SGN-4200 Digitaalinen Audio Harjoitustyö-info

Koko: px
Aloita esitys sivulta:

Download "SGN-4200 Digitaalinen Audio Harjoitustyö-info"

Transkriptio

1 1 SGN-4200 Digitaalinen Audio Harjoitustyö-info Joonas Nikunen

2 Harjoitystyö - 2 Suorittaminen ja Käytännöt Kurssin pakollinen harjoitustyö: Harjoitellaan audiosignaalinkäsittelyyn tarkoitetun algoritmin toteuttamista tieteellisen julkaisun perusteella Kaksi vaihtoehtoista aihetta/julkaisua Tehdään kahden hengen ryhmissä Arvostellaan: Hyväksytty/Hylätty Ryhmän jäsenten ja työaiheen ilmoittaminen mennessä osoitteeseen digaudio@cs.tut.fi Palautus mennessä osoitteeseen digaudio@cs.tut.fi

3 3 Harjoitustöiden sisältö 1. Tutustuminen tieteelliseen julkaisuun ja ratkaistavaan ongelmaan 2. Julkaisussa esitetyn algoritmin toteutus käyttäen Matlab:ia 3. Tulosten evaluointi ja tulkitseminen (+ testidatan hankinta) 4. Raportin kirjoittaminen tuloksista ja havainnoista

4 Aihe 1: Rumpujen separointi 4 musiikista Harmonisten ja perkussiivisien komponenttien erottelu musiikin spektrogrammista (aika-taajuus esitys) Anisotropia: suunnasta riippuvuus Harmonisten äänten ajallinen jatkuvuus Perkussiivisten äänten ajallinen paikallistuminen (taajuudellinen jatkuvuus) Etsitään iteratiivisesti sellaiset spektrogrammit jotka maksimoivat anisotropian (jatkuvuuden ajallisesti ja taajuudessa) [1] Lähde [1]: N. Ono, K. Miyamoto, J. L. Roux, H. Kameoka and S. Sagayama, Separation of a monaural audio signal into harmonic/percussive components by complementary diffusion on spectrogram, in Proc. EUSIPCO, 2008

5 Aihe 1: Rumpujen separointi 5 musiikista Vinkkejä toteutukseen Lähteen [1] kaavat sivulla kolme kuvaavat algoritmin toteutuksen, iteratiivisen algoritmin johtamisesta ei tarvitse suuremmin välittää Kehyksittäistä prosessointia (short-time Fourier transform) käydään harjoituksissa läpi Testimateriaali: rummut sekä harmoniset instrumentit (+laulu) erikseen josta lasketaan summasignaali (rummut + muut) Huomatkaa että algoritmi toimii vain monosignaaleille, halutessanne voitte prosessoida stereon molemmat kanavat erillisinä Voitte käyttää haluamaanne materiaalia, tai kurssin harjoitustyösivulta löytyy linkki josta valmista materiaalia on saatavilla Evaluointi: Signaali-kohinasuhde s(t) = alkuperäinen e(t) = alkuperäinen-separoitu Pohdittavaksi raporttia varten Minkälaiselle materiaalille algoritmin toiminta rajoittuu ja miksi? Miten separoinnin laatua kannattaa mitata ja arvioida?

6 Aihe 2: Äänen korkeuden 6 estimointi Äänen perustaajuuden estimointi (fundamental frequency) modifioitua autokorrelaatio-menetelmää käyttäen, lähde [2] Lähdemateriaalin kappaleessa 2 esitetty algoritmi Aloitetaan standardin autokorrelaation maksimista ja parannetaan äänenkorkeuden estimaattia askel askeleelta erilaisin muokkauksin, Esimerkiksi: Autokorrelaation resoluutio näytteenottotaajuudesta johtuen -> Interpolaatio Signaali: Autokorrelaatio: Lähde [2] A. de Cheveigné and H. Kawahara, YIN, A fundamental frequency estimator for speech and music, J. Acoust. Soc. Amer., vol. 111, no. 4, pp , 2002.

7 Aihe 2: Äänen korkeuden 7 estimointi Vinkkejä toteutukseen Edetkää lähdemateriaalin kappaleen kaksi osien 1-6 mukaisesti Testimateriaali on annettu harjoitustöiden webbisivuilla, signaalien arvot ovat 16 bittisiä kokonaislukuja, jotka on kirjoitettu big endian järjestykseen Näytteiden lukemiseen tullaan antamaan valmis toteutus viimeistään viikolla 15 (tulee harkkatyön webbisivulle) Evaluointi: estimoitu äänenkorkeus vs. mitattu testidata (puhe) Evaluoikaa käyttäen lähdemateriaalin virherajoja (10%) Pohdittavaksi raporttia varten Havaittu äänen korkeus ja äänen perustaajuus, ovatko aina sama, miten vaikuttaa algoritmin toimintaan? Perustaajuuden estimoinnin käyttökohteet?

8 8 Raportti ja palautus Raportti ja algoritmin toteuttavat Matlab koodit palautetaan mennessä osoitteeseen Palauta vain osa testimateriaalista algoritmin toimivuuden testaamista varten, yksikin signaali riittää, mutta tulosten laskenta isommalla otannalla Raportti, pituus 4-5 sivua, kuitenkin kuvaajien koosta ja määrästä riippuen Minkä ongelman työ ratkaisee? Miten ongelma on ratkaistu, mitä oletuksia on tehty? Lyhyt selostus toteutuksesta, mitä vaiheita algoritmi sisältää? Tulokset: miten ja mitä evaluoidaan?

9 9 Yleistä Kysymykset harjoitustöistä osoitteeseen Pyritään lukemaan ja vastaamaan päivittäin Kysymysten koskiessa koodin tulkkausta täytyy koodin olla erittäin hyvin kommentoitua!!! Pyritään järjestämään 2 päivystysaikaa töiden ohjaamista varten, tarkemmat ajat ilmoitetaan harjoitustyön sivuilla ja harjoituksissa Ensimmäinen muutaman viikon kuluttua: alkuvaikeudet, lähtökohdat yms. Toinen lähempää palautuspäivämäärää: Toteutuksen ongelmat yms.

Digitaalinen audio

Digitaalinen audio 8003203 Digitaalinen audio Luennot, kevät 2005 Tuomas Virtanen Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2 Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot, sekä niissä

Lisätiedot

Organization of (Simultaneous) Spectral Components

Organization of (Simultaneous) Spectral Components Organization of (Simultaneous) Spectral Components ihmiskuulo yrittää ryhmitellä ja yhdistää samasta fyysisestä lähteestä tulevat akustiset komponentit yhdistelyä tapahtuu sekä eri- että samanaikaisille

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

SGN-4010, Puheenkäsittelyn menetelmät Harjoitus 6, 18. ja

SGN-4010, Puheenkäsittelyn menetelmät Harjoitus 6, 18. ja SGN-4010, Puheenkäsittelyn menetelmät Harjoitus 6, 18. ja 21.2.2010 1. (Matlab, 2 pistettä) Vokaalit ja soinnilliset konsonantit ovat lähes jaksollisia ja niillä on äänihuulten värähtelystä johtuva perustaajuus.

Lisätiedot

SGN-4200 Digitaalinen audio

SGN-4200 Digitaalinen audio SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Analyysi on helpointa aloittaa painamalla EDIT-painiketta. (Tuotu tiedosto täytyy olla aktiivinen eli valittuna).

Analyysi on helpointa aloittaa painamalla EDIT-painiketta. (Tuotu tiedosto täytyy olla aktiivinen eli valittuna). 1 PRAAT OHJE Yleistä Praat on puheentutkimukseen tarkoitettu ilmainen ohjelma (GNU ohjelma, open source). Se sisältää useita eri analyysimahdollisuuksia, mahdollisuuden määrittää hyvin tarkasti kuvien

Lisätiedot

Signaalinkäsittely Musiikin sisältöanalyysi Rumpujen nuotinnos Muotoanalyysi Yhteenveto. Lectio praecursoria

Signaalinkäsittely Musiikin sisältöanalyysi Rumpujen nuotinnos Muotoanalyysi Yhteenveto. Lectio praecursoria Lectio praecursoria Signal Processing Methods for Drum Transcription and Music Structure Analysis (Signaalinkäsittelymenetelmiä rumpujen nuotintamiseen ja musiikin muotoanalyysiin) Jouni Paulus 8.1.2010

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

THE audio feature: MFCC. Mel Frequency Cepstral Coefficients

THE audio feature: MFCC. Mel Frequency Cepstral Coefficients THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t

Lisätiedot

Laskuharjoitus 4 ( ): Tehtävien vastauksia

Laskuharjoitus 4 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.

Lisätiedot

f k = 440 x 2 (k 69)/12 (demoaa yllä Äänen väri Johdanto

f k = 440 x 2 (k 69)/12 (demoaa yllä Äänen väri Johdanto Äänen väri vs. viritysjärjestelmät Anssi klap@cs.tut.fi www.cs.tut.fi/~klap Lähdemateriaali: Tuning, Timbre, Spectrum, Scale by William A. Sethares Johdanto Oktaaviesimerkki: perusidea Länsimaisen virityksen

Lisätiedot

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

TU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille!

TU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille! TU-A1140 - Itsensä tunteminen ja johtaminen Tervetuloa kurssille! Kurssin avaus 5.1. 2017 Eerikki Mäki eerikki.maki@aalto.fi Opiskelijapalautetta aiemmilta kursseilta Oman olemisen ja tietoisten valintojen

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

5 Akustiikan peruskäsitteitä

5 Akustiikan peruskäsitteitä Puheen tuottaminen, havaitseminen ja akustiikka / Reijo Aulanko / 2016 2017 14 5 Akustiikan peruskäsitteitä ääni = ilmapartikkelien edestakaista liikettä, "tihentymien ja harventumien" vuorottelua, ilmanpaineen

Lisätiedot

DEE-53030 Uusiutuvien energiamuotojen työkurssi. 5 op

DEE-53030 Uusiutuvien energiamuotojen työkurssi. 5 op DEE-53030 Uusiutuvien energiamuotojen työkurssi 5 op DEE-53030 Uusiutuvien energiamuotojen työkurssi Idea: Mittaillaan asioita, joita tarkastellaan teoreettisesti Uusiutuvien sähköenergiateknologioiden

Lisätiedot

LASKOSTUMISEN HAVAITSEMINEN SAHA-AALLOSSA

LASKOSTUMISEN HAVAITSEMINEN SAHA-AALLOSSA Heidi-Maria Lehtonen 1, Jussi Pekonen 2 ja Vesa Välimäki 1 1 Aalto-yliopisto Sähkötekniikan korkeakoulu Signaalinkäsittelyn ja akustiikan laitos PL 13, 76 AALTO heidi-maria.lehtonen@aalto.fi 2 Itsenäinen

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Musiikkipäiväkirjani: Soitetaan instrumentteja (PI1)

Musiikkipäiväkirjani: Soitetaan instrumentteja (PI1) Musiikkipäiväkirjani: Soitetaan instrumentteja (PI1) Tehdään erilaisia ääniä arkisilla esineillä (esim. paperi, pöydät, kupit, tikut, pallot), rummuilla tai melodisilla instrumenteilla, ja kuvaillaan ääniä

Lisätiedot

Åbo Akademi 3.5.2011 klo 12-16. Mietta Lennes mietta.lennes@helsinki.fi. Nykykielten laitos Helsingin yliopisto

Åbo Akademi 3.5.2011 klo 12-16. Mietta Lennes mietta.lennes@helsinki.fi. Nykykielten laitos Helsingin yliopisto Åbo Akademi 3.5.2011 klo 12-16 Mietta Lennes mietta.lennes@helsinki.fi Nykykielten laitos Helsingin yliopisto Praat-puheanalyysiohjelma Mikä on Praat? Mikä on Praat? Praat [Boersma and Weenink, 2010] on

Lisätiedot

Tiistai klo 10-12 Jari Eerola 20.1.2015

Tiistai klo 10-12 Jari Eerola 20.1.2015 Tiistai klo 10-12 Jari Eerola 20.1.2015 } 20.1. Kuvaajatyypit ja ohjelmat Analyysiohjelmista Praat ja Sonic Visualiser Audacity } 27.1. Nuotinnusohjelmista Nuotinnusohjelmista Musescore } Tietokoneavusteinen

Lisätiedot

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola Liikehavaintojen estimointi langattomissa lähiverkoissa Diplomityöseminaari Jukka Ahola ESITYKSEN SISÄLTÖ Työn tausta Tavoitteen asettelu Johdanto Liikehavaintojen jakaminen langattomassa mesh-verkossa

Lisätiedot

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi Johdantoluento (22.1.2008) Nikolaj Tatti ntatti@cc.hut.fi Johdantoluento Kurssijärjestelyt ja vaatimukset. Kurssin sisällöstä. Hyvä esitelmä

Lisätiedot

AS Automaatio- ja systeemitekniikan projektityöt S09-18 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan

AS Automaatio- ja systeemitekniikan projektityöt S09-18 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan AS-.32 Automaatio- ja systeemitekniikan projektityöt S9-8 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan Joni Silvo Johdanto Tässä työssä tutkitaan rakenteiden kunnonvalvontaan käytettävään langattomaan

Lisätiedot

Innopaja@koulut iltapäivä 22.5.2012

Innopaja@koulut iltapäivä 22.5.2012 Innopaja@koulut iltapäivä 22.5.2012 Innoa lukion musiikissa Intelligent på tangenten (S:t Karins) Hauskaa ilman lintuja (Kuusisto) ipodit opetuskäytössä (Kotimäki) ipodit opetuskäytössä (Runko) INNOA LUKION

Lisätiedot

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen

Lisätiedot

Koesuunnitelma. ViDRoM Virtual Design of Rotating Machines. Raine Viitala

Koesuunnitelma. ViDRoM Virtual Design of Rotating Machines. Raine Viitala Koesuunnitelma ViDRoM Virtual Design of Rotating Machines Raine Viitala ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat laakerit, kolmikulmaiset

Lisätiedot

TU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille!

TU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille! TU-A1140 - Itsensä tunteminen ja johtaminen Tervetuloa kurssille! Kurssin avaus 7.1. 2016 Eerikki Mäki eerikki.maki@aalto.fi Opiskelijapalautetta vuoden 2015 kurssista Kurssi poikkesi todella paljon verrattuna

Lisätiedot

S09 04 Kohteiden tunnistaminen 3D datasta

S09 04 Kohteiden tunnistaminen 3D datasta AS 0.3200 Automaatio ja systeemitekniikan projektityöt S09 04 Kohteiden tunnistaminen 3D datasta Loppuraportti 22.5.2009 Akseli Korhonen 1. Projektin esittely Projektin tavoitteena oli algoritmin kehittäminen

Lisätiedot

PSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA

PSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA PSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA Jussi Rämö 1, Vesa Välimäki 1 ja Miikka Tikander 2 1 Aalto-yliopisto, Signaalinkäsittelyn ja akustiikan laitos PL 13000, 00076 AALTO

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007 Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:

Lisätiedot

Numeerinen analyysi Harjoitus 3 / Kevät 2017

Numeerinen analyysi Harjoitus 3 / Kevät 2017 Numeerinen analyysi Harjoitus 3 / Kevät 2017 Palautus viimeistään perjantaina 17.3. Tehtävä 1: Tarkastellaan funktion f(x) = x evaluoimista välillä x [2.0, 2.3]. Muodosta interpoloiva polynomi p 3 (x),

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS AI-TUTKIJAN URANÄKYMIÄ AJATUSTENLUKUA COMPUTER VISION SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA MUUTTUJIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

Näkökulmia monimuoto-opetukseen

Näkökulmia monimuoto-opetukseen 1 Näkökulmia monimuoto-opetukseen Tietokoneohjelma on kuin runo, se ei valmistu koskaan Bill Gates Aiheita 2 Lähtötason arviointi Tentti ja/tai tentitön vaihtoehto yhdessä Kotitehtävät vs. luokkaharjoitukset

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

KAIKUPEDAALIN VAIKUTUKSET PIANON ÄÄNEEN: ANALYYSI JA SYNTEESI 1 JOHDANTO 2 ÄÄNITYKSET JA SIGNAALIANALYYSI

KAIKUPEDAALIN VAIKUTUKSET PIANON ÄÄNEEN: ANALYYSI JA SYNTEESI 1 JOHDANTO 2 ÄÄNITYKSET JA SIGNAALIANALYYSI : ANALYYSI JA SYNTEESI Heidi-Maria Lehtonen, Henri Penttinen, Jukka Rauhala ja Vesa Välimäki Teknillinen korkeakoulu Akustiikan ja äänenkäsittelytekniikan laboratorio PL 3, 21 TKK, Espoo heidi-maria.lehtonen@tkk.fi,

Lisätiedot

Kurssiesite. Rakentamisen tekniikat RAK-C3004

Kurssiesite. Rakentamisen tekniikat RAK-C3004 RAK-C3004 Rakentamisen tekniikat Kurssiesite Syksy 2015, periodi I Hannu Hirsi (vastaava opettaja) & Lauri Salokangas & Jouko Pakanen & Johannes Hämeri & Toomla Sander & Markku Ylinen & vierailevat tähtiluennoitsijat

Lisätiedot

Monikanavaäänen perusteet. Tero Koski

Monikanavaäänen perusteet. Tero Koski Monikanavaäänen perusteet Tero Koski Lähtökohdat Monikanavaääni tarkoi6aa äänital8ota, jossa on toiste6avia kanavia enemmän kuin kaksi 2.1 ; 3.0 ; 3.1 ; 4.0 ; 4.1 ; 7.2 ; 10.2 ; 22.2 ; Monikanavaääntä

Lisätiedot

Kuulohavainnon perusteet

Kuulohavainnon perusteet Kuulohavainnon ärsyke on ääni - mitä ääni on? Kuulohavainnon perusteet - Ääni on ilmanpaineen nopeaa vaihtelua: Tai veden tms. Markku Kilpeläinen Käyttäytymistieteiden laitos, Helsingin yliopisto Värähtelevä

Lisätiedot

DEE Uusiutuvien energiamuotojen työkurssi. 5 op

DEE Uusiutuvien energiamuotojen työkurssi. 5 op DEE-53030 Uusiutuvien energiamuotojen työkurssi 5 op DEE-53030 Uusiutuvien energiamuotojen työkurssi Idea: Mittaillaan asioita, joita tarkastellaan teoreettisesti Uusiutuvien sähköenergiateknologioiden

Lisätiedot

1516 mb4 2. jakso. 21, ropposen tilavuus. Mikko Rahikka. Valitse teema Lähetä valokuva STREAM. ILMOITUS Mikko Rahikka 26.

1516 mb4 2. jakso. 21, ropposen tilavuus. Mikko Rahikka. Valitse teema Lähetä valokuva STREAM. ILMOITUS Mikko Rahikka 26. m@hyl.fi 1516 mb4 2. jakso Mikko Rahikka Valitse teema Lähetä valokuva STREAM OPISKELIJAT TIETOJA ILMOITUS Mikko Rahikka 26. marraskuuta Harjoittele kokeeseen Pekan polulla Etusivu Polku http://polku.opetus.tv/

Lisätiedot

Matlabharjoitustyön ohjausta. ELEC-A3110 Mekaniikka / Sami Kujala

Matlabharjoitustyön ohjausta. ELEC-A3110 Mekaniikka / Sami Kujala Matlabharjoitustyön ohjausta ELEC-A3110 Mekaniikka / 11.10.2017 Sami Kujala Työn tavoitteet Tiedolliset tavoitteet Tutustua numeerisen laskennan ohjelmistoon (Matlab) Ratkaista fysikaalinen probleema Matlabin

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

HARJOITUS 7 SEISOVAT AALLOT TAVOITE

HARJOITUS 7 SEISOVAT AALLOT TAVOITE SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi

Lisätiedot

Projektien suunnittelu ja ohjaus TU-C3010

Projektien suunnittelu ja ohjaus TU-C3010 Projektien suunnittelu ja ohjaus TU-C3010 Kurssin henkilökunta: Vastuuopettaja + opettajat: Jere Lehtinen, Juri Matinheikki, (Karlos Artto) Kurssiassistentit: Ukko Kilpinen Kurssin suorittaminen Kurssin

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Infraäänimittaukset. DI Antti Aunio, Aunio Group Oy

Infraäänimittaukset. DI Antti Aunio, Aunio Group Oy Infraäänimittaukset DI Antti Aunio, Aunio Group Oy antti.aunio@aunio.fi Mitä infraääni on? Matalataajuista ilmanpaineen vaihtelua Taajuusalue < 20 Hz Ihmisen kuuloalue on tyypillisesti 20-20 000 Hz Osa

Lisätiedot

Äänen korkeuden tunnistaminen

Äänen korkeuden tunnistaminen T-111.2211 Informaatioverkostot: Studio 4 Maria-Karoliina Tiuraniemi, 50163D mktiuran@cc.hut.fi Äänen korkeuden tunnistaminen Harjoituskierros 2: Vuorovaikutustekniikat 13.4.2011 Tiivistelmä SingStar-laulupelissä

Lisätiedot

Aiheenvalinta ilmoitetaan MyCoursesin keskustelualueella (ei saman yrityksen tarkastelua lähes samasta näkökulmasta) viimeistään tiistaina 27.2.

Aiheenvalinta ilmoitetaan MyCoursesin keskustelualueella (ei saman yrityksen tarkastelua lähes samasta näkökulmasta) viimeistään tiistaina 27.2. 1 (5) Lopputyö Aiheenvalinta viimeistään ti 27.2. MyCoursesin kyseisellä keskustelualueella Suunnitelma 10 %, palautus viimeistään ma 5.3. Tiimiesitys 15 %, tiistaina 27.3. tai torstaina 29.3. Raportti

Lisätiedot

TURUN AMMATTIKORKEAKOULU L6010402.7_4h 1(5) TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO 23.8.2011

TURUN AMMATTIKORKEAKOULU L6010402.7_4h 1(5) TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO 23.8.2011 TURUN AMMATTIKORKEAKOULU L6010402.7_4h 1(5) FYSIIKAN LABORATORION OPISKELIJAN OHJE 1. Työskentelyoikeus Opiskelijalla on oikeus päästä laboratorioon ja työskennellä siellä vain valvojan läsnäollessa. Työskentelyoikeus

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 tuetusti / vaihtelevasti / hyvin / erinomaisesti vuosiluokka 1 2 3 4 käyttäytyminen Otat muut huomioon ja luot toiminnallasi myönteistä ilmapiiriä.

Lisätiedot

Laske Laudatur ClassPadilla

Laske Laudatur ClassPadilla Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Lyhyt matematiikka, syksy 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä Opettaja

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Projektisuunnitelma: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari

Projektisuunnitelma: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektisuunnitelma: Vesipistekohtainen veden kulutuksen seuranta, syksy 2015 Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektin tavoite Tämän projektin tavoitteena on kehittää prototyyppi järjestelmästä,

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari

Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy 2015 Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektin eteneminen Projekti on edennyt syksyn aikana melko vaikeasti. Aikataulujen

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka Vfo135 ja Vfp124 Martti Vainio Akustiikka Äänityksen tarkoitus on taltioida paras mahdo!inen signaali! Tärkeimpinä kolme akustista muuttujaa:

Lisätiedot

Tehtävän lisääminen ja tärkeimmät asetukset

Tehtävän lisääminen ja tärkeimmät asetukset Tehtävä Moodlen Tehtävä-aktiviteetti on tarkoitettu erilaisten tehtävien antamiseen verkossa. Tehtävä-aktiviteettia ei ole tarkoitettu ainoastaan tehtävien palautukseen, kuten moni sen sellaiseksi mieltää,

Lisätiedot

RAKE-vastaanotinsimulaatio. 1. Työn tarkoitus. 2. Teoriaa. 3. Kytkentä. Tietoliikennelaboratorio Versio

RAKE-vastaanotinsimulaatio. 1. Työn tarkoitus. 2. Teoriaa. 3. Kytkentä. Tietoliikennelaboratorio Versio OAMK / Tekniikan yksikkö LABORATORIOTYÖOHJE Tietoliikennelaboratorio Versio 15.10.2004 RAKE-vastaanotinsimulaatio 1. Työn tarkoitus Tämän harjoitustyön tarkoituksena on RadioLab-simulointiohjelman avulla

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan Mat 2.4177Operaatiotutkimuksenprojektityöseminaari Tieverkonkunnonstokastinenennustemallija sensoveltaminenriskienhallintaan Väliraportti 3/4/2009 Toimeksiantajat: PöyryInfraOy(PekkaMild) Tiehallinto(VesaMännistö)

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

TU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille!

TU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille! TU-A1140 - Itsensä tunteminen ja johtaminen Tervetuloa kurssille! Kurssin avaus 4.1. 2018 Eerikki Mäki eerikki.maki@aalto.fi Agenda 4.1.2018 ü Kurssin henkilökunta ja osallistujat ü Itsensä tuntemisesta

Lisätiedot

MATTI SIRONEN PUHEEN PERUSTAAJUUDEN ESTIMOINTI

MATTI SIRONEN PUHEEN PERUSTAAJUUDEN ESTIMOINTI I MATTI SIRONEN PUHEEN PERUSTAAJUUDEN ESTIMOINTI Kandidaatintyö Tarkastaja: Konsta Koppinen II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan koulutusohjelma SIRONEN, MATTI: Puheen perustaajuuden

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Kurssijärjestelyt. CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos

Kurssijärjestelyt. CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos Kurssijärjestelyt CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos (Alkuperäiset luentokalvot: Markku Laine) 10. Tammikuuta 2017 Luennon sisältö

Lisätiedot

Aineistokoko ja voima-analyysi

Aineistokoko ja voima-analyysi TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

Tietotekniikan laitoksen uusi linja

Tietotekniikan laitoksen uusi linja Tietotekniikan laitoksen uusi linja Tietotekniikan laitos 2011- Yhteisen rungon ympärille liittyvät oksina Tietotekniikan laitoksen perinteiset ja uudet linjat Haluatko harrastuksiisi liittyvän ammatin?

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla

HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla Tämä työohje on kirjoitettu ESR-projektissa Mikroanturitekniikan osaamisen kehittäminen Itä-Suomen lääninhallitus, 2007, 86268 HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla Tarvittavat laitteet: 2 kpl

Lisätiedot

HRTFN MITTAAMINEN SULJETULLA VAI AVOIMELLA KORVA- KÄYTÄVÄLLÄ? 1 JOHDANTO 2 METODIT

HRTFN MITTAAMINEN SULJETULLA VAI AVOIMELLA KORVA- KÄYTÄVÄLLÄ? 1 JOHDANTO 2 METODIT SULJETULLA VAI AVOIMELLA KORVA- KÄYTÄVÄLLÄ? Marko Hiipakka, Ville Pulkki Aalto-yliopisto Sähkötekniikan korkeakoulu Signaalinkäsittelyn ja akustiikan laitos PL 1, 7 AALTO Marko.Hiipakka@aalto.fi, Ville.Pulkki@aalto.fi

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

pikaperusteet 3.3. versio

pikaperusteet 3.3. versio pikaperusteet 3.3. versio IT-palvelut / Hannele Rajaniemi www.jyu.fi/itp/moodle-ohjeet moodle-support@jyu.fi materiaalin koonnut: Hannele Rajaniemi Alustava sisältö Rakennat omaa Moodle kurssiasi, jossa

Lisätiedot

S Ihminen ja tietoliikennetekniikka. Syksy 2005, laskari 1

S Ihminen ja tietoliikennetekniikka. Syksy 2005, laskari 1 Syksy 2005, laskari 1 Sisältö Tarvekartoituksen periaatteet Tutkimusmenetelmät Raportin laatiminen Tehtävä Kirjaa ylös: mitä tarvekartoituksen menetelmiä tunnet? Mitä hyötyjä tai haasteita tiedät niihin

Lisätiedot

Ohjelmistoprosessit ja ohjelmistojen laatu Ohjelmistoprosessit ja ohjelmistojen laatu (4op)

Ohjelmistoprosessit ja ohjelmistojen laatu Ohjelmistoprosessit ja ohjelmistojen laatu (4op) 581361 Ohjelmistoprosessit ja ohjelmistojen laatu (4op) Ohjelmistojärjestelmien syventävien opintojen kurssi Myös ohjelmistotekniikan profiilin pakollinen kurssi eli ohjelmistotekniikka-aiheisen gradun

Lisätiedot

Datatähti 2019 alku. task type time limit memory limit. A Kolikot standard 1.00 s 512 MB. B Leimasin standard 1.00 s 512 MB

Datatähti 2019 alku. task type time limit memory limit. A Kolikot standard 1.00 s 512 MB. B Leimasin standard 1.00 s 512 MB Datatähti 2019 alku task type time limit memory limit A Kolikot standard 1.00 s 512 MB B Leimasin standard 1.00 s 512 MB C Taulukko standard 1.00 s 512 MB D Ruudukko standard 1.00 s 512 MB E Sanalista

Lisätiedot

Harjoitukset 5 : Differences-in-Differences - mallit (Palautus )

Harjoitukset 5 : Differences-in-Differences - mallit (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 5 : Differences-in-Differences - mallit (Palautus 14.3.2017) Tämän harjoituskerran

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot