TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

Koko: px
Aloita esitys sivulta:

Download "TIIVISTELMÄRAPORTTI (SUMMARY REPORT)"

Transkriptio

1 2013/MAT827 ISSN (verkkojulkaisu) ISBN (PDF) TIIVISTELMÄRAPORTTI (SUMMARY REPORT) MIEHITTÄMÄTTÖMÄN VEDENALAISEN LAITTEEN NAVIGOINTI Jarmo Takala, Jussi Collin, Jarkko Tuomi ja Timo Pihlström Tampereen teknillinen yliopisto, Tietokonetekniikan laitos Tiivistelmä Tutkimuksen tavoitteena oli tarkastella miehittämättömän vedenalaisen laitteen navigoinnin kannalta merkittäviä tekijöitä. Tarkoituksena oli selvittää pystytäänkö nykyiseen maan magneettikenttää hyödyntävän navigointiratkaisun yhteyteen liittämään inertiamittauksia hyödyntävä ratkaisu ja arvioida integroinnista saatavaa hyötyä. Tutkimuksessa käytettiin uusia lämpötilakompensoituja mikromekaanisia inertiayksikköjä (IMU) jotka kokonsa puolesta sopivat käytettäväksi miehittämättömissä vedenalaisissa laitteissa. Tutkimuksissa havaittiin, että inertia-antureilla on mahdollista suojautua magneettikentän paikallisia häiriöitä ja häirintää vastaan, mutta pitkän ajan kuluessa inertia-antureille tyypilliset virheet kertaantuvat ja tarvitsevat tukea muilta menetelmiltä. Tutkimuksessa tutkittiin myös inertia-antureiden kelpoisuutta etenemistiedon lyhythetkisten katkojen korvaajaksi, mutta kattavampien tulosten aikaansaamiseksi mittaukset todellisessa ympäristössä ovat välttämättömiä. 1. Johdanto Veden signaalia vaimentavan luonteen ja satelliittien pienen lähetystehon takia satelliittipaikannus ei ole vedenalaisissa laitteissa varteen otettava vaihtoehto. Tästä huolimatta navigointi on mahdollista muiden menetelmien kuten dead reckoning (DR) -menetelmän avulla. Tässä menetelmässä paikka lasketaan kulkusuunnan ja vauhdin avulla. Kulkusuunnan mittaamiseen voidaan käyttää esimerkiksi magnetometria (kompassia) mittaamaan maan magneettikenttää. Ennen mittauksia magnetometri pitää kuitenkin kalibroida poistamaan magneettikenttää vaikuttavien aineiden, kuten ympäröivän raudan ja teräksen, vaikutus. Kalibroinnin lisäksi magnetometrimittauksissa pitää huomioida paikasta riippuva magneettikentän inklinaatio ja deklinaatio sekä mahdollinen tahallinen taikka tahaton häirintä. Valitettavasti magneettisia anomalioita omaavilla alueilla kalibrointi vaatisi tietoa aluksen tarkasta paikasta anomalian kompensoimiseksi. Vaihtoehtoinen menetelmä kulkusuunnan mittaamiseen perustuu kulmanopeuden integrointiin. Kulmanopeutta pystytään mittaamaan gyroskoopilla. Nykyaikaiset MEMS-gyroskoopit lähestyvät 1 deg/h tarkkuutta. Kyseiseen tarkkuuteen päästää kuitenkin vain vakiolämpötilassa. Lämpötilaherkkyyden lisäksi gyroskoopit pyrkivät pitkän ajan kuluessa luontaisesti liukumaan ilman ulkopuolisia korjauksia. Korjaus onnistuu esimerkiksi magnetometrin avulla. Arvioidun paikan menetelmään vaadittavan vauhdin mittaaminen onnistuu esimerkiksi veden pohjaa doppler - tutkaamalla. Menetettäessä pohjakosketus esimerkiksi rotkon tai syvänteen seurauksena, vauhdin mittaamista ei voida suorittaa ja aluksen on noustava pintaan paikan määrittämiseksi satelliittipaikannuksen avulla. Lyhytaikaisten pohjakosketusten taukojen aikana voitaisiin vauhti laskea inertiaan perustuvista kiihtyvyysantureista. Postiosoite MATINE Puolustusministeriö PL HELSINKI Sähköposti Käyntiosoite Puhelinvaihde Eteläinen Makasiinikatu HELSINKI (09) WWW-sivut Y-tunnus FI Pääsihteeri (09) OVT-tunnus/verkkolaskuosoite Itellan operaattorivälittäjätunnus Suunnittelusihteeri Toimistosihteeri (09) Faksi kirjaamo (09) Verkkolaskuoperaattori Yhteyshenkilö/Itella Itella Information Oy

2 2. Tutkimuksen tavoite ja suunnitelma Tämän tutkimuksen tavoitteena oli tarkastella miehittämättömän vedenalaisen laitteen navigoinnin kannalta merkittäviä tekijöitä. Tarkoituksena oli löytää häiriöitä sietävä menetelmä asentotiedon ylläpitoon veden alla. Samalla tavoitteena oli arvioida lämpötilakompensoitujen inertiayksiköiden (IMU) soveltuvuutta pieniin laitteisiin. Tutkimus aloitettiin kehittämällä menetelmiä gyroskooppien kohinanmallinnukseen ja biasvirheen ennustamiseen. Tällä pyrittiin saamaan mittausdatasta häiriöttömämpää mahdollisimman tarkan suuntatiedon ylläpitämiseksi. Lämpötilamuutoksista johtuvat häiriöt pyrittiin pitämään mahdollisimman pieninä käyttäen uunilla varustettuja antureita. Tutkimuksen mittausosio toteutettiin sijoittamalla lämpökompensoitu inertiayksikkö ja magneettiantureihin perustuva DR-paikannusjärjestelmä mittauskärryyn, jossa tarkka paikkareferenssi saatiin differentiaalista GPS (DGPS)-paikannusvastaanotinta käyttäen. Laitteella suoritettiin mittauksia simuloiden vedenalaisia liikkeitä. Mittausten avulla pystyttiin arvioimaan kulmanopeusmittauksien tuomaa hyötyä. 3. Aineisto ja menetelmät 3.1. Gyroskoopin bias-virheen ennustus Mikromekaanisissa gyroskoopeissa esiintyvistä virheistä tyypillisesti merkittävin on niin sanottu bias, sisäänmenosta riippumaton vakiokomponentti. Tätä voi estimoida, jos todellinen sisäänmeno on tunnettu, esimerkiksi laitteen ollessa paikallaan. Bias-virhe ei kuitenkaan ole täysin vakio, vaan vaihtelee ajan kuluessa. Vaihtuvaa gyroskoopin bias-virhettä voidaan ennustaa kalibroinnin jälkeen joko optimaalisella 1/f -ennusteella tai yksinkertaisemmilla keskiarvoon perustuvilla menetelmillä. Kuva 1: Gyron bias-virheen ennustus optimaalisella 1/f ennusteella sekä yksinkertaisemmalla kumulatiivisella keskiarvolla [1].

3 3.2. Kalman suodin Tutkimuksen tavoitteeksi on edellisissä kappaleissa esitelty magneettikentän ja inertian mittausten yhdistäminen. Tämä niin sanottu anturifuusio voidaan suorittaa Kalman - suotimella. Kalman-suodin on rekursiivisesti toimiva signaalinkäsittelyalgoritmi, jolla pystytään estimoimaan järjestelmän tilaa tilastollisesti optimaalisella tavalla. Kalmansuodin operoi järjestelmän tilamallia, joiden yleinen lineaarinen muoto on: missä on järjestelmän tilamuuttujavektori ajanhetkellä k ja ajanhetkellä k-1; on matriisi, joka edistää tilaa aikaisemman tilan suhteen; on matriisi, joka edistää tilaa järjestelmän sisäänmenojen suhteen; on järjestelmän sisäänmenovektori ajanhetkellä k-1; on mittausvektori, joka sisältää mitatut kohinaiset arvot todellisesta tilasta; on matriisi, joka muuttaa tilan mitatuiksi arvoiksi; ja ovat järjestelmän ja mittauksen kohinavektoreita, jotka ovat normaalijakautuneita parametreilla ~(0, ) ja ~(0, ). Kalman-suodin estimoi tilaa ja siihen liittyvän virheen kovarianssimatriisia, joka kuvaa estimaatin tarkkuutta ajanhetkellä k. Tämä tehdään siten, että pyritään minimoimaan, jolloin ennustettu tila on tilastollisesti optimaalinen. Suodin koostuu kahdesta askeleesta, joista ensimmäistä kutsutaan ennustusaskeleeksi. Tämä askel ennustaa tilaa tilamatriisin, edellisen tilan ja järjestelmän sisäänmenojen avulla. Tämän lisäksi lasketaan ennustusaskeleen tilalle kovarianssimatriisi : Toinen askel on päivitysaskel, joka kasvattaa tietoa tilasta järjestelmästä mitattujen arvojen avulla. Tässä vaiheessa esitellään Kalman-kerroin, joka painottaa laskettua ja mitattua tilaa minimoiden tilaestimaatin virheen. Tämän askeleen jälkeen on ajanhetken k tilaestimaatti ja kovarianssimatriisi tiedossa, ja voidaan siirtyä laskemaan ajanhetken k+1 estimaattia. Navigointisovelluksissa järjestelmät eivät yleensä ole lineaarisia, jolloin edellä esitettyjä yhtälöitä ei voida käyttää ilman tilayhtälöiden lineaarisointia. Tämä käytännössä tarkoittaa

4 Jacobin matriisien laskemista tilaa kuvaavista matriiseista, ja, joiden avulla järjestelmästä voidaan muodostaa lineaarinen approksimaatio. Tämän lisäyksen kanssa suodinta kutsutaan laajennetuksi Kalman-suotimeksi. 3.3 Mittauskärry Miehittämättömän vedenalaisen laitteen kenttämittaukset suoritettiin mittauskärryn avulla, joka sisälsi seuraavat laitteet: kuluttajaelektroniikan inertiayksikkö (3D-gyroskoppi ja 3D-kiihtyvyysanturit) magnetometrilla pyöräenkooderit (2500 pulssia/kierros) simuloimaan Doppler-tutkaa lämpötilakompensoitu inertiayksikkö (3D-gyroskooppi ja 3D-kiihtyvyysanturit) DGPS-vastaantotin paikkareferenssiksi (20 Hz) Lisäksi mukana oli sulautettu prosessorijärjestelmä, jonka avulla eri mittausjärjestelmistä kerättiin data reaaliaikaisesti ja se yhdistettiin GPS-aikaan.Mittauskärryllä suoritettiin mittauksia sekä ulko- että sisätiloissa. Ulkotilamittaukset suoritettiin asfaltoiduilla parkkipaikoilla ja kävelyteillä. Ulkomittauksissa pyrittiin jäljittelemään miehittämättömän vedenalaisen laitteen ohjausliikkeitä. Kulkualustana toiminut asfaltti aiheutti kuitenkin tärinällään vähäisiä ongelmia. Ulkomittaukset olivat kuitenkin DGPS:n ja tarvittavan tilan vuoksi välttämättömiä. Ulkomittauksilla haettiin vastauksia gyroskoopin tuomista eduista magnetometriin nähden. Sisämittauksilla taas haettiin tärinätöntä ympäristöä kiihtyvyysanturilla mitattavaan matkan arviointiin. [1] Kirkko-Jaakkola, M., J. Collin, and J. Takala (2012) "Bias Prediction for MEMS Gyroscopes", IEEE Sensors Journal, vol.12, no. 6, pp Tulokset ja pohdinta Ulkomittauksissa mittauskärryä työnnettiin miehittämättömän vedenalaisen laitteen ohjausliikkeitä mukaillen. Kärryn kulkemaa matkaa mitattiin mittauspyöriin kiinnitetyillä enkoodereilla ja kärryn suuntaa sekä magnetometrein että gyroskoopein. Lisäksi kärryyn oli kiinnitettynä DGPS-laite referenssiksi. Ulkomittauksissa havaittiin, että magneettikentän mahdolliset häiriöt aiheuttavat huomattavia DR-paikkaratkaisuvirheitä. Kuvassa 2 on esitettynä mittauksissa kuljettu matka ja siitä eri anturidatoista tuotetut navigointiratkaisut.

5 Kuva 2: Magnetometri- ja gyroskooppidatasta tuotetut navigointiratkaisut sekä DGPSreferenssipisteet. Kuvan 2 magnetometrin avulla lasketun reitin poikkeama selittyy, kun magnetometrin data yhdistetään gyroskoopilla tuotettuun ratkaisuun. Kuvassa 3 magnetometrimittaukset on kerrottu kääntömatriisilla siten, että gyroskoopin ja magnetometrin mittausten käydessä yksiin, magneettikentän vektorin kuuluisi näyttää ylöspäin.

6 Kuva 3: Magneettikentän vektorit gyroskooppiratkaisuun nähden. Keltainen tarkoittaa yli 10 asteen poikkeamaa ja punainen vastaavasti yli 20 asteen. (Google Imagery 2012 Digital Globe GeoEye). Kuvassa 3 näkyy selkeästi kohdat, joissa magnetometrimittauksiin on sisältynyt häiriöitä. Häiriöt johtuvat simulaatioympäristöstä, kuten autoista ja rakennuksista, mutta havainnollistavat magnetometrin alttiutta häiriöille. Todellisen ympäristön mahdolliset magneettikentän anomaliat ja häirintä veden alla ovat täten tutkimisen arvoisia. Magneettikentän odotettua suuremmat häiriöt aiheuttivat haasteita integrointialgoritmin mallin rakentamiseen. Tutkimuksissa onnistuttiin kuitenkin pienentämään magneettikentän häiriöiden vaikutusta ja tuloksena saatiin kuvassa 4 näkyvä navigointiratkaisu. Ratkaisu poikkeaa kuitenkin huomattavasti referenssistä ja vaatinee täten jatkotutkimusta.

7 Kuva 4: Magnetometri- ja anturifuusioratkaisut sekä DGPS-referenssipisteet. Sisämittauksissa mittauskärryä työnnettiin suoraa viivaa pitkin sekä tasaisella että vaihtelevalla nopeudella. Kärryn kulkemaa matkaa mitattiin enkoodereilla ja kiihtyvyysanturilla. Mittausten tarkoituksena oli selvittää, että pystyykö inertia-antureilla mittaamaan vauhtia silloin kun Doppler-tutka ei anna luotettavia tuloksia esimerkiksi syvänteiden kohdalla. Mittaukset suoritettiin siten, että enkoodereilta saadulla datalla kalibroitiin kiihtyvyysanturia. Jossain vaiheessa mittausta kalibrointi lopetettiin ja pyrittiin arviomaan kuljettua matkaa pelkkää kiihtyvyysdataa integroimalla. Integrointi aiheuttaa ajan suhteen kasaantuvaa virhettä, joka on havaittavissa mittaustuloksista kuvassa 5. Tuloksista tulee huomioida, että kyseessä oli simulointi ja mittaukset todellisessa ympäristössä saattavat poiketa huomattavasti.

8 Kuva 5: Mittauskärryn enkoodereista ja kiihtyvyysdatasta tuotetun matkan ero ajan funktiona 5. Loppupäätelmät Tutkimuksen tulosten mukaan magneettiantureihin perustuvat DR-järjestelmät ovat hyvin herkkiä magneettikentän häiriöille. Tämä on erittäin tärkeää ottaa huomioon erityisesti autonomisten laitteiden käytössä, sillä tahallinen tai tahaton häirintä voi aiheuttaa vakavia seurauksia. Häiriösietoisuutta voidaan lisätä vertaamalla magneettianturin tuottamaa ratkaisua kulmanopeusanturin tuottamaan ratkaisuun. Tällöin on kuitenkin huolehdittava siitä että kulmanopeusanturin virheet pystytään mallintamaan riittävän hyvin. Käytännössä on siis pidettävä anturiyksikön lämpötila vakiona tai käytettävä tarkkaa mallia joka kuvaa lämpötilan muutoksen vaikutusta anturin tuottamiin mittauksiin. Mittaukset suoritettiin kaupunkiympäristössä, jossa magneettikentän häiriöt lienevät vakavampia kuin todellisessa vedenalaisessa ympäristössä. Tahallisen ja tahattoman häirinnän vaikutuksia tulisikin siksi tutkia myös kontrolloiduilla vedenalaisilla mittauskampanjoilla. 6. Tutkimuksen tuottamat tieteelliset julkaisut ja muut mahdolliset raportit Tutkimuksen tuloksia raportoidaan laajemmin tekeillä olevassa diplomityössä.

TIIVISTELMÄRAPORTTI HAJASPEKTRISIGNAALIEN HAVAITSEMINEN ELEKTRONISESSA SO- DANKÄYNNISSÄ

TIIVISTELMÄRAPORTTI HAJASPEKTRISIGNAALIEN HAVAITSEMINEN ELEKTRONISESSA SO- DANKÄYNNISSÄ 2011/797 ISSN 1797-3457 (verkkojulkaisu) ISBN (PDF) 978-951-25-2280-4 TIIVISTELMÄRAPORTTI HAJASPEKTRISIGNAALIEN HAVAITSEMINEN ELEKTRONISESSA SO- DANKÄYNNISSÄ Janne Lahtinen*, Harp Technologies Oy Josu

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen

Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen 08.09.2014 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4 Estimointi Laajennettu Kalman-suodin AS-84.2161, Automaation signaalinäsittelymenetelmät Lasuharjoitus 4 Estimointi Systeemin tilaa estimoidaan, un prosessin tilamalli tunnetaan Tilamalli voi olla lineaarinen

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

13.7.2011 Sir Elwoodin Hiljaiset Värit 20.7.2011 22-Pistepirkko 22.7.2011 Haloo Helsinki

13.7.2011 Sir Elwoodin Hiljaiset Värit 20.7.2011 22-Pistepirkko 22.7.2011 Haloo Helsinki MITTAUSRAPORTTI 29.7.2011 Panimoravintola Huvila Jussi Hukkanen Puistokatu 4 57100 SAVONLINNA MELUMITTAUS PANIMORAVINTOLA HUVILAN KESÄKONSERTISTA 1. JOHDANTO Panimoravintola Huvilan Jussi Hukkanen on pyytänyt

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

Mittausepävarmuuden laskeminen

Mittausepävarmuuden laskeminen Mittausepävarmuuden laskeminen Mittausepävarmuuden laskemisesta on useita standardeja ja suosituksia Yleisimmin hyväksytty on International Organization for Standardization (ISO): Guide to the epression

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT. Erkki Björk. Kuopion yliopisto PL 1627, 70211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO

ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT. Erkki Björk. Kuopion yliopisto PL 1627, 70211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT Erkki Björk Kuopion yliopisto PL 1627, 7211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO Melun vaimeneminen ulkoympäristössä riippuu sää- ja ympäristöolosuhteista. Tärkein ääntä

Lisätiedot

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan

Lisätiedot

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1

Lisätiedot

Sideaineen talteenoton, haihdutuksen ja tunkeuma-arvon tutkiminen vanhasta päällysteestä. SFS-EN 12697-3

Sideaineen talteenoton, haihdutuksen ja tunkeuma-arvon tutkiminen vanhasta päällysteestä. SFS-EN 12697-3 Sideaineen talteenoton, haihdutuksen ja tunkeuma-arvon tutkiminen vanhasta päällysteestä. SFS-EN 12697-3 1 Johdanto Tutkimus käsittelee testausmenetelmästandardin SFS-EN 12697-3 Bitumin talteenotto, haihdutusmenetelmää.

Lisätiedot

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI Mikko Kylliäinen Insinööritoimisto Heikki Helimäki Oy Dagmarinkatu 8 B 18, 00100 Helsinki kylliainen@kotiposti.net 1 JOHDANTO Suomen rakentamismääräyskokoelman

Lisätiedot

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Marko Vauhkonen Kuopion yliopisto Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Sisältö Mallintamisesta mallien käyttötarkoituksia

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Monisensoripaikannusta kaikissa ympäristöissä

Monisensoripaikannusta kaikissa ympäristöissä Monisensoripaikannusta kaikissa ympäristöissä Ratkaisuja Luonnosta - Lynetin tutkimuspäivä 4.10.2016 Sanna Kaasalainen Laura Ruotsalainen FGI:n Navigoinnin ja paikannuksen osasto Henkilöstö: 18 Tutkimus

Lisätiedot

PORAPAALUTUKSEN AIHEUTTAMAN MELUN MITTAUS Pasilan Uusi Silta YIT Rakennus Oy

PORAPAALUTUKSEN AIHEUTTAMAN MELUN MITTAUS Pasilan Uusi Silta YIT Rakennus Oy 9.7.2015 PORAPAALUTUKSEN AIHEUTTAMAN MELUN MITTAUS Pasilan Uusi Silta YIT Rakennus Oy 7.7.2015 Helsinki Lf Segersvärd Oy Finnrock Ab Gsm: 010 832 1319 lf.segersvard@finnrock.fi 9.7.2015 SISÄLLYS TERMIT

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa Tapio Nummi Tampereen yliopisto Runkokäyrän ennustaminen Jotta runko voitaisiin katkaista optimaalisesti pitäisi koko runko mitata etukäteen. Käytännössä

Lisätiedot

Mittausverkon pilotointi kasvihuoneessa

Mittausverkon pilotointi kasvihuoneessa Mittausverkon pilotointi kasvihuoneessa Lepolan Puutarha Oy pilotoi TTY:llä kehitettyä automaattista langatonta sensoriverkkoa Turussa 3 viikon ajan 7.-30.11.2009. Puutarha koostuu kokonaisuudessaan 2.5

Lisätiedot

Satelliittipaikannuksen tarkkuus hakkuukoneessa. Timo Melkas Mika Salmi Jarmo Hämäläinen

Satelliittipaikannuksen tarkkuus hakkuukoneessa. Timo Melkas Mika Salmi Jarmo Hämäläinen Satelliittipaikannuksen tarkkuus hakkuukoneessa Timo Melkas Mika Salmi Jarmo Hämäläinen Tavoite Tutkimuksen tavoite oli selvittää nykyisten hakkuukoneissa vakiovarusteena olevien satelliittivastaanottimien

Lisätiedot

Tasoittamattomat fotonikeilat, dosimetrian haasteet ja käytännöt. Sädehoitofyysikoiden 31. neuvottelupäivät 5.-6.6.2014 Billnäsin ruukki, Raasepori

Tasoittamattomat fotonikeilat, dosimetrian haasteet ja käytännöt. Sädehoitofyysikoiden 31. neuvottelupäivät 5.-6.6.2014 Billnäsin ruukki, Raasepori Tasoittamattomat fotonikeilat, dosimetrian haasteet ja käytännöt. Sädehoitofyysikoiden 31. neuvottelupäivät 5.-6.6.2014 Billnäsin ruukki, Raasepori petri.sipilä@stuk.fi Haasteet FFF keilassa? FFF keila

Lisätiedot

SSL syysseminaari 29.10.2013 Juha Hyssälä

SSL syysseminaari 29.10.2013 Juha Hyssälä SSL syysseminaari 29.10.2013 Juha Hyssälä Lääketieteellisessä tutkimuksessa on perinteisesti käytetty elinaika-analyysissä Coxin suhteellisen vaaran mallia ja/tai tämän johdannaisia. Kyseinen malli kuitenkin

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:

Lisätiedot

Materiaalien käytettävyys: käsikäyttöisten lämpömittarien vertailututkimus

Materiaalien käytettävyys: käsikäyttöisten lämpömittarien vertailututkimus Raimo Ruoppa & Timo Kauppi B Materiaalien käytettävyys: käsikäyttöisten lämpömittarien vertailututkimus LAPIN AMK:N JULKAISUJA Sarja B. Raportit ja selvitykset 19/2014 Materiaalien käytettävyys: käsikäyttöisten

Lisätiedot

Vuoden 2005 eläkeuudistuksen

Vuoden 2005 eläkeuudistuksen Vuoden 2005 eläkeuudistuksen vaikutus eläkkeelle siirtymiseen Roope Uusitalo HECER, Helsingin yliopisto Aktuaariyhdistys 23.10. 2013 Tutkimuksen tavoite Arvioidaan vuoden 2005 uudistusten kokonaisvaikutus

Lisätiedot

t osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä

t osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä Mittausepävarmuuden määrittäminen 1 Mittausepävarmuus on testaustulokseen liittyvä arvio, joka ilmoittaa rajat, joiden välissä on todellinen arvo tietyllä todennäköisyydellä Kokonaisepävarmuusarvioinnissa

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

LÄMPÖTILAN VERTAILUMITTAUS L11, PT100-ANTURIN SOVITUSMENETELMÄN KEHITTÄMINEN

LÄMPÖTILAN VERTAILUMITTAUS L11, PT100-ANTURIN SOVITUSMENETELMÄN KEHITTÄMINEN MITTATEKNIIKAN KESKUS Julkaisu J3/2001 LÄMPÖTILAN VERTAILUMITTAUS L11, PT100-ANTURIN SOVITUSMENETELMÄN KEHITTÄMINEN Thua Weckström Helsinki 2001 SUMMARY The interlaboratory comparison on calculating coefficients

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Yläilmakehän luotaukset Synoptiset säähavainnot antavat tietoa meteorologisista parametrestä vain maan pinnalla Ilmakehän

Lisätiedot

TIIVISTELMÄRAPORTTI NEUTRONISÄTEILYÄ LÄHETTÄVIEN AINEIDEN HAVAITSEMINEN JA TUNNISTAMINEN

TIIVISTELMÄRAPORTTI NEUTRONISÄTEILYÄ LÄHETTÄVIEN AINEIDEN HAVAITSEMINEN JA TUNNISTAMINEN 2011/798 ISSN 1797-3457 (verkkojulkaisu) ISBN (PDF) 978-951-25-2281-1 TIIVISTELMÄRAPORTTI NEUTRONISÄTEILYÄ LÄHETTÄVIEN AINEIDEN HAVAITSEMINEN JA TUNNISTAMINEN Tiivistelmä Harri Toivonen, Philip Holm, Ari-Pekka

Lisätiedot

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit

Lisätiedot

Experiment Finnish (Finland) Hyppivät helmet - Faasimuutosten ja epätasapainotilojen mekaaninen malli (10 pistettä)

Experiment Finnish (Finland) Hyppivät helmet - Faasimuutosten ja epätasapainotilojen mekaaninen malli (10 pistettä) Q2-1 Hyppivät helmet - Faasimuutosten ja epätasapainotilojen mekaaninen malli (10 pistettä) Lue yleisohjeet erillisestä kuoresta ennen tämän tehtävän aloittamista. Johdanto Faasimuutokset ovat tuttuja

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4. LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4. LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA OAMK / Tekniikan yksikkö MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4 LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA Tero Hietanen ja Heikki Kurki TEHTÄVÄN MÄÄRITTELY Työn tehtävänä

Lisätiedot

Operaattorivertailu SELVITYS LTE VERKKOJEN NOPEUDESTA

Operaattorivertailu SELVITYS LTE VERKKOJEN NOPEUDESTA Operaattorivertailu SELVITYS LTE VERKKOJEN NOPEUDESTA SISÄLLYSLUETTELO TIIVISTELMÄ... 3 YLEISTÄ... 4 TAVOITE... 5 PAIKKAKUNNAT... 5 MITATUT SUUREET JA MITTAUSJÄRJESTELMÄ... 6 MITATUT SUUREET... 6 MITTAUSJÄRJESTELMÄ...

Lisätiedot

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä

Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista

Lisätiedot

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) MATALAN INTENSITEETIN HAJASPEKTRISIGNAALIEN HAVAITSEMINEN JA TUNNISTAMINEN ELEKTRONISESSA SODANKÄYNNISSÄ

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) MATALAN INTENSITEETIN HAJASPEKTRISIGNAALIEN HAVAITSEMINEN JA TUNNISTAMINEN ELEKTRONISESSA SODANKÄYNNISSÄ 2015/2500M-0035 ISSN 1797-3457 (verkkojulkaisu) ISBN 978-951-25-2756-4 (PDF) TIIVISTELMÄRAPORTTI (SUMMARY REPORT) MATALAN INTENSITEETIN HAJASPEKTRISIGNAALIEN HAVAITSEMINEN JA TUNNISTAMINEN ELEKTRONISESSA

Lisätiedot

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS 466111S Rakennusfysiikka, 5 op. RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma,

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312

MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 SATE.2010 Dynaaminen kenttäteoria MIKROAALTOUUNI Sivumäärä: 12 Jätetty tarkastettavaksi:

Lisätiedot

PAMPALON KULTAKAIVOKSEN LASKEUMAMITTAUKSET 2012. Mittausaika: 13.6. - 9.10.2011. Hattuvaara, Ilomantsi

PAMPALON KULTAKAIVOKSEN LASKEUMAMITTAUKSET 2012. Mittausaika: 13.6. - 9.10.2011. Hattuvaara, Ilomantsi Mittausraportti_1196 /2012/OP 1(10) Tilaaja: Endomines Oy Henna Mutanen Käsittelijä: Symo Oy Olli Pärjälä 010 666 7818 olli.parjala@symo.fi PAMPALON KULTAKAIVOKSEN LASKEUMAMITTAUKSET 2012 Mittausaika:

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla Metsätietee päivä, 6.0.0 Katobiomassa määrä mallitamie leimikoissa hakkuukoemittauste avulla Heikki Ovaskaie, Itä Suome yliopisto Pirkko Pihlaja, UPM Kymmee Teijo Palader, Itä Suome yliopisto Johdato Suomessa

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

VUOTOTUTKIMUSRAPORTTI. Vuove-vuotovesitutkimus

VUOTOTUTKIMUSRAPORTTI. Vuove-vuotovesitutkimus VUOVE-INSINÖÖRIT OY Korvenojantie 44 05200 Rajamäki 050-5459972 E-mail timo.tammenlarva@kolumbus.fi VUOTOTUTKIMUSRAPORTTI Vuove-vuotovesitutkimus ESIMERKKIRAPORTTI 2015 Vuove-Insinöörit Oy 050 5459972

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen

Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen Experiment on psychophysiological responses in an economic game (valmiin työn esittely) Juulia Happonen 13.01.2014 Ohjaaja: DI Ilkka Leppänen Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa

Lisätiedot

TRANSECO Tutkijaseminaari Oulun yliopisto

TRANSECO Tutkijaseminaari Oulun yliopisto TRANSECO Tutkijaseminaari 3.11.2011 Oulun yliopisto RAMSES Liukkauden ja massan estimointi TAVOITTEET Tavoitteet - Tausta Tietolähteet ja tiedonkeruu Ajoneuvojen tietokonepohjaiset järjestelmät Tiesääjärjestelmä

Lisätiedot

Top Analytica Oy Ab. XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio

Top Analytica Oy Ab. XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio XRF Laite, menetelmät ja mahdollisuudet Teemu Paunikallio Röntgenfluoresenssi Röntgensäteilyllä irroitetaan näytteen atomien sisäkuorilta (yleensä K ja L kuorilta) elektroneja. Syntyneen vakanssin paikkaa

Lisätiedot

Insinööritoimisto Geotesti Oy TÄRINÄSELIVITYS TYÖNRO 060304. Toijalan asema-alueen tärinäselvitys. Toijala

Insinööritoimisto Geotesti Oy TÄRINÄSELIVITYS TYÖNRO 060304. Toijalan asema-alueen tärinäselvitys. Toijala Insinööritoimisto Geotesti Oy TÄRINÄSELIVITYS TYÖNRO 060304 Toijalan asema-alueen tärinäselvitys Toijala Insinööritoimisto TÄRINÄSELVITYS Geotesti Oy RI Tiina Ärväs 02.01.2006 1(8) TYÖNRO 060304 Toijalan

Lisätiedot

Vertaileva lähestymistapa järven virtauskentän arvioinnissa

Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Vertaileva lähestymistapa järven virtauskentän arvioinnissa Sisältö: 1. Virtauksiin vaikuttavat tekijät 2. Tuulen vaikutus 3. Järven syvyyden

Lisätiedot

KÄYTTÖOPAS DIGIOHM 40

KÄYTTÖOPAS DIGIOHM 40 KÄYTTÖOPAS DIGIOHM 40 1. JOHDANTO 1.1. Turvallisuus Lue tämä käyttöopas huolellisesti läpi ja noudata sen sisältämiä ohjeita. Muuten mittarin käyttö voi olla vaarallista käyttäjälle ja mittari voi vahingoittua.

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

MMEA Measurement, monitoring and environmental assessment

MMEA Measurement, monitoring and environmental assessment MMEA Measurement, monitoring and environmental assessment D4.5.1.2 Test report Tekijät: Antti Rostedt, Marko Marjamäki Tampereen teknillinen yliopisto Fysiikan laitos PPS-M anturin hiukkaskokovaste Johdanto

Lisätiedot

Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät. Laskuharjoitus 3

Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät. Laskuharjoitus 3 Kalman-suodin AS-84.2161, Automaation signaalinäsittelmenetelmät Lasuhajoitus 3 Ideaalisen posessin tilamalli x( 1) x( ) Ax( ) Bu( ) u B A x Slide 2 Ideaalisen posessin tilamalli x( 1) x( ) Ax( ) Bu( )

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Hakkeen kosteuden on-line -mittaus

Hakkeen kosteuden on-line -mittaus Hakkeen kosteuden on-line -mittaus Julkaisu: Järvinen, T., Siikanen, S., Tiitta, M. ja Tomppo, L. 2008. Yhdistelmämittaus hakkeen kosteuden on-line -määritykseen. VTT-R-08121-08 Tavoite ja toteutus Hakkeen

Lisätiedot

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara

Vanhankaupunginkosken ultraäänikuvaukset Simsonar Oy Pertti Paakkolanvaara Vanhankaupunginkosken ultraäänikuvaukset 15.7. 14.11.2014 Simsonar Oy Pertti Paakkolanvaara Avaintulokset 2500 2000 Ylös vaellus pituusluokittain: 1500 1000 500 0 35-45 cm 45-60 cm 60-70 cm >70 cm 120

Lisätiedot