti. Rasvakudoksen vaimennuskerroin (α 1 ) saadaan kaavaliitteen taulukosta ja se on 6,91 m -1. Saapuessaan rasvakudoksesta haiman yläpintaan ultraäänipulssin paine (p 1 ) on: p 1 = p 0 e α 1d 1 = p 0 e 6,91 1 m 0,030 m 0,8128 p o Rasvakudoksen ja haiman rajapinnalla osa ultraäänipulssin paineamplitudista heijastuu takaisin ja osa läpäisee rajapinnan. Läpäisykerroin (T) määrittää läpimenneen paineamplitudin suhteellisen suuruuden. Lasketaan ultraäänen läpäisykerroin rasvakudoksen ja haimakudoksen rajapinnalle. Kaavaliitteen taulukosta saadaan rasvakudoksen akustiseksi impedanssiksi (Z 1 ) 1,35 10 6-1 kg m -2 s ja haimakudoksen akustiseksi impedanssiksi (Z 2 ) 1,72 10 6 kg m -2 s -1. Läpäisykerroin on siis: T = 1 R = 1 Z 2 Z 1 = 1 1,72 106 1,35 10 6 1 0,1205 = 0,8795 Z 2 +Z 1 1,72 10 6 +1,35 106 Näin ollen rajapinnan läpäissyt paineamplitudi on: p 2 = Tp 1 = 0,8795 0,8128 p 0 0,7149 p 0 Haimakudos (paksuus d 2 = 1,5 cm) edelleen alentaa paineamplitudia eksponentiaalisen vaimenemislain mukaisesti. Haimakudoksen vaimennuskerroin (α 2 ) saadaan kaavaliitteen taulukosta ja se on 11,17 m -1. Saapuessaan haimakudoksesta kasvaimen yläpintaan ultraäänipulssin paine on: p 3 = p 2 e α 2d 2 = 0,7149 p 0 e 11,17 1 m 0,015 m 0,6046 p 0 Saapuessaan kasvaimen yläpinnalle n. 60 % alkuperäisen ultraääniaallon paineamplitudista on jäljellä ennen heijastusta ja läpäisyä haiman ja kasvaimen rajapinnalla.

Tehtävä 14 4 p a) 2 p p = F A = F πr 2 = 4,4 N π( 0,0086 m) 2 2 = 75,747 kkk 76 kkk b) 2 p h = p = 9,4 kkk = 0,9196 m 92 cc ρg 1042 kk m 3 9,81m s 2