Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme.

Koko: px
Aloita esitys sivulta:

Download "Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme."

Transkriptio

1 Ionisoiva säteily Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme. Ionisoivan säteilyn ominaisuuksia ja vaikutuksia on vaikea hahmottaa arkipäivän kokemusten perusteella, sillä säteilyä ei voi aistein havaita.

2 Ionisoivasta säteilystä lyhyesti SÄTEILY VAURIOITTAA SOLUJA Elävissä soluissa ionisaatio voi vaurioittaa solujen perimäainesta, DNAmolekyyliä. Pahimmassa tapauksessa vauriot johtavat syöpään tai muuhun terveyshaittaan. Aineen perusosa on atomi. Atomiydin koostuu protoneista ja neutroneista. Protonien määrä on tietyllä alkuaineella aina sama. Neutronien lukumäärä saattaa vaihdella, jolloin puhutaan alkuaineen eri isotoopeista. Atomin ydin voi olla virittyneessä tilassa. Usein tällaisessa ytimessä on liian paljon tai liian vähän neutroneja. Aineet, joissa on virittyneitä ytimiä, ovat radioaktiivisia. Lähes jokaisella alkuaineella on sekä pysyviä että radioaktiivisia isotooppeja. Isotooppi ilmaistaan aineen lyhenteen perässä olevalla massaluvulla, esimerkiksi strontium -90. Massaluku on ytimessä olevien protonien ja neutronien lukumäärien summa. Ytimen viritys purkautuu itsestään ennemmin tai myöhemmin, jolloin ytimestä irtoaa jokin hiukkanen sekä energiaa. Tällöin aine säteilee. Alkuperäistä atomia, nuklidia, sanotaan emonuklidiksi ja syntyvää uutta nuklidia tytärnuklidiksi. Radioaktiiviset isotoopit käyttäytyvät luonnossa samoin kuin saman aineen pysyvät isotoopit. Molemmat kulkeutuvat esimerkiksi luonnon ravintoketjuissa ja elimistössä samalla tavalla. Ionisoiva säteily on säteilyä, jolla on riittävästi energiaa irrottamaan säteilyn kohteeksi joutuvan aineen atomeista elektroneja tai rikkomaan aineen molekyylejä. Radioaktiiviset aineet lähettävät ionisoivaa säteilyä. Ionisoivaa säteilyä tuottavat myös muun muassa röntgenlaitteet. Alfa-, beeta- ja gammasäteily Alfa- ja beetasäteily ovat hiukkassäteilyä. Atomin ytimestä lähtee suurella nopeudella alfa- tai beetahiukkanen. Alfahiukkanen (α) muodostuu kahdesta protonista ja kahdesta neutronista. Alfahajoaminen on yleistä raskailla nuklideilla. Luonnossa esiintyvät uraani ja torium ovat alfasäteilijöitä. Beetahiukkaset voivat olla elektroneja tai positroneja. Elektronit ovat negatiivisesti varautuneita (β ) ja positronit positiivisesti varautuneita (β+). Esimerkkejä beetasäteilijöistä ovat tritium, hiili-14 ja strontium-90. Alfahiukkaset ovat raskaampia kuin beetahiukkaset. Alfahiukkanen ei pysty läpäisemään ihmisen Radioaktiivinen hajoaminen Alfa- ja beetasäteily ovat hiukkassäteilyä, kun taas gammasäteily on sähkömagneettista säteilyä. 2

3 Alfa- ja beetasäteily pysähtyvät helposti väliaineeseen, mutta gammasäteilyllä on suuri läpäisykyky. ihoa tai paperiarkkia. Alfasäteily voi olla vaarallista vain, jos alfasäteilyä lähettäviä radioaktiivisia aineita joutuu elimistöön esimerkiksi hengitysilman mukana. Beetahiukkaset ovat läpäisykykyisempiä ja pystyvät tunkeutumaan esimerkiksi ihoon. Beetasäteilyä lähettävät aineet ovat vaarallisia iholla tai päästessään elimistöön. Alfa- tai beetahajoamisessa syntyvä tytärnuklidi on usein virittynyt, ja viritystilat purkautuvat gammasäteilynä. Gammasäteily ei ole hiukkassäteilyä. Sitä voi kuvata energiapakkauksina, joita virittynyt ydin lähettää. Gammasäteily on sähkömagneettista aaltoliikettä. Gammasäteily on yleensä hyvin läpitunkevaa. Ulkoiselta gammasäteilyltä on vaikeampi suojautua kuin muulta säteilyltä. Gammasäteilyn vaimentamiseksi tarvitaan paksu kerros betonia, terästä tai lyijyä. On myös gammasäteilyä, jonka energia on niin pieni, että sen vaimentamiseen riittää noin millimetrin paksuinen lyijykerros. Neutronit Neutroneja vapautuu esimerkiksi uraaniytimen itsestään tapahtuvan halkeamisen (spontaani fissio) tai neutronilähteessä tapahtuvan reaktion seurauksena. Myös avaruudesta tulevassa kosmisessa säteilyssä on runsaasti neutroneja, jotka aiheuttavat suurimman osan korkealla lentävän lentohenkilöstön ja -matkustajien säteilyannoksesta. Ydinvoimalan reaktorissa olevan ydinpolttoaineen uraani-235:n ytimet halkeavat sekä spontaanin fission että fissiossa vapautuneiden hidastuneiden neutronien aiheuttamien uusien fissioiden vaikutuksesta. Koska jokaisessa fissiossa vapautuu useita neutroneja, syntyy ydinpolttoaineeseen lopulta ketjureaktio. Fissiossa vapautuu myös paljon energiaa. Ydinpolttoaineeseen syntyy runsaasti uraanin halkeamistuotteita, jotka ovat radioaktiivisia. Neutronilähteiltä suojautumiseen käytetään sekä kevyitä että raskaita alkuaineita sisältäviä materiaaleja. Röntgensäteily Röntgensäteily on sähkömagneettista säteilyä, jota tuotetaan röntgenputkessa. Röntgenputki on tyhjiöputki, jossa on hehkukatodi ja hyvin lämpöä kestävästä aineesta valmistettu anodi. Katodin ja anodin välille kytketään jännite, joka voi olla kv. Jännitteen vaikutuksesta hehkukatodilta irtoa- 3

4 Radioaktiivisuus vähenee puoleen alkuperäisestä kullekin aineelle ominaisella nopeudella. vat elektronit liikkuvat suurella nopeudella kohti anodia ja lopulta törmäävät siihen. Elektronien nopeuden pienetessä osa elektronien liike-energiasta muuttuu sähkömagneettiseksi säteilyksi, jota kutsutaan röntgensäteilyksi. Aktiivisuus Radioaktiivisen aineen aktiivisuus ilmaisee, kuinka monta ydinmuutosta kyseisessä ainemäärässä tapahtuu yhden sekunnin aikana. Aktiivisuuden yksikkö on becquerel (Bq). Yksi becquerel tarkoittaa, että radioaktiivisessa aineessa tapahtuu yksi ydinmuutos (ytimen virittyneen tilan laukeaminen) sekunnissa. Mitä enemmän ydinmuutoksia tapahtuu, sitä enemmän syntyy säteilyä. Becquerel on hyvin pieni yksikkö. Tästä syystä käytetään myös yksiköitä kilobecquerel (kbq), joka on 1000 Bq, ja megabecquerel (MBq), joka on Bq. Aktiivisuus ilmaistaan usein aktiivisuutena paino- tai tilavuusyksikköä kohti eli aktiivisuuspitoisuutena. Yksikkönä on becquereliä litrassa (Bq/l), becquereliä kilossa (Bq/kg) tai becquereliä kuutiometrissä (Bq/m 3 ). Esimerkiksi talousveden radonpitoisuus 400 Bq/l tarkoittaa, että litrassa tätä vettä tapahtuu 400 radonatomin hajoamista sekunnissa. Sisäinen säteilyannos aiheutuu kehossa olevista radioaktiivisista aineista. Ulkoinen säteilyannos aiheutuu kehon ulkopuolella olevista säteilylähteistä. 4

5 Puoliintumisaika Radioaktiivisen aineen puoliintumisaika tarkoittaa sitä aikaa, jonka kuluessa aineen aktiivisuus vähenee puoleen alkuperäisestä. Jos aineen puoliintumisaika on kaksi vuotta ja alkuperäinen aktiivisuus becquereliä, niin aktiivisuus on kahden vuoden kuluttua 500 becquereliä. Edelleen kahden vuoden kuluttua aktiivisuus on 250 becquereliä jne. Radioaktiivisten aineiden puoliintumisajat vaihtelevat suuresti. Lyhytikäisten aineiden puoliintumisajat ovat sekunteja tai sekunnin osia. Pitkäikäisimmät puoliintuvat vasta miljoonien vuosien kuluessa. Esimerkiksi krypton-94 puoliintuu 1,4 sekunnissa. Jodi- 131 puoliintuu noin kahdeksassa päi vässä. Cesium-137 puoliintuu 30 vuodessa. Ydinenergian tuotannossa tarvittava uraani-235 puoliintuu vasta 700 miljoonassa vuodessa. Puoliintumisajan pituus ei kerro, kuinka vaarallista aine on. Biologinen puoliintumisaika Radioaktiiviset aineet poistuvat ihmisen elimistöstä yleensä nopeammin kuin kyseisen radionuklidin puoliintumisajan perusteella voisi päätellä. Sen lisäksi että radioaktiivisten aineiden määrä pienenee aineiden hajotessa, niitä poistuu elimistöstä myös biologisten toimintojen vaikutuksesta. Esimerkiksi cesium-137:n fysikaalinen puoliintumisaika on 30 vuotta, mutta sen biologinen puoliintumisaika on vain 3 kuukautta. ESIMERKKEJÄ AKTIIVISUUDESTA Pienestä järvestä pyydetyn petokalan aktiivisuus on 1000 becquereliä. Kala painaa kaksi kiloa. Sen aktiivisuuspitoisuus on 1000 becquereliä kahta kilogrammaa kohti eli 500 becquereliä kilogrammaa kohti (Bq/kg). Tällöin sanotaan, että kalan radioaktiivisten aineiden pitoisuus on 500 Bq/kg. Ihmisen kehossa on normaalisti noin 5000 becquereliä kalium 40:ää. 70 kiloa painavassa henkilössä on siis radioaktiivista kalium-40 -isotooppia keskimäärin noin 70 Bq/kg. ESIMERKKEJÄ ANNOKSISTA Suomalaisen keskimääräinen säteilyannos vuodessa on noin 3,7 millisievertiä. Neljän tunnin lentomatka kymmenen kilometrin korkeudessa aiheuttaa noin 20 mikrosievertin (0,020 millisievertiä) säteilyannoksen. Annoksen aiheuttaa kosminen säteily, joka on voimakkaampaa ilmakehän ylemmissä kerroksissa. Keuhkojen röntgenkuvaus aiheuttaa keskimäärin noin 0,1 millisievertin annoksen. Tämä vastaa luonnon taustasäteilystä aiheutuvaa annosta noin 30 päivän aikana. Tshernobylin ydinvoimalaitosonnettomuuden arvioidaan tuottavan suomalaisille keskimäärin kahden millisievertin kokonaisannoksen. Säteilyannos kertyy ulkoisesta säteilystä ja ravinnon kautta tulleiden radioaktiivisten aineiden säteilystä. Omakotitalon sisäilmassa voi olla radonia jopa becquereliä kuutiota kohti. Näin radonpitoisessa talossa oleskelun lasketaan aiheuttavan vuodessa noin 200 millisievertin säteilyannoksen. ESIMERKKEJÄ ANNOSNOPEUDESTA Suomen taustasäteily vaihtelee välillä 0,04 0,30 mikrosievertiä tunnissa (µsv/h). Alueellinen vaihtelu annosnopeuksissa johtuu uraanipitoisuuseroista kallio- ja maaperässä. Lumi- ja jääkerros vaimentaa maaperästä tulevaa säteilyä. Annosnopeus lentokoneessa kymmenen kilometrin korkeudessa on noin viisi mikrosievertiä tunnissa. Esimerkiksi kahdeksan tunnin lento aiheuttaa 40 mikrosievertin (0,040 millisievertin) säteilyannoksen. Isotooppihoitoa saanut potilas pääsee kotiin, kun metrin päässä mitattu annosnopeus alittaa 30 mikrosievertiä tunnissa. Tshernobylin onnettomuuden aiheuttama annosnopeus Suomessa oli suurimmillaan viisi mikrosievertiä tunnissa (0,005 millisievertiä tunnissa). Tämä on noin kertaa luonnon normaalin taustasäteilyn annosnopeus. 5

6 Säteilyannos ja annosnopeus Säteilyannos on suure, jolla kuvataan ihmiseen kohdistuvan säteilyn haitallisia vaikutuksia. Säteilyannoksen yksikkö on sievert (Sv). Päinvastoin kuin aktiivisuuden yksikkö becquerel, sievert on hyvin suuri yksikkö. Siksi annoksista puhuttaessa käytetään yleensä joko millisievertejä (msv) tai mikrosievertejä (µsv). Yksi sievert on 1000 millisievertiä eli mikrosievertiä. Säteilyannosta kutsutaan usein lyhyesti annokseksi. Esimerkiksi keuhkojen röntgentutkimuksesta aiheutuu noin 0,1 msv:n annos ja nenän sivuonteloiden röntgentutkimuksesta noin 0,03 msv:n annos. Ulkoisella säteilyannoksella tarkoitetaan kehon ulkopuolella olevasta säteilylähteestä aiheutuvaa annosta ja sisäisellä annoksella kehossa olevista radioaktiivisista aineista aiheutuvaa annosta. Sisäisen säteilyannoksen suuruuteen vaikuttavat radioaktiivisen aineen määrä ja sen lähettämän säteilyn ominaisuudet. Lisäksi annokseen vaikuttaa se, mihin elimiin tai kudoksiin radioaktiivinen aine kulkeutuu. Annosnopeus ilmaisee, kuinka suuren säteilyannoksen ihminen saa tietyssä ajassa. Annosnopeuden yksikkö on sievertiä tunnissa (Sv/h). Yleensä on järkevää käyttää millitai mikrosievertejä eli puhua yksiköillä millisievertiä tunnissa (msv/h) tai mikrosievertiä tunnissa (µsv/ h). Yksi sievert tunnissa on siis millisievertiä tunnissa eli mikrosievertiä tunnissa. Suomalaisen keskimääräinen säteilyannos eri säteilylähteistä on noin 3,7 msv vuodessa. Tästä noin 2 msv aiheutuu sisäilman radonista. Kehossa olevista luonnon radioaktiivisista aineista aiheutuu noin 0,3 msv:n ja röntgentutkimuksista noin 0,5 msv:n vuosiannos. Tshernobylin laskeumasta arvioidaan aiheutuvan noin 0,04 msv:n säteilyannos vuodessa. Annosnopeutta käytetään yleensä kuvaamaan, kuinka vaarallista on oleskelu tietyssä paikassa tietynlaisen säteilyn kohteena. Jos annosnopeus on suuri, lyhyessäkin ajassa saa suuren säteilyannoksen. Taustasäteilystä johtuva annosnopeus vaihtelee Suomessa välillä 0,04 0,30 µsv/h. Becquerelistä sievertiin Jos ruoan mukana elimistöön joutuu Bq cesium-137:ää, aiheutuu siitä aikuiselle yhden msv:n säteilyannos. Tämä suhde pätee vain cesium-137:lle, ei muille radioaktiivisille aineille. Esimerkiksi poronlihan cesium pitoisuus on keskimäärin 500 Bq/kg. Ateriasta, johon sisältyy 500 grammaa poronlihaa, aiheutuu noin 0,004 msv:n (4 mikrosievertin) sisäinen säteilyannos. Jos ilman jodi-131 -pitoisuus on Bq/m 3, siitä aiheutuu 1 msv:n annos hengitettäessä sitä noin kymmenen tunnin ajan. Ulkoisen säteilyannoksen aiheuttajia ovat maaperä, rakennukset, avaruudesta tuleva säteily sekä keinotekoiset säteilylähteet. 6

7 Luonnonsäteily ja keinotekoinen säteily Luonnossa on aina esiintynyt ja tulee esiintymään säteilyä riippumatta ihmisen toimista. Suomalaiset saavat suurimman säteilyannoksen huoneilman radonista. Joka paikassa säteilee jonkin verran. Maankamara jalkojemme alla ja betoni- ja tiiliseinät ympärillämme säteilevät. Avaruudesta peräisin olevalle säteilylle joudumme alttiiksi kaikkialla lentokoneessa enemmän kuin maan pinnalla. Me myös syömme, juomme ja hengitämme radioaktiivisia aineita. Elinympäristöömme on joutunut myös ihmisen tuottamia (keinotekoisia) radioaktiivisia aineita mm. ilmakehässä tehdyistä ydinkokeista ja Tshernobylin onnettomuudesta. Luonnossa esiintyvän ionisoivan säteilyn lisäksi ionisoivaa säteilyä voidaan synnyttää myös sähköisillä koneilla, kuten hiukkaskiihdyttimillä ja röntgenkoneilla. Hiukkaskiihdyttimillä ja ydinreaktoreilla voidaan valmistaa useita radionuklideja, joita ei esiinny luonnossa. Tällaista koneiden synnyttämää ja ihmisen valmistamien radionuklidien aiheuttamaa säteilyä nimitetään keinotekoiseksi säteilyksi. TERMIT TUTUIKSI Radioaktiivisuus Radioaktiivisten aineiden atomien ydin on virittyneessä tilassa. Ytimissä on liian paljon tai vähän neutroneja. Viritys yleensä laukeaa, jolloin aine säteilee. Säteily Radioaktiiviset aineet säteilevät ionisoivaa säteilyä, joka on terveydelle vaarallista. Eri säteilylajeja ovat alfa-, beeta-, gamma- ja neutronisäteily. Aktiivisuus Aktiivisuus kertoo säteilyn määrän. Sen yksikkö on becquerel (Bq). Becquerel on hyvin pieni yksikkö. Yksi becquerel tarkoittaa, että radioaktiivisessa aineessa tapahtuu yksi hajoaminen sekunnissa. Mitä enemmän hajoamisia tapahtuu, sitä enemmän aine säteilee. Aktiivisuuspitoisuus ilmaisee, kuinka paljon säteilyä on paino- tai tilavuusyksikköä kohti. Säteilyannos Säteilyannos kuvaa säteilyn haitallisia vaikutuksia ihmiseen. Säteilyannoksen yksikkö on sievert (Sv). Sievert on hyvin suuri yksikkö, ja yleensä yksikkönä käytetäänkin millisievertiä (0,001 Sv) tai mikrosievertiä (0, Sv). Suomalaisen vuotuinen säteilyannos on noin 3,7 millisievertiä (0,0037 Sv). Annosnopeus Annosnopeus ilmaisee, kuinka suuren säteilyannoksen ihminen saa tietyssä ajassa. Yksikkönä on säteilyannos/aika eli sievertiä tunnissa (Sv/h). Yleensä yksikkönä käytetään millisievertiä tunnissa (msv/h) tai mikrosievertiä tunnissa (µsv/h). 7

8 Lisätietoa Katsaukset Ionisoimaton säteily ja ihminen (Joulukuu 2002) Radioaktiivinen laskeuma ja ravinto (Syyskuu 2004) Ihmisen radioaktiivisuus (Toukokuu 2003) Säteily ja ydinturvallisuus -kirjasarja Säteily ja sen havaitseminen Säteily ympäristössä Säteilyn käyttö Säteilyn terveysvaikutukset Ydinturvallisuus Huhtikuu 2005 Säteilyturvakeskus PL 14, Helsinki puh. (09)

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI 1 Sisällysluettelo 1. Luonnossa esiintyvä radioaktiivinen säteily... 2 1.1. Alfasäteily... 2 1.2. Beetasäteily... 3 1.3. Gammasäteily... 3 2. Radioaktiivisen

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA. Ihmisen radioaktiivisuus. Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority

SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA. Ihmisen radioaktiivisuus. Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA Ihmisen radioaktiivisuus Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority Ihmisen radioaktiivisuus Jokaisessa ihmisessä on radioaktiivisia

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016 Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min).

Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min). TYÖ 66. SÄTEILYLÄHTEIDEN VERTAILU Tehtävä Välineet Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min). Radioaktiiviset säteilylähteet: mineraalinäytteet (330719), Strontium-90

Lisätiedot

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson Säteilyannokset ja säteilyn vaimeneminen Tapio Hansson Ionisoiva säteily Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä.

Lisätiedot

ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS

ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS Maarit Muikku Suomen atomiteknillisen seuran vuosikokous 14.2.2008 RADIATION AND NUCLEAR SAFETY AUTHORITY Suomalaisten keskimääräinen säteilyannos

Lisätiedot

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm)

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm) SÄTEILY YTIMET JA RADIOAKTIIVISUUS ATOMI -atomin halkaisija 10-10 m -ytimen halkaisija 10-14 m ATOMIN OSAT: 1) YDIN - protoneja (p) ja neutroneja (n) 2) ELEKTRONIVERHO - elektroneja (e - ) - protonit ja

Lisätiedot

SÄTEILYTURVAKESKUS. Säteily kuuluu ympäristöön

SÄTEILYTURVAKESKUS. Säteily kuuluu ympäristöön Säteily kuuluu ympäristöön Mitä säteily on? Säteilyä on kahdenlaista Ionisoivaa ja ionisoimatonta. Säteily voi toisaalta olla joko sähkömagneettista aaltoliikettä tai hiukkassäteilyä. Kuva: STUK Säteily

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

Ydinfysiikka lääketieteellisissä sovelluksissa

Ydinfysiikka lääketieteellisissä sovelluksissa Ydinfysiikka lääketieteellisissä sovelluksissa Ari Virtanen Professori Jyväskylän yliopisto Fysiikan laitos/kiihdytinlaboratorio ari.j.virtanen@jyu.fi Sisältö Alkutaival Sädehoito Radiolääkkeet Terapia

Lisätiedot

55 RADIOAKTIIVISUUS JA SÄTEILY

55 RADIOAKTIIVISUUS JA SÄTEILY 55 RADIOAKTIIVISUUS JA SÄTEILY 55.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina (ytimen

Lisätiedot

A Z X. Ydin ja isotoopit

A Z X. Ydin ja isotoopit Ydinfysiikkaa Ydin ja isotoopit A Z X N Ytimet koostuvat protoneista (+) ja neutroneista (0): nukleonit (Huom! nuklidi= tietty ydinlaji ) Ydin pysyy kasassa, koska vahvan vuorovaikutuksen aiheuttama vetävä

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Säteilyn historia ja tulevaisuus

Säteilyn historia ja tulevaisuus Säteilyn historia ja tulevaisuus 1. Mistä Maassa oleva uraani on peräisin? 2. Kuka havaitsi röntgensäteilyn ensimmäisenä ja millä nimellä hän sitä kutsui? 3. Miten alfa- ja beetasäteily löydettiin? Copyright

Lisätiedot

Soklin radiologinen perustila

Soklin radiologinen perustila Soklin radiologinen perustila Tämä powerpoint esitys on kooste Dina Solatien, Raimo Mustosen ja Ari Pekka Leppäsen Savukoskella 12.1.2010 pitämistä esityksistä. Muutamissa kohdissa 12.1. esitettyjä tutkimustuloksia

Lisätiedot

Ionisoiva Säteily Koe-eläintöissä. FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto

Ionisoiva Säteily Koe-eläintöissä. FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto Ionisoiva Säteily Koe-eläintöissä FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto Sisältö Mitä ionisoiva säteily on Säteilyn käytön valvonta Työturvallisuus säteilytyössä

Lisätiedot

- Pyri kirjoittamaan kaikki vastauksesi tenttipaperiin. Mikäli vastaustila ei riitä, jatka konseptilla

- Pyri kirjoittamaan kaikki vastauksesi tenttipaperiin. Mikäli vastaustila ei riitä, jatka konseptilla LUT School of Energy Systems Ydintekniikka BH30A0600 SÄTEILYSUOJELU Tentti 26.1.2016 Nimi: Opiskelijanumero: Rastita haluamasi vaihtoehto/vaihtoehdot: Suoritan pelkän kurssin Tee tehtävät A1 - A4 ja B5

Lisätiedot

Radon aiheuttaa keuhkosyöpää

Radon aiheuttaa keuhkosyöpää 86 radonin hajoamisen seurauksena muodostuneet tytärytimet ovat kuitenkin haitallisia, koska ne ovat kiinteitä aineita ja voivat kulkeutua pölyhiukkasten mukana ihmisen keuhkoihin. Talon alla oleva maaperä

Lisätiedot

Säteilyannokset ja säteilyn vaimeneminen

Säteilyannokset ja säteilyn vaimeneminen Säteilyannokset ja säteilyn vaimeneminen Tapio Hansson 26. lokakuuta 2016 Säteilyannos Ihmisen saamaa säteilyannosta voidaan tutkia kahdella tavalla. Absorboitunut annos kuvaa absoluuttista energiamäärää,

Lisätiedot

YMPÄRISTÖN LUONNOLLINEN RADIOAKTIIVISUUS SUOMESSA professori Jukka Lehto Radiokemian laboratorio Helsingin yliopisto SISÄLTÖ Säteilyn lähteet Radioaktiivisuuden lähteet Suomessa Säteilyn terveysvaikutukset

Lisätiedot

Säteilyn aiheuttamat riskit vedenlaadulle

Säteilyn aiheuttamat riskit vedenlaadulle Säteilyn aiheuttamat riskit vedenlaadulle Turvallista ja laadukasta talousvettä! seminaari 27.11.2012 Kaisa Vaaramaa Esitelmän sisältö 1. JOHDANTO 2. LUONNOLLINEN RADIOAKTIIVISUUS 3. KEINOTEKOINEN RADIOAKTIIVISUUS

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina

Lisätiedot

Sisäilma, juomavesi ja ionisoiva säteily

Sisäilma, juomavesi ja ionisoiva säteily Sisäilma, juomavesi ja ionisoiva säteily Ajankohtaista laboratoriorintamalla 10.10.2012 Esitelmän sisältö 1. JOHDANTO 2. TÄRKEIMMÄT SISÄILMAN JA JUOMAVEDEN SÄTEILYANNOKSEN AIHEUTTAJAT 3. SISÄILMAN RADON

Lisätiedot

Väliraportin liitetiedostot

Väliraportin liitetiedostot 1 (21) Talvivaaran ympäristön Sisältö LIITE 1. Radiologisia suureita ja yksiköitä sekä yleistä tietoa luonnon radioaktiivisuudesta... 2 LIITE 2. Analysoidut näytteet 2010... 5 LIITE 3. Gammaspektrometristen

Lisätiedot

Radioaktiivisten aineiden valvonta talousvedessä

Radioaktiivisten aineiden valvonta talousvedessä Radioaktiivisten aineiden valvonta talousvedessä 3.11.2016 Ympäristöterveyspäivät, 2.-3.11.2016, Tampere Esitelmän sisältö 1. Johdanto 2. Luonnollinen radioaktiivisuus juomavedessä 3. Talousvedestä aiheutuva

Lisätiedot

RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUS

RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUS OHJE ST 12.2 / 17.12.2010 RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUS 1 YLEISTÄ 3 2 RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUTTA RAJOITETAAN TOIMENPIDEARVOILLA 3 3 TOIMENPIDEARVON YLITTYMISTÄ

Lisätiedot

Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Roy Pöllänen, Anne Weltner, Tarja K. Ikäheimonen, Olavi Pukkila, Wendla Paile, Jorma Sandberg, Heidi Nyberg, Olli J. Marttila, Jarmo

Lisätiedot

Hyvä tietää säteilystä

Hyvä tietää säteilystä Hyvä tietää säteilystä Sisällysluettelo Säteily on energiaa ja hiukkasia... 3 Ionisoiva säteily... 5 Hiukkassäteily... 5 Sähkömagneettinen säteily... 6 Ionisoimaton säteily... 6 Säteilyn käsitteet, yksiköt

Lisätiedot

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1 FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko 19.12.2012, klo 10-11, LS1 Isotooppilääketiede Radioaktiivisuus Radioaktiivisuuden yksiköt Radiolääkkeet Isotooppien ja radiolääkkeiden valmistus 99m

Lisätiedot

S Ä T E I LY T U R V A L L I S U U S K O U L U T U S J U H A P E L T O N E N / J U H A. P E L T O N E H U S.

S Ä T E I LY T U R V A L L I S U U S K O U L U T U S J U H A P E L T O N E N / J U H A. P E L T O N E H U S. S Ä T E I LY T U R V A L L I S U U S K O U L U T U S 1 4. 9. 2 0 1 7 J U H A P E L T O N E N / J U H A. P E L T O N E N @ H U S. F I YMPÄRISTÖN SÄTEILY SUOMESSA Suomalaisten keskimääräinen vuosittainen

Lisätiedot

Anssi Haapanen HYVINKÄÄN KAUPUNGIN JA RIIHIMÄEN SEUDUN TERVEYSKESKUKSEN KUNTAYHTYMÄN RADONTALKOIDEN SEURANTA

Anssi Haapanen HYVINKÄÄN KAUPUNGIN JA RIIHIMÄEN SEUDUN TERVEYSKESKUKSEN KUNTAYHTYMÄN RADONTALKOIDEN SEURANTA Tutkimuksia ja selvityksiä 12/ 2008 Research Reports 12/2008 Anssi Haapanen HYVINKÄÄN KAUPUNGIN JA RIIHIMÄEN SEUDUN TERVEYSKESKUKSEN KUNTAYHTYMÄN RADONTALKOIDEN SEURANTA Kuopio 2008 1 Julkaisija: Julkaisun

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan.

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan. Fysiikka 1 Etäkurssi Tervetuloa Vantaan aikuislukion fysiikan ainoalle etäkurssille. Kurssikirjana on WSOY:n Lukion fysiikka sarjan Vuorovaikutus, mutta mikä tahansa lukion fysiikan ensimmäisen kurssin

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Radioaktiivisen säteilyn vaikutus

Radioaktiivisen säteilyn vaikutus TAMPEREEN TEKNILLINEN YLIOPISTO Sähkömagnetiikan laitos SMG-4050 Energian varastointi ja uudet energialähteet Ryhmä 9: Radioaktiivisen säteilyn vaikutus Sirke Lahtinen Tuukka Ahonen Petri Hannuksela Timo

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Säteily on aaltoja ja hiukkasia

Säteily on aaltoja ja hiukkasia BIOS 3 jakso 3 Säteily on aaltoja ja hiukkasia Auringosta tuleva valo- ja lämpösäteily ylläpitää elämää maapallolla Ravintoketjujen tuottajat sitovat auringon valoenergiaa kemialliseksi energiaksi fotosynteesissä

Lisätiedot

Radioaktiivinen hajoaminen

Radioaktiivinen hajoaminen radahaj2.nb 1 Radioaktiivinen hajoaminen Radioaktiivinen hajoaminen on ilmiö, jossa aktivoitunut, epästabiili atomiydin vapauttaa energiaansa a-, b- tai g-säteilyn kautta. Hiukkassäteilyn eli a- ja b-säteilyn

Lisätiedot

Soklin kaivoshankkeen radiologinen perustilaselvitys

Soklin kaivoshankkeen radiologinen perustilaselvitys Soklin kaivoshankkeen radiologinen perustilaselvitys Säteilyilta Savukoskella 12.1.2010 Dina Solatie STUK-Säteilyturvakeskus Pohjois-Suomen aluelaboratorio RADIATION AND NUCLEAR SAFETY AUTHORITY Sisältö

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu positiivisesti varautuneista protoneista ja neutraaleista neutroneista. Samalla alkuaineella on aina

Lisätiedot

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja.

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja. VII RADIONUKLIDIT Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: primääriset luonnon radionuklidit sekundääriset luonnon radionuklidit kosmogeeniset radionuklidit keinotekoiset

Lisätiedot

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS 99 7 SÄTEILYN KÄYTTÖ Radioaktiiviset aineet ja ionisoiva säteily kuuluvat ihmisen elinympäristöön. Haittavaikutuksista huolimatta säteilyä käytetään myös hyödyksi. Suomessa säteilyn käyttö voidaan jakaa

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

SISÄLLYSLUETTELO 1. JOHDANTO 1 2. URAANIN LOUHINTA 2 3. SÄTEILYTURVAN PERIAATTEITA 2 4. RADIOAKTIIVISUUS JA SÄTEILY 3

SISÄLLYSLUETTELO 1. JOHDANTO 1 2. URAANIN LOUHINTA 2 3. SÄTEILYTURVAN PERIAATTEITA 2 4. RADIOAKTIIVISUUS JA SÄTEILY 3 SISÄLLYSLUETTELO 1. JOHDANTO 1 2. URAANIN LOUHINTA 2 3. SÄTEILYTURVAN PERIAATTEITA 2 4. RADIOAKTIIVISUUS JA SÄTEILY 3 RADIOAKTIIVISTEN AINEIDEN HAJOAMINEN 3 ALFA- JA BEETASÄTEILY 3 GAMMASÄTEILY 4 RADIOAKTIIVISET

Lisätiedot

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen TURUN AMMATTIKORKEAKOULU työohje 1(8) 5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen 1. TYÖN TAVOITE 2. TEORIAA 2.1. Aktivointi Työssä perehdytään radioaktiivisuuteen ja radioaktiivisen säteilyn

Lisätiedot

Radioaktiivinen laskeuma ja ravinto SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA

Radioaktiivinen laskeuma ja ravinto SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA Radioaktiivinen laskeuma ja ravinto Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority Radioaktiivinen laskeuma ja ravinto Luonnosta

Lisätiedot

Fysiikka 9. luokan kurssi

Fysiikka 9. luokan kurssi Nimi: Fysiikka 9. luokan kurssi Kurssilla käytettävät suureet ja kaavat Täydennä taulukkoa kurssin edetessä: Suure Kirjaintunnus Yksikkö Yksikön lyhenne Jännite Sähkövirta Resistanssi Aika Sähköteho Sähköenergia

Lisätiedot

2.2 RÖNTGENSÄTEILY. (yli 10 kv).

2.2 RÖNTGENSÄTEILY. (yli 10 kv). 11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty

Lisätiedot

GEIGERIN JA MÜLLERIN PUTKI

GEIGERIN JA MÜLLERIN PUTKI FYSP106/K3 GEIGERIN J MÜLLERIN PUTKI 1 Johdanto Työssä tutustutaan Geigerin ja Müllerin putkeen. Geigerin ja Müllerin putkella tarkoitetaan tietynlaista säteilymittaria. Samaisesta laitteesta käytetään

Lisätiedot

Käytetyn ydinpolttoaineen loppusijoituspaikkavaihtoehtojen ympäristön radioaktiiviset aineet ja ionisoiva säteily

Käytetyn ydinpolttoaineen loppusijoituspaikkavaihtoehtojen ympäristön radioaktiiviset aineet ja ionisoiva säteily FI9900141 Työraportti 98-63 Käytetyn ydinpolttoaineen loppusijoituspaikkavaihtoehtojen ympäristön radioaktiiviset aineet ja ionisoiva säteily Säteilyturvakeskus 30-42 Syyskuu 1998 Posivan työraporteissa

Lisätiedot

Ydinfysiikkaa. Tapio Hansson

Ydinfysiikkaa. Tapio Hansson 3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10

Lisätiedot

Väestön cesiummäärät ja sisäisen säteilyn aiheuttamat annokset Pohjois-Lapin poronhoitajat

Väestön cesiummäärät ja sisäisen säteilyn aiheuttamat annokset Pohjois-Lapin poronhoitajat YMPÄRISTÖN SÄTEILYVALVONTA / LOKAKUU 2017 Väestön cesiummäärät ja sisäisen säteilyn aiheuttamat annokset Pohjois-Lapin poronhoitajat Ympäristön säteilyvalvonnan toimintaohjelma Maarit Muikku, Tiina Torvela

Lisätiedot

6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA

6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA 6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA Atomin elektronirakenne tunnettiin paljon ennen ytimen rakenteen tuntemista: elektronien irrottamiseen atomista tarvitaan paljon pienempiä energioita (muutamia ev)

Lisätiedot

Radon ja sisäilma Työpaikan radonmittaus

Radon ja sisäilma Työpaikan radonmittaus Radon ja sisäilma Työpaikan radonmittaus Pasi Arvela, FM TAMK, Lehtori, Fysiikka Radon Radioaktiivinen hajuton ja väritön jalokaasu Rn-222 puoliintumisaika on 3,8 vrk Syntyy radioaktiivisten hajoamisten

Lisätiedot

Säteilylähteiden käyttö kouluissa ja oppilaitoksissa STUK OPASTAA / KESÄKUU 2016

Säteilylähteiden käyttö kouluissa ja oppilaitoksissa STUK OPASTAA / KESÄKUU 2016 STUK OPASTAA / KESÄKUU 2016 Säteilylähteiden käyttö kouluissa ja oppilaitoksissa Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority ISSN 1799-9472 ISBN 978-952-309-323-2

Lisätiedot

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa.

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa. Säteilyturvakeskus Toimintajärjestelmä #3392 1 (7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7)

SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7) SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

40D. RADIOAKTIIVISUUSTUTKIMUKSIA

40D. RADIOAKTIIVISUUSTUTKIMUKSIA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 40D. RADIOAKTIIVISUUSTUTKIMUKSIA 1. TYÖN TAVOITE 2. TEORIAA Työssä tutustutaan radioaktiiviseen säteilyn kuvaamisessa käytettäviin käsitteisiin ja fysikaalisiin lakeihin,

Lisätiedot

Alkuaineita luokitellaan atomimassojen perusteella

Alkuaineita luokitellaan atomimassojen perusteella IHMISEN JA ELINYMPÄRISTÖN KEMIAA, KE2 Alkuaineen suhteellinen atomimassa Kertausta: Isotoopin määritelmä: Saman alkuaineen eri atomien ytimissä on sama määrä protoneja (eli sama alkuaine), mutta neutronien

Lisätiedot

Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä

Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä MÄÄRÄYS S/2/2019 Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä Annettu Helsingissä 4.4.2019 Säteilyturvakeskuksen päätöksen mukaisesti

Lisätiedot

Sädehoidosta, annosten laskennasta ja merkkiaineista. Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi

Sädehoidosta, annosten laskennasta ja merkkiaineista. Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi Sädehoidosta, annosten laskennasta ja merkkiaineista Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi 15.9.2004 Sisältö Terapia Diagnostiikka ionisoiva sädehoito röntgenkuvaus säteily tietokonetomografia

Lisätiedot

Säteilyturvakeskuksen määräys työperäisen altistuksen selvittämisestä, arvioinnista ja seurannasta

Säteilyturvakeskuksen määräys työperäisen altistuksen selvittämisestä, arvioinnista ja seurannasta MÄÄRÄYS S/1/2018 Säteilyturvakeskuksen määräys työperäisen altistuksen selvittämisestä, arvioinnista ja seurannasta Annettu Helsingissä 14.12.2018 Säteilyturvakeskuksen päätöksen mukaisesti määrätään säteilylain

Lisätiedot

Ydinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Ydinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Ydinfysiikka Atomin ydin kuuluu silmillemme näkymättömään maailmaan, mutta ydinfysiikan ilmiöt ovat osa modernia teknologiaa. Esim ydinvoima, ydinfysiikan käyttö lääketieteessä, ydinjätteet. Luennon tavoite:

Lisätiedot

STUK Soklin radiologinen perustilaselvitys, liitetiedostot 1(55)

STUK Soklin radiologinen perustilaselvitys, liitetiedostot 1(55) STUK Soklin radiologinen perustilaselvitys, liitetiedostot 1(55) Soklin radiologinen perustilaselvitys Loppuraportin liitetiedostot 31.5.2010 Sisällysluettelo LIITE 1. Radiologisia suureita ja yksiköitä

Lisätiedot

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA Säteilyturvallisuus ja laatu röntgendiagnostiikassa 19.-21.5.2014 Riina Alén STUK - Säteilyturvakeskus RADIATION AND NUCLEAR SAFETY AUTHORITY Lainsäädäntö EU-lainsäädäntö

Lisätiedot

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT Radioaktiivisessa hajoamisessa on neljä perusmuotoa: fissio alfahajoaminen betahajoaminen sisäinen siirtymä Viime vuosikymmeninä on havaittu paljon harvinaisempiakin

Lisätiedot

Talousvesien radioaktiivisten aineiden mittaukset

Talousvesien radioaktiivisten aineiden mittaukset Talousvesien radioaktiivisten aineiden mittaukset Ajankohtaista laboratoriorintamalla Evira 1.10.2015 Esitelmän sisältö 1. Johdanto 2. STM:n asetus talousveden laatuvaatimuksista ja valvontatutkimuksista

Lisätiedot

RADON Rakennushygienian mittaustekniikka

RADON Rakennushygienian mittaustekniikka Mika Tuukkanen T571SA RADON Rakennushygienian mittaustekniikka Ympäristöteknologia Kesäkuu 2013 SISÄLTÖ 1 JOHDANTO... 1 2 MENETELMÄT... 1 2.1 Radonin mittaaminen... 2 2.2 Kohde... 2 2.3 Alpha Guard...

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

Lannoitteiden radioaktiivisuus

Lannoitteiden radioaktiivisuus YMPÄRISTÖN SÄTEILYVALVONTA / TOUKOKUU 2014 Lannoitteiden radioaktiivisuus Ympäristön säteilyvalvonnan toimintaohjelma Tuukka Turtiainen Säteilyturvakeskus PL 14 00881 Helsinki www.stuk.fi Lisätietoja Tuukka

Lisätiedot

VALMIUSTAPAHTUMAT JA VALTAKUNNALLINEN SÄTEILYVALVONTA

VALMIUSTAPAHTUMAT JA VALTAKUNNALLINEN SÄTEILYVALVONTA FI9800100 STUK-B-VYK 7 Huhtikuu 1998 VALMIUSTAPAHTUMAT JA VALTAKUNNALLINEN SÄTEILYVALVONTA Vuosiraportti 1997 Suvi Ristonmaa (toim.) STUK SÄTEILYTURVAKESKUS STRÄLSÄKE RH ETS C E NTR A LE N RADIATION AND

Lisätiedot

TEKNIIKKA JA LIIKENNE. Laboratorioala OPINNÄYTETYÖ

TEKNIIKKA JA LIIKENNE. Laboratorioala OPINNÄYTETYÖ TEKNIIKKA JA LIIKENNE Laboratorioala OPINNÄYTETYÖ 210 Pb:N EROTUS MATRIISISTA IONISELEKTIIVISELLÄ HARTSILLA JA MÄÄRITYS NESTE- TUIKESPEKTROMETRILLA MENETELMÄN KEHITYS JA VALIDOINTI Työn tekijä: Salla Blomberg

Lisätiedot

Käytetyn ydinpolttoaineen loppusijoituspaikkavaihtoehtojen ympäristön radioaktiiviset aineet ja ionisoiva säteily

Käytetyn ydinpolttoaineen loppusijoituspaikkavaihtoehtojen ympäristön radioaktiiviset aineet ja ionisoiva säteily Työraportti 98-63 Käytetyn ydinpolttoaineen loppusijoituspaikkavaihtoehtojen ympäristön radioaktiiviset aineet ja ionisoiva säteily Anne Voutilainen Syyskuu 1998 POSIVA OY Mikonkatu 15 A, FIN-001 00 HELSINKI,

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Sisäilman radon osana säteilylainsäädännön uudistusta

Sisäilman radon osana säteilylainsäädännön uudistusta Sisäilman radon osana säteilylainsäädännön uudistusta Tuukka Turtiainen, Olli Holmgren, Katja Kojo, Päivi Kurttio Säteilyturvakeskus 29.1.2019 1 Radon on radioaktiivinen kaasu syntyy jatkuvasti kaikessa

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/9 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

TYÖPERÄINEN SÄTEILYALTISTUS ISOTOOPPIOSASTOLLA. Suojautuminen alfa-, beeta- ja gammasäteilyltä

TYÖPERÄINEN SÄTEILYALTISTUS ISOTOOPPIOSASTOLLA. Suojautuminen alfa-, beeta- ja gammasäteilyltä TYÖPERÄINEN SÄTEILYALTISTUS ISOTOOPPIOSASTOLLA Suojautuminen alfa-, beeta- ja gammasäteilyltä Tiia-Mari Ruuti Anni Tokoi Opinnäytetyö Lokakuu 2017 Röntgenhoitajakoulutus TIIVISTELMÄ Tampereen ammattikorkeakoulu

Lisätiedot

Luento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot

Luento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot Luento 3 7 Ydinfysiikka Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot Ytimien ominaisuudet Ydin koostuu nukleoneista eli protoneista ja neutroneista Ydin on

Lisätiedot

Säteilyturvakeskuksen määräys luonnonsäteilylle altistavasta toiminnasta

Säteilyturvakeskuksen määräys luonnonsäteilylle altistavasta toiminnasta 1 (10) LUONNOS 2 MÄÄRÄYS STUK S/XX/2019 Säteilyturvakeskuksen määräys luonnonsäteilylle altistavasta toiminnasta Säteilyturvakeskuksen päätöksen mukaisesti määrätään säteilylain (859/2018 ) nojalla: 1

Lisätiedot

Säteily- ja ydinturvallisuus -kirjasarja

Säteily- ja ydinturvallisuus -kirjasarja Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Tarja K. Ikäheimonen, Roy Pöllänen, Anne Weltner, Olavi Pukkila, Wendla Paile, Jorma Sandberg, Heidi Nyberg, Olli J. Marttila, Jarmo

Lisätiedot

YDIN- JA SÄTEILYFYSIIKAN PERUSTEET

YDIN- JA SÄTEILYFYSIIKAN PERUSTEET 1 YDIN- JA SÄTEILYFYSIIKAN PERUSTEET Jorma Sandberg ja Risto Paltemaa SISÄLLYSLUETTELO 1.1 Atomi- ja ydinfysiikan peruskäsitteitä... 12 1.2 Radioaktiivinen hajoaminen... 19 1.3 Ydinreaktiot ja vaikutusala...

Lisätiedot

Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Tarja K. Ikäheimonen, Roy Pöllänen, Anne Weltner, Olavi Pukkila, Wendla Paile, Jorma Sandberg, Heidi Nyberg, Olli J. Marttila, Jarmo

Lisätiedot

Suomalaisten keskimääräinen efektiivinen annos

Suomalaisten keskimääräinen efektiivinen annos / MAALISKUU 2014 A Suomalaisten keskimääräinen efektiivinen annos Annoskakku 2012 Maarit Muikku, Ritva Bly, Päivi Kurttio, Juhani Lahtinen, Maaret Lehtinen, Teemu Siiskonen, Tuukka Turtiainen, Tuomas Valmari,

Lisätiedot

Elektronisten dosimetrien uusinta Loviisan ydinvoimalaitoksella. Renewal of electronic dosimeters at Loviisa Nuclear Power Plant

Elektronisten dosimetrien uusinta Loviisan ydinvoimalaitoksella. Renewal of electronic dosimeters at Loviisa Nuclear Power Plant Lappeenrannan teknillinen yliopisto School of Energy Systems Energiatekniikan koulutusohjelma BH10A0201 Energiatekniikan kandidaatintyö ja seminaari Elektronisten dosimetrien uusinta Loviisan ydinvoimalaitoksella

Lisätiedot

Radioaktiivisuus. Radioaktiivisuudesta: alfasäteily

Radioaktiivisuus. Radioaktiivisuudesta: alfasäteily Radioaktiivisen säteilyn päälajit ovat: Radioaktiivisuus Radioaktiiviseksi sanotaan atomia, jonka ydin ei ole pysyvä, vaan hajoaa tietyllä tilastollisella todennäköisyydellä, ja säteilee ympäristöönsä

Lisätiedot

Perustietoa uraanista Esa Pohjolainen Geologian tutkimuskeskus

Perustietoa uraanista Esa Pohjolainen Geologian tutkimuskeskus McArthur Riverin uraanikaivos Kanadan Saskatchewanissa, 2010. E. Pohjolainen Perustietoa uraanista Esa Pohjolainen Geologian tutkimuskeskus 1 Uraanin alkuperä Alkuaineita on syntynyt kolmella eri tavalla:

Lisätiedot

ANNOSKAKKU 2004 - SUOMALAISTEN KESKIMÄÄRÄI- NEN EFEKTIIVINEN ANNOS

ANNOSKAKKU 2004 - SUOMALAISTEN KESKIMÄÄRÄI- NEN EFEKTIIVINEN ANNOS / SYYSKUU 2005 ANNOSKAKKU 2004 - SUOMALAISTEN KESKIMÄÄRÄI- NEN EFEKTIIVINEN ANNOS M.Muikku, H.Arvela, H.Järvinen, H.Korpela, E.Kostiainen, I.Mäkeläinen, E.Vartiainen, K.Vesterbacka STUK SÄTEILYTURVAKESKUS

Lisätiedot

Ydinpolttoainekierto. Kaivamisesta hautaamiseen. Jari Rinta-aho, Radiokemian laboratorio 3.11.2014

Ydinpolttoainekierto. Kaivamisesta hautaamiseen. Jari Rinta-aho, Radiokemian laboratorio 3.11.2014 Ydinpolttoainekierto Kaivamisesta hautaamiseen Jari Rinta-aho, Radiokemian laboratorio 3.11.2014 Kuka puhuu? Tutkijana Helsingin yliopiston Radiokemian laboratoriossa Tausta: YO 2008 Fysiikan opiskelijaksi

Lisätiedot

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni 3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja

Lisätiedot

säteilyturvallisuus luonnonsäteilylle altistavassa toiminnassa

säteilyturvallisuus luonnonsäteilylle altistavassa toiminnassa OHJE ST 12.1 / 2.2.2011 säteilyturvallisuus luonnonsäteilylle altistavassa toiminnassa 1 Yl e i s t ä 3 2 Radon työpaikoilla ja julkisissa tiloissa 3 2.1 Radonpitoisuutta rajoitetaan toimenpidearvoilla

Lisätiedot

Eksponentti- ja logaritmifunktiot

Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen

Lisätiedot

RADIOHIILIAJOITUS. Pertti Hautanen. Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino

RADIOHIILIAJOITUS. Pertti Hautanen. Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino RADIOHIILIAJOITUS Pertti Hautanen Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino Esipuhe Päädyin tekemään Pro Gradu -tutkielmani radiohiiliajoituksesta löydettyäni

Lisätiedot

SÄTEILYN KÄYTÖN VAPAUTTAMINEN TURVALLISUUSLUVASTA

SÄTEILYN KÄYTÖN VAPAUTTAMINEN TURVALLISUUSLUVASTA SÄTEILYN KÄYTÖN VAPAUTTAMINEN TURVALLISUUSLUVASTA 1 Yleistä 3 2 Säteilyturvakeskuksen päätöksellä vapautettu säteilyn käyttö 3 2.1 Yleiset vaatimukset 3 2.2 Turvallisuusluvasta vapautettu, ilmoitusta edellyttävä

Lisätiedot

Uraanikaivoshankkeiden ympäristövaikutukset

Uraanikaivoshankkeiden ympäristövaikutukset Uraanikaivoshankkeiden ympäristövaikutukset Fil. tri Tarja Laatikainen Eno, Louhitalo 27.02.2009 Ympäristövaikutukset A. Etsinnän yhteydessä B. Koelouhinnan ja koerikastuksen yhteydessä C. Terveysvaikutukset

Lisätiedot

RADIOAKTIIVISET AINEET, SÄTEILY JA YMPÄRISTÖ

RADIOAKTIIVISET AINEET, SÄTEILY JA YMPÄRISTÖ 1 RADIOAKTIIVISET AINEET, SÄTEILY JA YMPÄRISTÖ Roy Pöllänen SISÄLLYSLUETTELO 1.1 Ympäristön radioaktiiviset aineet... 12 1.2 Radioaktiivisten aineiden kulkeutuminen... 15 1.3 Radioaktiivisten aineiden

Lisätiedot