JOHDATUS TEKOÄLYYN TEEMU ROOS
|
|
- Katariina Manninen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 JOHDATUS TEKOÄLYYN TEEMU ROOS
2 AI-TUTKIJAN URANÄKYMIÄ
3 AJATUSTENLUKUA
4 COMPUTER VISION
5 SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA MUUTTUJIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B).
6 SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA MUUTTUJIEN (X,Y) FUNKTIONA. VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN T (AIKA) FUNKTIONA (TAI MUUTTUJAN F (TAAJUUS) => FREQUENCY DOMAIN )
7 SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA MUUTTUJIEN (X,Y) FUNKTIONA. VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN T (AIKA) FUNKTIONA (TAI MUUTTUJAN F (TAAJUUS) => FREQUENCY DOMAIN )
8 SIGNAALINKÄSITTELY KUVAN TAI ÄÄNITIEDOSTON KOKO ON USEIN SUURI: ESIM X 1000 PIKSELIÄ = PIKSELIÄ KUVA: RESOLUUTIO [DPI] ÄÄNI: NÄYTTEENOTTOTAAJUUS [HZ] KOHINAA ESIINTYY AINA LUONNOLLISESSA SIGNAALISSA SIGNAALI RIIPPUU MYÖS OLOSUHTEISTA: - KUVAKULMA, VALAISTUS, ETÄISYYS,... - KAIKU, MIKROFONI, TAUSTAHÄLY,... => TUNNISTAMINEN TAI LUOKITTELU VAIKEAA
9 SIGNAALINKÄSITTELY TAVOITE TUNNISTAMISESSA LÖYTÄÄ PIIRTEET, JOTKA SÄILYVÄT ERI OLOSUHTEISSA KUVASSA TYYPILLISIÄ PIIRRETYYPPEJÄ: - REUNAT - KULMAT ÄÄNESSÄ: - TAAJUUS - TAAJUUDEN MUUTOKSET (YLÖS, ALAS,...)
10 HAHMONTUNNISTUKSESSA SUOSIOSSA INVARIANTIT PIIRTEET, KUTEN SIFT (Scale Invariant Feature Transform) JA SURF (Speeded Up Robust Features). H. Bay, T. Tuytelaars & l. van Gool. SURF: Speeded Up Robust Features, Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp , 2008 IDEANA LÖYTÄÄ KUVASTA JOUKKO PIIRTEITÄ (FEATURE), JOTKA SÄILYVÄT SAMANA - ERI KOOSSA INVARIANSSI - ERI KULMASSA JA JOTKA VOI LASKEA - NOPEASTI.
11 VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) =!! F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN
12 VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) =!! F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN
13 VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) =!! F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN
14 VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) =!! F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN 3. TOISTA ERI SKAALAUKSILLA (SKAALAINVARIANTTI) 4. VALITSE det(h):n PAIKALLISET MAKSIMIT AVAINPISTEIKSI
15 VAIHE I: AVAINPISTEIDEN VALINTA: 1. ESITETÄ KUVA INTEGRAALIMUODOSSA (NOPEUTUS) X Y I(X,Y) =!! F(i,j) i=1 j=1 2. LASKE HESSEN MATRIISIN (HESSIAN) DETERMINANTTI : INTENSITEETIN 2. DERIVAATAT ERI SUUNTIIN 3. TOISTA ERI SKAALAUKSILLA (SKAALAINVARIANTTI) 4. VALITSE det(h):n PAIKALLISET MAKSIMIT AVAINPISTEIKSI
16 VAIHE II: PIIRTEIDEN KUVAUS: 1. TARKASTELE JOKAISEN AVAINPISTEEN YMPÄRISTÖÄ 2. LASKE ORIENTAATIO (INTENSITEETIN PERUSTEELLA) 3. KONSTRUOI INTENSITEETIN VAIHTELUN PERUSTEELLA KUVAAJAVEKTORI (SURFISSA 64-DIMENSIOINEN)
17 VAIHE II: PIIRTEIDEN KUVAUS: 1. TARKASTELE JOKAISEN AVAINPISTEEN YMPÄRISTÖÄ 2. LASKE ORIENTAATIO (INTENSITEETIN PERUSTEELLA) 3. KONSTRUOI INTENSITEETIN VAIHTELUN PERUSTEELLA KUVAAJAVEKTORI (SURFISSA 64-DIMENSIOINEN)
18 VAIHE II: PIIRTEIDEN KUVAUS: 1. TARKASTELE JOKAISEN AVAINPISTEEN YMPÄRISTÖÄ 2. LASKE ORIENTAATIO (INTENSITEETIN PERUSTEELLA) 3. KONSTRUOI INTENSITEETIN VAIHTELUN PERUSTEELLA KUVAAJAVEKTORI (SURFISSA 64-DIMENSIOINEN) TULOKSENA PIIRREVEKTORI: (X,Y,SKAALA,ORIENTAATIO,KUVAAJAVEKTORI)
19
20 -ESIMERKKI
21 VAIHE III: HAHMONTUNNISTUS 1. ETSI PIIRTEET YHDESTÄ KUVASTA 2. ETSI PIIRTEET TOISESTA KUVASTA 3. ETSI ERI KUVISSA ESIINTYVIÄ PIIRREPAREJA, JOTKA OVAT RIITTÄVÄN LÄHELLÄ TOISIAAN (ESIM. EUKLEIDES) 4. VOI PARANTAA GEOMETRISILLA RAJOITTEILLA (KORVAT ERI PUOLELLA PÄÄTÄ, SILMÄT SIINÄ VÄLISSÄ, JNE.)
22
23
24 ELO RANKING PELAAJIEN A JA B RANKING, R A JA R B ODOTETTAVISSA OLEVA TULOS TULOS S A PÄIVITYS
25 ENSI VIIKOSTA TO: PATRIK HOYER PUHUU KONEOPPIMISESTA PE: JOUKO STRÖMMER ESITTELEE LEGO-ROBOTTEJA! SEURAAVAN VIIKON LASKUHARJOITUKSISSA LEGOILLA LEIKKIMISTÄ ENSI VIIKON TIISTAIN HARJOITUSRYHMÄ PERUTTU!
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)
JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8.
582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 ARVOSTELUPERUSTEET Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 1. Tekoälyn filosofiaa yms.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
Tiedonkeruu ja analysointi
Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala 30.9.2015 ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat
Tiedonkeruu ja analysointi
Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat laakerit,
Jos sinulla on kysyttävää 10. Vastaanotin toimi.
Tärkeät turvallisuustiedot ennen käyttöönottoa 1 Onnea uuden Langattoman Baby Guardin johdosta. Ennen kuin otat langattoman Baby Guardin käyttöösi, lue kaikki turvallisuus- ja käyttööhjeet huolellisesti,
Ultraäänen kuvausartefaktat. UÄ-kuvantamisen perusoletukset. Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005
Ultraäänen kuvausartefaktat Outi Pelkonen OYS, Radiologian Klinikka 29.4.2005 kaikissa radiologisissa kuvissa on artefaktoja UÄ:ssä artefaktat ovat kaikuja, jotka näkyvät kuvassa, mutta eivät vastaa sijainniltaan
Organization of (Simultaneous) Spectral Components
Organization of (Simultaneous) Spectral Components ihmiskuulo yrittää ryhmitellä ja yhdistää samasta fyysisestä lähteestä tulevat akustiset komponentit yhdistelyä tapahtuu sekä eri- että samanaikaisille
Talousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen
Talousmatematiikan perusteet: Johdanto Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen Kurssin tavoitteet Matematiikkaa hyödynnetään monilla kauppa- ja taloustieteen osaalueilla Esim.
Lego Mindstorms NXT. OPH oppimisympäristöjen kehittämishanke 2011-2013. (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1
Lego Mindstorms NXT OPH oppimisympäristöjen kehittämishanke 2011-2013 (C) 2012 Oppimiskeskus Innokas! All Rights Reserved 1 Anturi- ja moottoriportit A B C 1 2 3 4 (C) 2012 Oppimiskeskus Innokas! All Rights
Janne Mustaniemi Eemeli Ristimella Joonas Jyrkkä Esineiden mittaaminen älypuhelimella
TIETO- JA SÄHKÖTEKNIIKAN TIEDEKUNTA Janne Mustaniemi Eemeli Ristimella Joonas Jyrkkä Esineiden mittaaminen älypuhelimella Kandidaatintyö Tietotekniikan tutkinto-ohjelma Toukokuu 2017 Mustaniemi Janne,
AHTI OKSANEN SIFT-MENETELMÄ PIIRTEENSOVITUKSESSA. Kandidaatintyö
AHTI OKSANEN SIFT-MENETELMÄ PIIRTEENSOVITUKSESSA Kandidaatintyö Tarkastaja: lehtori Heikki Huttunen Jätetty tarkastettavaksi 8. toukokuuta 2011 ii TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn
JOHDATUS ELEKTRONIIKKAAN. Oppitunti 2 Elektroniikan järjestelmät
JOHDATUS ELEKTRONIIKKAAN Oppitunti 2 Elektroniikan järjestelmät 2 ELEKTRONIIKAN JÄRJESTELMÄT Aktiivisuusranneke Mittaa liikettä Keskustelee käyttäjän kanssa ledeillä ja värinällä Keskustelee radioiden
Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.
HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (
Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40
Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén
Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa
Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
Äänen eteneminen ja heijastuminen
Äänen ominaisuuksia Ääni on ilmamolekyylien tihentymiä ja harventumia. Aaltoliikettä ja värähtelyä. Värähtelevä kappale synnyttää ääntä. Pistemäinen äänilähde säteilee pallomaisesti ilman esteitä. Käytännössä
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Radioastronomian käsitteitä
Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä
Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors. TKK, Informaatiotekniikan laboratorio 1
3. DATA VEKTORINA 3.1. Vektorit, matriisit, etäisyysmitat Ajatellaan jotakin datajoukkoa joka on talletettu datamatriisiin X: n vectors {}}{ d vector elements X TKK, Informaatiotekniikan laboratorio 1
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta
Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
Mitä on konvoluutio? Tutustu kuvankäsittelyyn
Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa
LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
Virheen kasautumislaki
Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain
Tarvitseeko informaatioteknologia matematiikkaa?
Tarvitseeko informaatioteknologia matematiikkaa? Oulun yliopisto Matemaattisten tieteiden laitos 1 Kyllä kai IT matematiikkaa tarvitsee!? IT ja muu korkea teknologia on nimenomaan matemaattista teknologiaa.
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)
2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
Johdatus tekoälyyn
KURSSIN SISÄLTÖ eli TULEEKO TÄMÄ KOKEESEEN??? 582216 Johdatus tekoälyyn Syksy 2011 T. Roos KURSSIKOODI: 582216 OPINTOPISTEET: 4.0 ERIKOISTUMISLINJA: Algoritmit ja koneoppiminen TASO: Aineopinnot KUVAUS:
Vektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
SGN-4200 Digitaalinen Audio Harjoitustyö-info
1 SGN-4200 Digitaalinen Audio Harjoitustyö-info 04.04.2012 Joonas Nikunen Harjoitystyö - 2 Suorittaminen ja Käytännöt Kurssin pakollinen harjoitustyö: Harjoitellaan audiosignaalinkäsittelyyn tarkoitetun
a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]
Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn
Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
Johdatus tekoälyyn (T. Roos) Kurssikoe
582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 18.10.2013 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100
HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: AIVOT : + KONENÄKÖ
HARJOITUS 7 SEISOVAT AALLOT TAVOITE
SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi
Digitaalinen audio
8003203 Digitaalinen audio Luennot, kevät 2005 Tuomas Virtanen Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2 Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot, sekä niissä
2D piirrelaskennan alkeet, osa I
2D piirrelaskennan alkeet, osa I Ville Tirronen aleator@jyu.fi University of Jyväskylä 18. syyskuuta 2008 Näkökulma Aiheet Tarkastellaan yksinkertaisia 2D kuvankäsittelyoperaattoreita Näkökulmana on tunnistava
Videoista voimaa! Parempia videoita mobiilisti. Jonne Hirvonen.
Videoista voimaa! Parempia videoita mobiilisti Jonne Hirvonen Miksi video? Herättää huomiota Kertoo tarinoita Synnyttää tunteita Jää mieleen Videoita mobiilisti? Älypuhelin = tietokone + kamera = kaikki
20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:
SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot
Kuvan pienentäminen Paint.NET-kuvankäsittelyohjelmalla
Kuvan pienentäminen Paint.NET-kuvankäsittelyohjelmalla Avaa Paint.NET tuplaklikkaamalla sen pikakuvaketta. Paint.NET avautuu tämän näköisenä. Edessä on tyhjä paperi. Saadaksesi auki kuvan, jota aiot pienentää
Tekstuurintunnistuksen lyhyt oppimäärä. Ts. pari tapaa erottaa tiiliseinä pensaasta.
Tekstuurintunnistuksen lyhyt oppimäärä Ts. pari tapaa erottaa tiiliseinä pensaasta. Mitä on tekstuuri? Vaikea määritellä, mutta: Pintakuvio Ornamentti tuntu kuviointi Miksi tämän pitäisi kiinnostaa? (Maantienmerkkausrobotti)
SGN-4200 Digitaalinen audio
SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,
Digitaalinen signaalinkäsittely Kuvankäsittely
Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,
Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat
1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden
RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN
ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: AKTUAATTORIT:
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv
2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
Differentiaaliyhtälöryhmä
Differentiaaliyhtälöryhmä Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti täsmälleen samanlaisilla kaavoilla
ANSSE SAARIMÄKI KAMERAPOHJAINEN PAIKANNUS. Kandidaatintyö
ANSSE SAARIMÄKI KAMERAPOHJAINEN PAIKANNUS Kandidaatintyö Tarkastaja: Yliopistonlehtori Heikki Huttunen Jätetty tarkastettavaksi 21.5.2015 I TIIVISTELMÄ ANSSE SAARIMÄKI: Kamerapohjainen paikannus Tampereen
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
YLEISIMMÄT MIKROFONITYYPIT
YLEISIMMÄT MIKROFONITYYPIT DYNAAMINEN MIKROFONI KONDENSAATTORIMIKROFONI YLEISIMMÄT MIKROFONITYYPIT DYNAAMISIA MIKROFONEJA KONDENSAATTORIMIKROFONEJA MIKKIVERTAILUA: DYNAAMINEN MIKROFONI KONDENSAATTORIMIKROFONI
Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:
Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs
6.6. Tasoitus ja terävöinti
6.6. Tasoitus ja terävöinti Seuraavassa muutetaan pikselin arvoa perustuen mpäristön pikselien ominaisuuksiin. Kuvan 6.18.a nojalla ja Lukujen 3.4. ja 3.5. harmaasävjen käsittelssä esitellillä menetelmillä
RADIOTIETOLIIKENNEKANAVAT
1 RADIOTIETOLIIKENNEKANAVAT Millaisia stokastisia ilmiöitä kanavassa tapahtuu? ONGELMAT: MONITIE-ETENEMINEN & KOHINA 2 Monitie-eteneminen aiheuttaa destruktiivista interferenssia eri reittejä edenneiden
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
Laskuharjoitus 2 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti
Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
Havaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Datan käsittely Helsingin yliopisto, Fysiikan laitos kevät 2013 3. Datan käsittely Luennon sisältö: Havaintovirheet tähtitieteessä Korrelaatio Funktion sovitus Aikasarja-analyysi 3.1 Havaintovirheet Satunnaiset
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.
YLEINEN AALTOLIIKEOPPI
YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Johdatus monimuuttujamenetelmiin Luennot 30.10.13.12.-18 Tiistaina klo 12-14 (30.10., BF119-1) Keskiviikkoisin klo 10-12 (MA101,
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))!
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen
Kuinka paljon dataa on tarpeeksi?
Kuinka paljon dataa on tarpeeksi? Tiekartta hallitun datalammen rakennukseen Mikko Toivonen Manager, Systems Engineering Dell Technologies Finland Tekoälyn (koneoppimisen) kolme pilaria Tekoälyalgoritmit
Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
ELEKTRONISET TOIMINNOT
LUENTO 2 ALUKSI OLI... EHKÄ MIELENKIINTOISIN SUUNNITTELIJAN TEHTÄVÄ ON TOTEUTTAA LAITE (JA EHKÄ MENETELMÄKIN) JONKIN ONGELMAN RATKAISEMISEEN PUHTAALTA PÖYDÄLTÄ EI (AINAKAAN SAMALLA PERIAATTEELLA) VALMIITA
Tekoäly ja koneoppiminen metsävaratiedon apuna
Tekoäly ja koneoppiminen metsävaratiedon apuna Arbonaut Oy ja LUT University 26. marraskuuta 2018 Metsätieteen päivä 2018 Koneoppimisen kohteena ovat lukujen sijasta jakaumat Esimerkki 1 Koneoppimisessa