13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe )
|
|
- Lotta Korpela
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 13.3 Supernovat Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L nähdään suurilta etäisyyksiltä tärkeitä etäisyysmittareita Raskaiden alkuaineiden synteesi (useimmat > Fe ) Kirkkausmaksimi: parin viikon kuluessa räjähdyksestä Hidas himmeneminen, km/s laajeneva kaasukuori, törmää ympäröivään kaasuun supernovajäännös Supernovajäännöksiä tunnetaan Linnunradassa n. 200 iät sadoista vuosista kymmeniin tuhansiin vuosiin sumun keskellä usein neutronitähti Rapusumu (M1): Kiinassa v havaittu supernova Tyko Brahen supernova 1572 Keplerin supernova 1604 Arvioitu frekvenssi: 2/vuosisata edellisestä havaitusta kulunut 409 v! pölyn ekstinktio Linnunradan keskiosia vaikea havaita Esim. Sloan Supernova Survey 500 sn/vuosi Tähtitieteen perusteet, Luento 15,
2 Supernovatyypit Luokittelu spektrin perusteella: Tyyppi I: ei vedyn viivoja Tyyppi II: vedyn viivat Alatyypit spektriominaisuuksien & valokäyrän perusteellla Tyyppi Ia : ionisoituneen piin absorbtioviivat kaksoistähti: materiaa virtaa seuralaisesta valkealle kääpiölle. Ylittää Chandrasekharin rajan 1.44 M luhistuu lämpötilan äkillinen kasvu fuusioreaktiot (tuottaa mm. Si) räjähdyksen kokonaisenergia J 0.1c laajenemisnopeuksia kaasulle suurin osa energiasta neutriinoissa fotonien muodossa säteilty energia J: valokäyrän laskeva osa: radioaktiivinen Ni Fe valokäyrän muoto liittyy absoluuttiseen kirkkauteen Sn Ia = standardikynttilä Tyyppi Ib (He viivoja) ja Ic (ei He viivoja) fysikaalisesti poikkeavat Ia tyypistä: kyseessä jättiläisvaiheen tähden räjähdys Ib: ei vetykuorta räjähdysvaiheessa IC: ei vety eikä He-kuorta (Wold-Rayet tähti) Tähtitieteen perusteet, Luento 15,
3 Tyyppi II Vedyn viivoja spektrissä II-P - yleisin tyyppi, valokäyrässä tasanne (plateau) ennen räjähdystä tähti ( progenitor ) on ollut punainen ylijättiläinen (> 8M ) (pienempi massa valkoinen kääpiö) II-L - lineaarinen valokäyrä IIn - kapeat (narrow) vedyn viivat IIb - vedyn viivat lyhytikäiset, muistuttaa tyyppiä Ib Fysikaalinen luokittelu: Fuusiosupernovat (thermonuclear) 30% Tyyppi Ia: valkea kääpiö ylittää Chandarsekharin rajan luhistuminen kuumeneminen fuusioleimahdus Luhistumissupernovat (core collapse) 70% Kaikki muut tyypit: Ib, Ic, II jättiläisvaiheen tähden sisäosien luhistuminen, ulko-osien syökseminen ulospäin Tähtitieteen perusteet, Luento 15,
4 Sn1987A: Tyypin II-P supernova Suuressa Magellanin pilvessä Luhistumisessa vapautuvat neutriinot pystyttiin havaitsemaan (24 kpl) Neutronitähti-jäännettä ei ole pystytty havaitsemaan Tyypin II core collapse malli oikea yllätys: sininen ylijättiläinen (ei punainen) eli pinnaltaan huomattavasti kuumempi ja kooltaan pienempi massivinen, hyvin metallipitoinen tähti? Tähtitieteen perusteet, Luento 15,
5 Gamma-purkaukset (GRB = gamma ray burst) 1973 julkaistiin havainnot: teräviä gammasäteily-pulsseja eri puolilta taivasta Ei vastinetta optisessa tai röntgen-alueessa Jakauma taivaalla tasainen ei voi liittyä linnunradan kohteisiin Jälkihehku (afterglow) näkyvän valon alueella identifioitu galakseihin Kahta eri tyyppiä: Pitkät purkaukset: Liittyvät massiivisten tähtien supernova-purkauksiin (Ib, Ic) hypernova: maailmankaikkeuden kirkkaimpia kohteita kaukaisin punasiirtymällä z=9.4 Massat arviolta 100M säteily ei-isotrooppista vaan ohjautuu kapeaan keilaan lyhyet purkaukset: neutronitähtien törmäykset (menettävät rataenergiaansa gravitaatioenergiana törmäys) Tähtitieteen perusteet, Luento 15,
6 14. Kompaktit tähdet Ei fuusiota kaasun paine ei pysty kumoamaan painovoimaa valkeat kääpiöt - degeneroituneen elektronikaasun paine neutronitähdet - degeneroituneen neutronikaasun paine mustat aukot - luhistuneet singulariteetiksi 14.1 Valkeat kääpiöt Tavallinen tähti: ionisoituneen kaasun paine & säteilypaine kuumissa tähdissä hydrostaattinen tasapaino gravitaation kanssa Ydinpolttoaineen loppuminen sisäosat tihentyvät elektronien degeneraatiosta aiheutuva paine pysäyttää tihentymisen, edellyttäen että massa on Chandrasekharin massaa M Ch 1.4M pienempi Tasapainossa valkean kääpiön säde kääntäen verrannollinen massan kuutiojuureen R M 1/3 tiheydet luokkaa 10 9 kg/m 3 (miljoona kertaa veden tiheys), säteet 0.01R eli km luokkaa Kehitys: vähittäinen jäähtyminen. Himmeistä valkoisista kääpiöistä (T=5000K) alaraja-arvio maailmankaikkeuden iälle ( 12 Gyr) Mustia kääpiöitä ei vielä olemassa Ensimmäinen havainto: Sirius B Massa pääkomponentin ominaisliikkeen heilahteluista: M M Spektri 1915 korkea T eff 25000T pääteltiin että pieni kirkkaus L L johtuu pienestä koosta ( 0.008R eli Maapalloa hieman pienempi) Varmistus 1925: spektriviivoissa näkyi suhteellisuusteorian ennustama painovoiman aiheuttama punertuminen Tähtitieteen perusteet, Luento 15,
7 14.2 Neutronitähdet Baade & Zwicky 1934: supernovaräjähdys synnyttää neutronitähden Hämmästyttävän oikea ennuste! (neutroni löydetty vain pari vuotta aiemmin 1932) Mikäli ydinpolttoaineensa käyttäneen tähden luhistuvan ytimen massa suurempi kuin M Ch degeneroituneen elektronikaasun paine ei pysty tasapainottamaan gravitaatioluhistumista Tiheyden kasvaessa ytimien protonit muuttuvat neutroneiksi URCA-prosessissa (tuottaa myös neutrinoja) Neutronit vuotavat ytimistä kun ρ > kg/m 3 ytimet hajonneet aineesta tullut neutronipuuroa (neutronien sisäinen tiheys n kg/m 3 ) Degeneroituneen neutronipuuron paine pysäyttää gravitaatioluhistumisen, edellyttäen että M < M OV Tyypilliset säteet 10 km luokkaa (tuhannesosa valkeista kääpiöistä), tiheydet kg/m 3 (miljardi kertaa valkean kääpiön tiheys) Esim. Mikä on keskitiheys M = 1.4M, R = 8km (Tähtititeen perusteet kuva 14.2)? tilavuus m 3 ja ρ = / = kg/m 3 5ρ neutroni Hieman suurehko, tyypillinen arvio 2ρ neutroni Rakenne (hyvin epävarma): Pinnassa ohut (pari cm!) kaasumainen atmosfääri metallinen kuori vaippa: suoprajohtavaa nestettä ydin: hyperoneja (raskaita hiukkasia), kvarkkeja, preoneja? Tähtitieteen perusteet, Luento 15,
8 Pyörimisimpulssimomentin L ωr 2 säilyminen supernovaräjähdyksessä syntyvä neutronitähti pyörii aluksi hyvin nopeasti P 1/w R 2 esim. Aurinko kutistuisi 20 km säteiseksi pyörähdysaika 25 vrk (20 km/ km) 2 = s Pyörimisen hidastuminen: magneettikentän + ympäröivän plasman vuorovaikutus sähkömagneettinen säteily (havaitaan pulsarina) neutrinot, kosmiset säteet gravitaatiosäteily Pulsarit Hewish ja Bell 1967: toistuvia lyhyitä radiopulsseja lähettävä kohde (pulsari PSR B , aluksi LGM-1 ; Hewish jakoi Nobel 1974) Pulssien välinen aika s s Säteilyn synty: Neutronitähdellä voimakas magneettikenttä Varattujen hiukkasten liike synkrotronisäteily Nopeudet lähellä valonnopeutta kapea keila liikkeen suunnassa Magneettikentän tiheys suurin mag.napojen lähellä Magneettinen akseli ja pyörimisakseli vinossa magneettisen akselin suuntainen keila, nähdään jos pyyhkäisee havaitsijan suunnan yli Tähtitieteen perusteet, Luento 15,
9 Rapu-sumun pulsari pulssin jakso 33 msec pikkukuvat 1 msec välein Yleensä pulsareita ei pystytä havaitsemaan optisella alueella (L 10 6 L ) HST-kuva: säteilykeilan törmäys ympäröivään kaasuun Tähtitieteen perusteet, Luento 15,
10
11 14.3 Mustat aukot Räjähtävän tähden luhistuvan ytimen massa suurempi kuin M OV (Oppenheimerin-Volkoffin massa ) mikään tunnettu mekanismi ei pysty tasapainottamaan painovoiman aiheuttamaa puristusta luhistuu singulariteetiksi = musta aukko M OV = 1.5 3M teoreettinen arvio, epävarmuus aiheutuu huonosti tunnetusta materian tilanyhtälöstä, kun tiheys lähestyy neutronien sisäistä tiheyttä Havainnoista saatu alaraja: pulsari (=neutronitähti) PSR J , massa 1.97 ± 0.04M Spekulaatioita: kvarkki-tähdet?, preoni-tähdet? Tähden alkuperäisen massan olta vähintää ă10m jotta lopputuloksena olisi musta-aukko Nimitys: pakonopeus ylittää valonnopeuden (Laplace 1700 luvulla!) v e = q 2GM R = c R S = 2GM c 2 jossa R s = Schwarzschildin säde (Yleinen suhteellisuusteoria sama kriittinen arvo) Auringon massainen musta aukko: R S 3km, käytännössä pienimpien tähdistä syntyneiden mustien aukkojen R S luokkaa 5-10 km Vertaa edellä: neutronitähtien säde vain hieman suurempi: neutronitähtien pinnalla pakonopeus jo lähellä valonnoputta ESIM Auringolle R S = 2GM c 2 = ( ) 2 m = 2950m Tähtitieteen perusteet, Luento 15,
12
13 Mustien aukkojen havaitseminen: ainoastaan niihin putoavan materian säteilyn perusteella Kaksoistähtijärjestelmä: seuralaisesta Rochen rajan yli virtaava materia muodostaa kiekon aukon ympärille Sisäreunan lähellä nopeudet hyvin suuri kiekon kuumeneminen säteily röntgen-alueella materia voi säteillä jopa 40% lepomassastaan (peräisin gravitaatiopotentiaalienergiasta) Cygnus X-1: säteilyn vaihteluja jopa T =0.001 sekunnin skaalassa säteilylähteen koko alle T c =300 km neutronitähti tai musta aukko kaksoistähti: ylijättiläinen (25 M ) + näkymätön (10M ) komponentti suuri massa oltava musta aukko Tunnetaan > 20 mahdollista kaksoissyteemiä, jossa musta aukko komponettina Supermassiviset mustat aukot: galaksien ytimet kvasaarit Tähtitieteen perusteet, Luento 15,
14 14.4 Röntgenkaksoistähdet Lähekkäiset kaksoistähdet: toinen komponentti neutronitähti tai musta aukko, toinen komponentti tavallinen tähti (seuralainen) materiavirta seuralaisesta voimakkaita röntgen-lähteitä Jaottelu systeemin fysikaalisen luonteen perusteella: Massiiviset röntgenkaksoistähdet (High-mass X-ray Binaries) HMXB Pienimassaiset röntgenkaksoistähdet (Low-mass X-ray Binaries) LMXB Massiviset: esim Cygnus X-1 edellä seuralaisen M > 10Msun voimakas tähtituuli seuralainen optisesti kirkas, helppo havaita lyhytikäisiä systeemejä v Pienimassaiset: seuralaisen M < 1.2M materiaa vuotaa Rochen rajan yli (rata supistuu, tai seuralainen kasvaa) Kirkkain röntgen-alueella (kertymäkiekko) tunnetaan yli 100 Linnunradassa Jaottelu havaittavien ominaisuuksien perusteella Rontgenpulsarit - neutronitähti Rontgenpurkautuja - neutronitähti Röntgennovat - neutronitähti tai musta aukko Mikrokvasaarit M musta aukko? Tähtitieteen perusteet, Luento 15,
15 Röntgenpulsarit Havaitaan pulsseja röntgen-alueella, Jaksot sekunteja-kymmeniä minuutteja = pidempiä kuin radiopulsareissa Jakso lyhenee ajan mukana (radiopulsareilla pitenee) Massiviset HMXB: Röntgenpulsari osa kaksoistähteä, seuralaisella voimakas tähtituuli Aluksi neutronitähti on tavallinen radiopulsari, säteily estää seuralaisen massavuon pääsemisen neutronitähden pinnalle Pulsarin säteilemä energia pienenee seuralaisen massavirta pääsee törmäämään magneettisten napojen lähelle lähes valonnopeudella röntgensäteily (vrt radiopulsari: synkrotronisäteily) Neutronitähden pyörimenen näkyy pulssina Pienimassaiset järjestelmät SMXB: Seuralaisen massa vuotaa Roche-rajan yli Massavirtauksella sama suunta neutronitähden pyöriminen kiihtyy millisekuntipulsarit Suurin mahdollinen pyörimisnopeus vastaa n 1 millisekunnin periodia(keskipakoisvoima repisi neutronitähden hajalle) Tähtitieteen perusteet, Luento 15,
Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
Supernova. Joona ja Camilla
Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa
15. Kompaktit tähdet Ei fuusiota kaasun paine ei pysty kumoamaan painovoimaa
15. Kompaktit tähdet Ei fuusiota kaasun paine ei pysty kumoamaan painovoimaa valkeat kääpiöt - degeneroituneen elektronikaasun paine neutronitähdet - degeneroituneen neutronikaasun paine mustat aukot -
Mustien aukkojen astrofysiikka
Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin
Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009
Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia
Aurinko. Tähtitieteen peruskurssi
Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
Kosmos = maailmankaikkeus
Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita
Kosmologia ja alkuaineiden synty. Tapio Hansson
Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
Maailmankaikkeuden kriittinen tiheys
Maailmankaikkeuden kriittinen tiheys Tarkastellaan maailmankaikkeuden pientä pallomaista laajenevaa osaa, joka sisältää laajenemisliikkeessä olevia galakseja. Olkoon pallon säde R, massa M ja maailmankaikkeuden
Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN
Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura
Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat
Havaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi
8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät
Maan ja avaruuden välillä ei ole selkeää rajaa
Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta
AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!
TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä
Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
Tähtien rakenne ja kehitys
Tähtien rakenne ja kehitys Fysiikan täydennyskoulutuskurssi - Avaruustutkimus 5.6.2007 FT Thomas Hackman Thomas.Hackman@helsinki.fi Thomas Hackman, HY:n observatorio 1 1. Perustietoa ja käsitteitä Magnitudit
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi
Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö
Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin
Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt
Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt ISBN: Veera Kallunki, Jari Lavonen, Kalle Juuti, Veijo Meisalo, Anniina Mikama, Mika Suhonen, Jukka Lepikkö, Jyri Jokinen Verkkoversio: http://www.edu.helsinki.fi/astel-ope
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)
LHC -riskianalyysi. Emmi Ruokokoski
LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski
MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma
MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen
MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET
MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko
Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA
MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
Perusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Teoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami
1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien
Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto
Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.
Kokeellisen tiedonhankinnan menetelmät
Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden
Radioastronomia harjoitustyö; vedyn 21cm spektriviiva
Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)
Radioastronomian käsitteitä
Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä
12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot
12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013
766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
Radioastronomian perusteita
Radioastronomian perusteita Anne Lähteenmäki & Merja Tornikoski Tämä tiivistelmä on koottu valikoiden Aalto-yliopiston Radioastronomian kurssin materiaaleista eikä se näin ollen ole täydellinen, vaan keskittyy
CERN-matka
CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN
Jupiter-järjestelmä ja Galileo-luotain II
Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.
Tähtitaivaan alkeet Juha Ojanperä Harjavalta
Tähtitaivaan alkeet Juha Ojanperä Harjavalta 14.1.-10.3.2016 Kurssin sisältö 1. Kerta Taivaanpallo ja tähtitaivaan liike opitaan lukemaan ja ymmärtämään tähtikarttoja 2. kerta Tärkeimmät tähdet ja tähdistöt
Hiukkasfysiikkaa. Tapio Hansson
Hiukkasfysiikkaa Tapio Hansson Aineen Rakenne Thomson onnistui irrottamaan elektronin atomista. Rutherfordin kokeessa löytyi atomin ydin. Niels Bohrin pohdintojen tuloksena elektronit laitettiin kiertämään
Pimeän energian metsästys satelliittihavainnoin
Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14
Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?
Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa
Säteily ja suojautuminen Joel Nikkola
Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa
Alkeishiukkaset. Standarimalliin pohjautuen:
Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi
n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa
UrSalo. Laajaa paikallista yhteistyötä
UrSalo Laajaa paikallista yhteistyötä Ursalon ja Turun Ursan yhteistyö Tähtipäivät 2011 ja Cygnus 2012 Kevolan observatorio Tähtitieteen kurssit Yhteistyössä Salon kansalaisopiston ja Tuorlan tutkijoiden
Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.
1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on
FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum
Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum Luento 9: Aktiiviset galaksit, 06/11/2017 Matemaattis-luonnontieteellinen tiedekunta Peter Johansson/ Galaksit ja Kosmologia Luento 9 www.helsinki.fi/yliopisto
Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
Perusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Mustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö
YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen
Tähtitieteen historiaa
Tähtitiede Sisältö: Tähtitieteen historia Kokeellisen tiedonhankinnan menetelmät Perusteoriat Alkuräjähdysteoria Gravitaatiolaki Suhteellisuusteoria Alkuaineiden syntymekanismit Tähtitieteen käsitteitä
Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum
Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 6: Linnunradan yleisrakenne II, halo, pallomaiset tähtijoukot ja galaksin keskusta 17/10/2016 Peter Johansson/ Linnunradan rakenne Luento
16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)
16. Tähtijoukot Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot 10 5 10 6 tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947:
SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa
SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli
Kosmologian yleiskatsaus. Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos
Kosmologian yleiskatsaus Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja Fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Päämääriä Kosmologia tutkii maailmankaikkeutta kokonaisuutena. Kehitys,
Euclid. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla
Euclid Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla 27.5.2015 Mikä aiheu.aa kiihtyvän laajenemisen Kaksi vaihtoehtoa Pimeä energia (dark energy) Painovoima käyaäytyy eri lailla hyvin suurilla
Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava
Fysiikka 1 Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava 1 Fysiikan kurssitarjonta Pakollinen kurssi fysiikka luonnontieteenä (FY1) Seitsemän valtakunnallista syventävää kurssia
Neutriino-oskillaatiot
Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa
Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa Graduseminaari Joonas Ilmavirta Jyväskylän yliopisto 15.6.2012 Joonas Ilmavirta (JYU) Neutriinot ja cqpa 15.6.2012 1 / 14 Osa 1: Neutriinot
Oppikirja (kertauksen vuoksi)
Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain
FYSN300: YDINASTROFYSIIKKAA. K.S. Krane: Luku 19 J. Lilley: Luvut 11.5-11.7
FYSN300: YDINASTROFYSIIKKAA K.S. Krane: Luku 19 J. Lilley: Luvut 11.5-11.7 1 Ydinastrofysiikka? Ytimien ominaisuudet Maailmankaikkeuden ominaisuudet Linnunrata Aurinkokunta Universumissa arviolta > 170
Vuorovaikutuksien mittamallit
Vuorovaikutuksien mittamallit Hiukkasten vuorovaikutuksien teoreettinen mallintaminen perustuu ns. mittakenttäteorioihin. Kenttä viittaa siihen, että hiukkanen kuvataan paikasta ja ajasta riippuvalla funktiolla
SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma
SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut
A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi
Hiukkaskiihdyttimet ja -ilmaisimet
Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan
Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa. Kari Rummukainen
Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa Kari Rummukainen Mitä hiukkasfysiikka tutkii? Mitä Oulussa tutkitaan? Opiskelu ja sijoittuminen työelämässä Teoreettinen fysiikka: työkaluja
Keski-Suomen fysiikkakilpailu
Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee
Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio
Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz
Sähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
LIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
HÄRKÄMÄEN HAVAINTOKATSAUS
HÄRKÄMÄEN HAVAINTOKATSAUS 2008 Kierregalaksi M 51 ja sen seuralainen epäsää äännöllinen galaksi NGC 5195. Etäisyys on 34 miljoonaa valovuotta. M 51 löytyy l taivaalta Otavan viimeisen tähden t Alkaidin
CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén
CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,
Hiukkaskiihdyttimet ja -ilmaisimet
Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan näkökulmasta, vastaavia
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
Muunnokset ja mittayksiköt
Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?
Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014
Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.
Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.
Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen
Fysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
Hiukkasfysiikkaa teoreetikon näkökulmasta
Hiukkasfysiikkaa teoreetikon näkökulmasta @ CERN Risto Paatelainen CERN Theory Department KUINKA PÄÄDYIN CERN:IIN Opinnot: 2006-2011 FM, Teoreettinen hiukkasfysiikka, Jyväskylän yliopisto 2011-2014 PhD,
7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä
7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,
PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016
PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 Prof. Filip Tuomisto Fuusion perusteet, torstai 10.3.2016 Päivän aiheet Fuusioreaktio(t) Fuusion vaatimat olosuhteet Miten fuusiota voidaan
MAOL-Pisteitysohjeet Fysiikka kevät 2011
MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä
Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto
Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter