SGN-4200 Digitaalinen Audio Harjoitustyö-info
|
|
- Anni Karjalainen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 1 SGN-4200 Digitaalinen Audio Harjoitustyö-info Joonas Nikunen
2 Harjoitystyö - 2 Suorittaminen ja Käytännöt Kurssin pakollinen harjoitustyö: Harjoitellaan audiosignaalinkäsittelyyn tarkoitetun algoritmin toteuttamista tieteellisen julkaisun perusteella Kaksi vaihtoehtoista aihetta/julkaisua Tehdään kahden hengen ryhmissä Arvostellaan: Hyväksytty/Hylätty Ryhmän jäsenten ja työaiheen ilmoittaminen mennessä osoitteeseen digaudio@cs.tut.fi Palautus mennessä osoitteeseen digaudio@cs.tut.fi
3 3 Harjoitustöiden sisältö 1. Tutustuminen tieteelliseen julkaisuun ja ratkaistavaan ongelmaan 2. Julkaisussa esitetyn algoritmin toteutus käyttäen Matlab:ia 3. Tulosten evaluointi ja tulkitseminen (+ testidatan hankinta) 4. Raportin kirjoittaminen tuloksista ja havainnoista
4 Aihe 1: Rumpujen separointi 4 musiikista Harmonisten ja perkussiivisien komponenttien erottelu musiikin spektrogrammista (aika-taajuus esitys) Anisotropia: suunnasta riippuvuus Harmonisten äänten ajallinen jatkuvuus Perkussiivisten äänten ajallinen paikallistuminen (taajuudellinen jatkuvuus) Etsitään iteratiivisesti sellaiset spektrogrammit jotka maksimoivat anisotropian (jatkuvuuden ajallisesti ja taajuudessa) [1] Lähde [1]: N. Ono, K. Miyamoto, J. L. Roux, H. Kameoka and S. Sagayama, Separation of a monaural audio signal into harmonic/percussive components by complementary diffusion on spectrogram, in Proc. EUSIPCO, 2008
5 Aihe 1: Rumpujen separointi 5 musiikista Vinkkejä toteutukseen Lähteen [1] kaavat sivulla kolme kuvaavat algoritmin toteutuksen, iteratiivisen algoritmin johtamisesta ei tarvitse suuremmin välittää Kehyksittäistä prosessointia (short-time Fourier transform) käydään harjoituksissa läpi Testimateriaali: rummut sekä harmoniset instrumentit (+laulu) erikseen josta lasketaan summasignaali (rummut + muut) Huomatkaa että algoritmi toimii vain monosignaaleille, halutessanne voitte prosessoida stereon molemmat kanavat erillisinä Voitte käyttää haluamaanne materiaalia, tai kurssin harjoitustyösivulta löytyy linkki josta valmista materiaalia on saatavilla Evaluointi: Signaali-kohinasuhde s(t) = alkuperäinen e(t) = alkuperäinen-separoitu Pohdittavaksi raporttia varten Minkälaiselle materiaalille algoritmin toiminta rajoittuu ja miksi? Miten separoinnin laatua kannattaa mitata ja arvioida?
6 Aihe 2: Äänen korkeuden 6 estimointi Äänen perustaajuuden estimointi (fundamental frequency) modifioitua autokorrelaatio-menetelmää käyttäen, lähde [2] Lähdemateriaalin kappaleessa 2 esitetty algoritmi Aloitetaan standardin autokorrelaation maksimista ja parannetaan äänenkorkeuden estimaattia askel askeleelta erilaisin muokkauksin, Esimerkiksi: Autokorrelaation resoluutio näytteenottotaajuudesta johtuen -> Interpolaatio Signaali: Autokorrelaatio: Lähde [2] A. de Cheveigné and H. Kawahara, YIN, A fundamental frequency estimator for speech and music, J. Acoust. Soc. Amer., vol. 111, no. 4, pp , 2002.
7 Aihe 2: Äänen korkeuden 7 estimointi Vinkkejä toteutukseen Edetkää lähdemateriaalin kappaleen kaksi osien 1-6 mukaisesti Testimateriaali on annettu harjoitustöiden webbisivuilla, signaalien arvot ovat 16 bittisiä kokonaislukuja, jotka on kirjoitettu big endian järjestykseen Näytteiden lukemiseen tullaan antamaan valmis toteutus viimeistään viikolla 15 (tulee harkkatyön webbisivulle) Evaluointi: estimoitu äänenkorkeus vs. mitattu testidata (puhe) Evaluoikaa käyttäen lähdemateriaalin virherajoja (10%) Pohdittavaksi raporttia varten Havaittu äänen korkeus ja äänen perustaajuus, ovatko aina sama, miten vaikuttaa algoritmin toimintaan? Perustaajuuden estimoinnin käyttökohteet?
8 8 Raportti ja palautus Raportti ja algoritmin toteuttavat Matlab koodit palautetaan mennessä osoitteeseen Palauta vain osa testimateriaalista algoritmin toimivuuden testaamista varten, yksikin signaali riittää, mutta tulosten laskenta isommalla otannalla Raportti, pituus 4-5 sivua, kuitenkin kuvaajien koosta ja määrästä riippuen Minkä ongelman työ ratkaisee? Miten ongelma on ratkaistu, mitä oletuksia on tehty? Lyhyt selostus toteutuksesta, mitä vaiheita algoritmi sisältää? Tulokset: miten ja mitä evaluoidaan?
9 9 Yleistä Kysymykset harjoitustöistä osoitteeseen Pyritään lukemaan ja vastaamaan päivittäin Kysymysten koskiessa koodin tulkkausta täytyy koodin olla erittäin hyvin kommentoitua!!! Pyritään järjestämään 2 päivystysaikaa töiden ohjaamista varten, tarkemmat ajat ilmoitetaan harjoitustyön sivuilla ja harjoituksissa Ensimmäinen muutaman viikon kuluttua: alkuvaikeudet, lähtökohdat yms. Toinen lähempää palautuspäivämäärää: Toteutuksen ongelmat yms.
Digitaalinen audio
8003203 Digitaalinen audio Luennot, kevät 2005 Tuomas Virtanen Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2 Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot, sekä niissä
LisätiedotOrganization of (Simultaneous) Spectral Components
Organization of (Simultaneous) Spectral Components ihmiskuulo yrittää ryhmitellä ja yhdistää samasta fyysisestä lähteestä tulevat akustiset komponentit yhdistelyä tapahtuu sekä eri- että samanaikaisille
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin
LisätiedotSGN-4010, Puheenkäsittelyn menetelmät Harjoitus 6, 18. ja
SGN-4010, Puheenkäsittelyn menetelmät Harjoitus 6, 18. ja 21.2.2010 1. (Matlab, 2 pistettä) Vokaalit ja soinnilliset konsonantit ovat lähes jaksollisia ja niillä on äänihuulten värähtelystä johtuva perustaajuus.
LisätiedotSGN-4200 Digitaalinen audio
SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa
LisätiedotMatlab-tietokoneharjoitus
Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,
LisätiedotSignaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö
Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
LisätiedotAnalyysi on helpointa aloittaa painamalla EDIT-painiketta. (Tuotu tiedosto täytyy olla aktiivinen eli valittuna).
1 PRAAT OHJE Yleistä Praat on puheentutkimukseen tarkoitettu ilmainen ohjelma (GNU ohjelma, open source). Se sisältää useita eri analyysimahdollisuuksia, mahdollisuuden määrittää hyvin tarkasti kuvien
LisätiedotSignaalinkäsittely Musiikin sisältöanalyysi Rumpujen nuotinnos Muotoanalyysi Yhteenveto. Lectio praecursoria
Lectio praecursoria Signal Processing Methods for Drum Transcription and Music Structure Analysis (Signaalinkäsittelymenetelmiä rumpujen nuotintamiseen ja musiikin muotoanalyysiin) Jouni Paulus 8.1.2010
LisätiedotPuheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä
Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...
LisätiedotTHE audio feature: MFCC. Mel Frequency Cepstral Coefficients
THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t
LisätiedotLaskuharjoitus 4 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.
Lisätiedotf k = 440 x 2 (k 69)/12 (demoaa yllä Äänen väri Johdanto
Äänen väri vs. viritysjärjestelmät Anssi klap@cs.tut.fi www.cs.tut.fi/~klap Lähdemateriaali: Tuning, Timbre, Spectrum, Scale by William A. Sethares Johdanto Oktaaviesimerkki: perusidea Länsimaisen virityksen
LisätiedotTaajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti
Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia
LisätiedotLaskuharjoitus 2 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,
LisätiedotTU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille!
TU-A1140 - Itsensä tunteminen ja johtaminen Tervetuloa kurssille! Kurssin avaus 5.1. 2017 Eerikki Mäki eerikki.maki@aalto.fi Opiskelijapalautetta aiemmilta kursseilta Oman olemisen ja tietoisten valintojen
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
Lisätiedot5 Akustiikan peruskäsitteitä
Puheen tuottaminen, havaitseminen ja akustiikka / Reijo Aulanko / 2016 2017 14 5 Akustiikan peruskäsitteitä ääni = ilmapartikkelien edestakaista liikettä, "tihentymien ja harventumien" vuorottelua, ilmanpaineen
LisätiedotDEE-53030 Uusiutuvien energiamuotojen työkurssi. 5 op
DEE-53030 Uusiutuvien energiamuotojen työkurssi 5 op DEE-53030 Uusiutuvien energiamuotojen työkurssi Idea: Mittaillaan asioita, joita tarkastellaan teoreettisesti Uusiutuvien sähköenergiateknologioiden
LisätiedotLASKOSTUMISEN HAVAITSEMINEN SAHA-AALLOSSA
Heidi-Maria Lehtonen 1, Jussi Pekonen 2 ja Vesa Välimäki 1 1 Aalto-yliopisto Sähkötekniikan korkeakoulu Signaalinkäsittelyn ja akustiikan laitos PL 13, 76 AALTO heidi-maria.lehtonen@aalto.fi 2 Itsenäinen
LisätiedotSIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
LisätiedotMusiikkipäiväkirjani: Soitetaan instrumentteja (PI1)
Musiikkipäiväkirjani: Soitetaan instrumentteja (PI1) Tehdään erilaisia ääniä arkisilla esineillä (esim. paperi, pöydät, kupit, tikut, pallot), rummuilla tai melodisilla instrumenteilla, ja kuvaillaan ääniä
LisätiedotÅbo Akademi 3.5.2011 klo 12-16. Mietta Lennes mietta.lennes@helsinki.fi. Nykykielten laitos Helsingin yliopisto
Åbo Akademi 3.5.2011 klo 12-16 Mietta Lennes mietta.lennes@helsinki.fi Nykykielten laitos Helsingin yliopisto Praat-puheanalyysiohjelma Mikä on Praat? Mikä on Praat? Praat [Boersma and Weenink, 2010] on
LisätiedotTiistai klo 10-12 Jari Eerola 20.1.2015
Tiistai klo 10-12 Jari Eerola 20.1.2015 } 20.1. Kuvaajatyypit ja ohjelmat Analyysiohjelmista Praat ja Sonic Visualiser Audacity } 27.1. Nuotinnusohjelmista Nuotinnusohjelmista Musescore } Tietokoneavusteinen
LisätiedotLiikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola
Liikehavaintojen estimointi langattomissa lähiverkoissa Diplomityöseminaari Jukka Ahola ESITYKSEN SISÄLTÖ Työn tausta Tavoitteen asettelu Johdanto Liikehavaintojen jakaminen langattomassa mesh-verkossa
LisätiedotT 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi
T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi Johdantoluento (22.1.2008) Nikolaj Tatti ntatti@cc.hut.fi Johdantoluento Kurssijärjestelyt ja vaatimukset. Kurssin sisällöstä. Hyvä esitelmä
LisätiedotAS Automaatio- ja systeemitekniikan projektityöt S09-18 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan
AS-.32 Automaatio- ja systeemitekniikan projektityöt S9-8 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan Joni Silvo Johdanto Tässä työssä tutkitaan rakenteiden kunnonvalvontaan käytettävään langattomaan
LisätiedotInnopaja@koulut iltapäivä 22.5.2012
Innopaja@koulut iltapäivä 22.5.2012 Innoa lukion musiikissa Intelligent på tangenten (S:t Karins) Hauskaa ilman lintuja (Kuusisto) ipodit opetuskäytössä (Kotimäki) ipodit opetuskäytössä (Runko) INNOA LUKION
LisätiedotLaskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
LisätiedotKoesuunnitelma. ViDRoM Virtual Design of Rotating Machines. Raine Viitala
Koesuunnitelma ViDRoM Virtual Design of Rotating Machines Raine Viitala ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat laakerit, kolmikulmaiset
LisätiedotTU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille!
TU-A1140 - Itsensä tunteminen ja johtaminen Tervetuloa kurssille! Kurssin avaus 7.1. 2016 Eerikki Mäki eerikki.maki@aalto.fi Opiskelijapalautetta vuoden 2015 kurssista Kurssi poikkesi todella paljon verrattuna
LisätiedotS09 04 Kohteiden tunnistaminen 3D datasta
AS 0.3200 Automaatio ja systeemitekniikan projektityöt S09 04 Kohteiden tunnistaminen 3D datasta Loppuraportti 22.5.2009 Akseli Korhonen 1. Projektin esittely Projektin tavoitteena oli algoritmin kehittäminen
LisätiedotPSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA
PSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA Jussi Rämö 1, Vesa Välimäki 1 ja Miikka Tikander 2 1 Aalto-yliopisto, Signaalinkäsittelyn ja akustiikan laitos PL 13000, 00076 AALTO
LisätiedotHarjoitus 3 (31.3.2015)
Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
LisätiedotA215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007
Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:
LisätiedotNumeerinen analyysi Harjoitus 3 / Kevät 2017
Numeerinen analyysi Harjoitus 3 / Kevät 2017 Palautus viimeistään perjantaina 17.3. Tehtävä 1: Tarkastellaan funktion f(x) = x evaluoimista välillä x [2.0, 2.3]. Muodosta interpoloiva polynomi p 3 (x),
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS AI-TUTKIJAN URANÄKYMIÄ AJATUSTENLUKUA COMPUTER VISION SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA MUUTTUJIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA
LisätiedotTL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen
TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen
LisätiedotNäkökulmia monimuoto-opetukseen
1 Näkökulmia monimuoto-opetukseen Tietokoneohjelma on kuin runo, se ei valmistu koskaan Bill Gates Aiheita 2 Lähtötason arviointi Tentti ja/tai tentitön vaihtoehto yhdessä Kotitehtävät vs. luokkaharjoitukset
LisätiedotSGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen
SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotKAIKUPEDAALIN VAIKUTUKSET PIANON ÄÄNEEN: ANALYYSI JA SYNTEESI 1 JOHDANTO 2 ÄÄNITYKSET JA SIGNAALIANALYYSI
: ANALYYSI JA SYNTEESI Heidi-Maria Lehtonen, Henri Penttinen, Jukka Rauhala ja Vesa Välimäki Teknillinen korkeakoulu Akustiikan ja äänenkäsittelytekniikan laboratorio PL 3, 21 TKK, Espoo heidi-maria.lehtonen@tkk.fi,
LisätiedotKurssiesite. Rakentamisen tekniikat RAK-C3004
RAK-C3004 Rakentamisen tekniikat Kurssiesite Syksy 2015, periodi I Hannu Hirsi (vastaava opettaja) & Lauri Salokangas & Jouko Pakanen & Johannes Hämeri & Toomla Sander & Markku Ylinen & vierailevat tähtiluennoitsijat
LisätiedotMonikanavaäänen perusteet. Tero Koski
Monikanavaäänen perusteet Tero Koski Lähtökohdat Monikanavaääni tarkoi6aa äänital8ota, jossa on toiste6avia kanavia enemmän kuin kaksi 2.1 ; 3.0 ; 3.1 ; 4.0 ; 4.1 ; 7.2 ; 10.2 ; 22.2 ; Monikanavaääntä
LisätiedotKuulohavainnon perusteet
Kuulohavainnon ärsyke on ääni - mitä ääni on? Kuulohavainnon perusteet - Ääni on ilmanpaineen nopeaa vaihtelua: Tai veden tms. Markku Kilpeläinen Käyttäytymistieteiden laitos, Helsingin yliopisto Värähtelevä
LisätiedotDEE Uusiutuvien energiamuotojen työkurssi. 5 op
DEE-53030 Uusiutuvien energiamuotojen työkurssi 5 op DEE-53030 Uusiutuvien energiamuotojen työkurssi Idea: Mittaillaan asioita, joita tarkastellaan teoreettisesti Uusiutuvien sähköenergiateknologioiden
Lisätiedot1516 mb4 2. jakso. 21, ropposen tilavuus. Mikko Rahikka. Valitse teema Lähetä valokuva STREAM. ILMOITUS Mikko Rahikka 26.
m@hyl.fi 1516 mb4 2. jakso Mikko Rahikka Valitse teema Lähetä valokuva STREAM OPISKELIJAT TIETOJA ILMOITUS Mikko Rahikka 26. marraskuuta Harjoittele kokeeseen Pekan polulla Etusivu Polku http://polku.opetus.tv/
LisätiedotMatlabharjoitustyön ohjausta. ELEC-A3110 Mekaniikka / Sami Kujala
Matlabharjoitustyön ohjausta ELEC-A3110 Mekaniikka / 11.10.2017 Sami Kujala Työn tavoitteet Tiedolliset tavoitteet Tutustua numeerisen laskennan ohjelmistoon (Matlab) Ratkaista fysikaalinen probleema Matlabin
LisätiedotOhjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen
Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.
LisätiedotHARJOITUS 7 SEISOVAT AALLOT TAVOITE
SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi
LisätiedotProjektien suunnittelu ja ohjaus TU-C3010
Projektien suunnittelu ja ohjaus TU-C3010 Kurssin henkilökunta: Vastuuopettaja + opettajat: Jere Lehtinen, Juri Matinheikki, (Karlos Artto) Kurssiassistentit: Ukko Kilpinen Kurssin suorittaminen Kurssin
LisätiedotIdentifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
LisätiedotInfraäänimittaukset. DI Antti Aunio, Aunio Group Oy
Infraäänimittaukset DI Antti Aunio, Aunio Group Oy antti.aunio@aunio.fi Mitä infraääni on? Matalataajuista ilmanpaineen vaihtelua Taajuusalue < 20 Hz Ihmisen kuuloalue on tyypillisesti 20-20 000 Hz Osa
LisätiedotÄänen korkeuden tunnistaminen
T-111.2211 Informaatioverkostot: Studio 4 Maria-Karoliina Tiuraniemi, 50163D mktiuran@cc.hut.fi Äänen korkeuden tunnistaminen Harjoituskierros 2: Vuorovaikutustekniikat 13.4.2011 Tiivistelmä SingStar-laulupelissä
LisätiedotAiheenvalinta ilmoitetaan MyCoursesin keskustelualueella (ei saman yrityksen tarkastelua lähes samasta näkökulmasta) viimeistään tiistaina 27.2.
1 (5) Lopputyö Aiheenvalinta viimeistään ti 27.2. MyCoursesin kyseisellä keskustelualueella Suunnitelma 10 %, palautus viimeistään ma 5.3. Tiimiesitys 15 %, tiistaina 27.3. tai torstaina 29.3. Raportti
LisätiedotTURUN AMMATTIKORKEAKOULU L6010402.7_4h 1(5) TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO 23.8.2011
TURUN AMMATTIKORKEAKOULU L6010402.7_4h 1(5) FYSIIKAN LABORATORION OPISKELIJAN OHJE 1. Työskentelyoikeus Opiskelijalla on oikeus päästä laboratorioon ja työskennellä siellä vain valvojan läsnäollessa. Työskentelyoikeus
LisätiedotT SKJ - TERMEJÄ
T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä
LisätiedotDiskriminanttianalyysi I
Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi
LisätiedotLUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4
LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 tuetusti / vaihtelevasti / hyvin / erinomaisesti vuosiluokka 1 2 3 4 käyttäytyminen Otat muut huomioon ja luot toiminnallasi myönteistä ilmapiiriä.
LisätiedotLaske Laudatur ClassPadilla
Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Lyhyt matematiikka, syksy 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä Opettaja
LisätiedotDynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.
Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotProjektisuunnitelma: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari
Projektisuunnitelma: Vesipistekohtainen veden kulutuksen seuranta, syksy 2015 Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektin tavoite Tämän projektin tavoitteena on kehittää prototyyppi järjestelmästä,
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotHarjoitus 7 : Aikasarja-analyysi (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN
LisätiedotVäliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari
Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy 2015 Mikko Kyllönen Matti Marttinen Vili Tuomisaari Projektin eteneminen Projekti on edennyt syksyn aikana melko vaikeasti. Aikataulujen
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
LisätiedotSpektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
LisätiedotJohdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio
Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka Vfo135 ja Vfp124 Martti Vainio Akustiikka Äänityksen tarkoitus on taltioida paras mahdo!inen signaali! Tärkeimpinä kolme akustista muuttujaa:
LisätiedotTehtävän lisääminen ja tärkeimmät asetukset
Tehtävä Moodlen Tehtävä-aktiviteetti on tarkoitettu erilaisten tehtävien antamiseen verkossa. Tehtävä-aktiviteettia ei ole tarkoitettu ainoastaan tehtävien palautukseen, kuten moni sen sellaiseksi mieltää,
LisätiedotRAKE-vastaanotinsimulaatio. 1. Työn tarkoitus. 2. Teoriaa. 3. Kytkentä. Tietoliikennelaboratorio Versio
OAMK / Tekniikan yksikkö LABORATORIOTYÖOHJE Tietoliikennelaboratorio Versio 15.10.2004 RAKE-vastaanotinsimulaatio 1. Työn tarkoitus Tämän harjoitustyön tarkoituksena on RadioLab-simulointiohjelman avulla
LisätiedotTietorakenteet ja algoritmit syksy Laskuharjoitus 1
Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
LisätiedotHarjoitus 3 (3.4.2014)
Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
LisätiedotTieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan
Mat 2.4177Operaatiotutkimuksenprojektityöseminaari Tieverkonkunnonstokastinenennustemallija sensoveltaminenriskienhallintaan Väliraportti 3/4/2009 Toimeksiantajat: PöyryInfraOy(PekkaMild) Tiehallinto(VesaMännistö)
Lisätiedot4. Tietokoneharjoitukset
4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume
LisätiedotTU-A Itsensä tunteminen ja johtaminen Tervetuloa kurssille!
TU-A1140 - Itsensä tunteminen ja johtaminen Tervetuloa kurssille! Kurssin avaus 4.1. 2018 Eerikki Mäki eerikki.maki@aalto.fi Agenda 4.1.2018 ü Kurssin henkilökunta ja osallistujat ü Itsensä tuntemisesta
LisätiedotMATTI SIRONEN PUHEEN PERUSTAAJUUDEN ESTIMOINTI
I MATTI SIRONEN PUHEEN PERUSTAAJUUDEN ESTIMOINTI Kandidaatintyö Tarkastaja: Konsta Koppinen II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan koulutusohjelma SIRONEN, MATTI: Puheen perustaajuuden
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan
LisätiedotKurssijärjestelyt. CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos
Kurssijärjestelyt CS-1180 Verkkojulkaisemisen perusteet (5 op) Hanna Hämäläinen Informaatioverkostot / Mediatekniikan laitos (Alkuperäiset luentokalvot: Markku Laine) 10. Tammikuuta 2017 Luennon sisältö
LisätiedotAineistokoko ja voima-analyysi
TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla
LisätiedotLisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
LisätiedotTietotekniikan laitoksen uusi linja
Tietotekniikan laitoksen uusi linja Tietotekniikan laitos 2011- Yhteisen rungon ympärille liittyvät oksina Tietotekniikan laitoksen perinteiset ja uudet linjat Haluatko harrastuksiisi liittyvän ammatin?
LisätiedotRatkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
LisätiedotKäy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
LisätiedotHARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla
Tämä työohje on kirjoitettu ESR-projektissa Mikroanturitekniikan osaamisen kehittäminen Itä-Suomen lääninhallitus, 2007, 86268 HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla Tarvittavat laitteet: 2 kpl
LisätiedotHRTFN MITTAAMINEN SULJETULLA VAI AVOIMELLA KORVA- KÄYTÄVÄLLÄ? 1 JOHDANTO 2 METODIT
SULJETULLA VAI AVOIMELLA KORVA- KÄYTÄVÄLLÄ? Marko Hiipakka, Ville Pulkki Aalto-yliopisto Sähkötekniikan korkeakoulu Signaalinkäsittelyn ja akustiikan laitos PL 1, 7 AALTO Marko.Hiipakka@aalto.fi, Ville.Pulkki@aalto.fi
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
Lisätiedotpikaperusteet 3.3. versio
pikaperusteet 3.3. versio IT-palvelut / Hannele Rajaniemi www.jyu.fi/itp/moodle-ohjeet moodle-support@jyu.fi materiaalin koonnut: Hannele Rajaniemi Alustava sisältö Rakennat omaa Moodle kurssiasi, jossa
LisätiedotS Ihminen ja tietoliikennetekniikka. Syksy 2005, laskari 1
Syksy 2005, laskari 1 Sisältö Tarvekartoituksen periaatteet Tutkimusmenetelmät Raportin laatiminen Tehtävä Kirjaa ylös: mitä tarvekartoituksen menetelmiä tunnet? Mitä hyötyjä tai haasteita tiedät niihin
LisätiedotOhjelmistoprosessit ja ohjelmistojen laatu Ohjelmistoprosessit ja ohjelmistojen laatu (4op)
581361 Ohjelmistoprosessit ja ohjelmistojen laatu (4op) Ohjelmistojärjestelmien syventävien opintojen kurssi Myös ohjelmistotekniikan profiilin pakollinen kurssi eli ohjelmistotekniikka-aiheisen gradun
LisätiedotDatatähti 2019 alku. task type time limit memory limit. A Kolikot standard 1.00 s 512 MB. B Leimasin standard 1.00 s 512 MB
Datatähti 2019 alku task type time limit memory limit A Kolikot standard 1.00 s 512 MB B Leimasin standard 1.00 s 512 MB C Taulukko standard 1.00 s 512 MB D Ruudukko standard 1.00 s 512 MB E Sanalista
LisätiedotHarjoitukset 5 : Differences-in-Differences - mallit (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 5 : Differences-in-Differences - mallit (Palautus 14.3.2017) Tämän harjoituskerran
LisätiedotS Signaalit ja järjestelmät
dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä
Lisätiedot