SPSS Statistics 17 tuoteperhe

Koko: px
Aloita esitys sivulta:

Download "SPSS Statistics 17 tuoteperhe"

Transkriptio

1 SPSS Statistics 17 tuoteperhe

2 Sisältö Peruspaketti: SPSS Base 3 SPSS Programmability 4 Lisämodulit: SPSS Statistics Tables 5 SPSS Statistics Regression 6 SPSS Statistics Advanced Statistics 7 SPSS Statistics Forecasting 8 SPSS Statistics Exact Tests 9 SPSS Statistics Categories 10 SPSS Statistics Missing Values 11 SPSS Statistics Conjoint 12 SPSS Statistics Complex Samples 13 SPSS Statistics Decision Trees 14 SPSS Statistics Data Preparation 15 SPSS Statistics Neural Networks 16 SPSS Statistics EZ RFM TM 17 Analyysiprosessin hallinta ja integraatio: SPSS Predictive Enterprise Services (PES) 18 2

3 SPSS Statistics 17 Base SPSS Statistics 17 Base SPSS Statistics Base sisältää kaikki toiminnot tiedon syöttöön, tietokantojen käsittelyyn ja hallintaan. Muuttujien uudelleenkoodaukset, uusien muuttujien luomiset sekä aikamuuttujien käsittelyt onnistuvat nopeasti helppokäyttöisillä muokkaustoiminnoilla. Mukana ovat myös tilastolliset tunnusluvut, suhdeluvut ja korrelaatiot. Seuraavat analyysit sisältyvät Base moduliin: Ristiintaulukointi ja khii-toiseen riippumattomuustesti Keskiarvotestit t-testit Yksi- ja useampisuuntainen varianssianalyysi sekä kovarianssianalyysi Lineaarinen regressioanalyysi sekä Curve estimation toiminto (11 eri regressiomallia yhden selittäjän ja yhden selitettävän mallille) Järjestysasteikollisten regressioanalyysi eli Ordinal Regression Ryhmittelyanalyysi Hierarkkinen ryhmittelyanalyysi K-Means Two Step ryhmittelyanalyysi Erotteluanalyysi Faktori- ja pääkomponenttianalyysi Reliabiliteettianalyysi ja moniulotteinen skaalaus (MDS) Ei-parametriset menetelmät Lähimmän naapuruuden menetelmä (Nearest Neighbor) Multiple Response taulukot (monivastausmuuttujien käsittely) Matriisikieli, makrot sekä toimintojen ohjelmoitavuus käyttäen ulkopuolista ohjelmointikieltä, esim. python. Tulokset esitetään pivot-taulukoina, joita voidaan pyöritellä, piilottaa, kopioida ja muokata haluttuun muotoon. Taulukot on helppo tallentaa muihin sovelluksiin Export-toiminnon avulla: HTML, txt-muoto, Word, Excel, PowerPoint ja pdf. Mukana on yli 50 yleisintä kuvatyyppiä. Kuvia voi tehdä joko standardigrafiikalla tai käyttäen Chart Builder interaktiivista kuvan rakennustoimintoa. Lisäksi käytettävissä Graphboard - toiminto, jossa SPSS Viz Designer TM :lla tuotettuja kuvatemplateja, joilla saa tehtyä perusgrafiikkaan kuulumattomia erikoiskuvia. 5 3

4 SPSS Statistics 17 Programmability Extension SPSS Statistics 17 Programmability Extension SPSS Statistics Basen sisältämä SPSS Programmability Extension mahdollistaa ulkoisten ohjelmontikielten käytön osana SPSS-komentokieltä ja SPSS-toimintojen käytön muista ohjelmista. SPSS versioon 16 on kehitetty mm. seuraavat ulkoisten ohjelmointikielten käytön mahdollistavat adapterit: SPSS-Python Integration Plug-In Python plug-in sallii Python-kielellä tehtyjen toimintojen ja menetelmien käytön osana SPSS komentokieltä sekä SPSS-ohjelman toimintojen käytön ulkopuolisesta, Pythonilla tehdystä ohjelmasta. SPSS-asennusmedian mukana toimitettava avoimeen lähdekoodiin perustuva Scientific Algorithms Library for Python (SCIPY) kirjasto sisältää mm. tilastollisia menetelmiä, optimointialgoritmeja, lineaarialgebran toimintoja sekä signaalin- ja kuvankäsittelyn menetelmiä. SPSS-R Integration Plug-In R-kieli on avoimeen lähdekoodiin perustuva ohjelmointikieli, joka on kehitetty tilastolliseen tutkimukseen. Se sisältää graafiikkatoimintoja ja suuren määrän erilaisia tilastollisia menetelmiä. Kieli on tiedeyhteisössä laajasti käytetty ja suuri osa uusista algoritmeista ja menetelmistä julkaistaan nimenomaan R-kielellä. SPSS-R Integration Plug-In mahdollistaa R-kielen käytön osana SPSS-komentokieltä. Tällä kielellä toteutetut menetelmät voivat näin käyttää SPSS-aineistoja ja tuottaa SPSStulosteita. SPSS-VB.NET Plug-In Nykyinen VB.NET adapteri mahdollistaa SPSS-aineistojen ja toimintojen käytön ulkopuolisesta VB.NET ohjelmasta. Siten toimintojen kutsuminen ja tuloksien käisttely tapahtuu VB.NET -kielellä kirjoitetussa ohjelmassa, ei SPSS käyttöliittymän kautta. 4

5 SPSS Statistics 17 Tables SPSS Statistics 17 Tables SPSS Statistics Tables tuottaa julkaisuvalmiita taulukoita, joiden ulkoasu ja sisältö voidaan määritellä tilanteen mukaan. SPSS Tables mahdollistaa moniulotteisen taulukon tuottamisen halutuilla tunnusluvuilla sekä monivastauskysymysten taulukoinnin. Mukana ryhmienväliset keskiarvo- ja jakaumatestit sekä khii-toiseen riippumattomuustesti. Testit myös monivastauskysymyksille. Samaan taulukkoon voidaan taulukoida useiden eri muuttujien jakaumia.taulukoiden määrittely on helppoa siirretään vain halutut muuttujat paikoilleen taulukon esikatseluosaan ja tarkennetaan, mitä tietoja taulukossa halutaan esittää. Jo määrittelyvaiheessa nähdään millainen taulukosta tulee. 5

6 SPSS Statistics 17 Regression Models SPSS Statistics 17 Regression Kun tavallinen lineaarinen regressio ei riitä tai sen vaatimat oletukset eivät ole voimassa, tarjoaa Regression lisämoduli lisää vaihtoehtoja. Voit tehdä erilaisia selitysmalleja käytettävissä olevien muuttujien ja ominaisuuksien puitteissa. Voit selittää binääristä ilmiötä logistisella regressiolla, moniluokkaisissa tapauksissa multinomisella logistisella regressiolla, tai jos selitettävä ilmiö ei ole lineaarinen, voit käyttää epälineaarista regressiota määrittelemällä itse mallin. Regression analyysit: Logistinen regressio (Binary Logistic Regression (BLR)) Multinominen logistinen regressio (Multinomial Logistic Regression (MLR)) Epälineaarinen regressio (Nonlinear Regression (CNLR/NLR)) Pienimmän neliösumman menetelmät Weighted Least Square Regression (WLS) Two-stage least squares (2SLS) Probit analyysi Kuva: Käytä binääristä logistista regressioita ennustamaan kaksiluokkaisen tapahtuman todennäköisyyttä. 6

7 SPSS Statistics 17 Advanced Statistics SPSS Statistics 17 Advanced Statistics SPSS Statistics Advanced Statistics tarjoaa luotettavat analyysit, kun selitettävä ilmiö koostuu useista muuttujista tai kun työskennellään hierarkisesti jakautuneen datan kanssa. Seurantatutkimusten yhteydessä tarvittavat toistomittaukset sekä tilanteet, joissa eri toistoilla on eri määrä mittareita tai eri havainnoilla eri mitta-asteikot, hoituvat myös Advanced Statisticsin menetelmillä. Lisämoduli tarjoaa myös huippuunsa kehitetyt elinaikamenetelmät, jos tarkastellaan tapahtuman historiaa ja kestoa, mm. Kaplan-Meier ja Cox Regression. Advanced Statistics analyysit: GENLIN (Generalized linear models) GEE (Generalized estimating equations ) Sekamallit (Mixed models) Monimuuttujainen varianssianalyysi (MANOVA, MANCOVA) Toistomittaukset (Repeated Measures) Varianssikomponenttianalyysi (VARCOMP) Eloonjäämisanalyysi (Survival) Kaplan-Meier - estimointi Cox Regressio Loglineaariset mallit Kuva: Kolmetasoisen toistomittauksen tuottama profiilikuva 7

8 SPSS Statistics 17 Forecasting SPSS Statistics 17 Forecasting Käsiteltäessä aikasarjadataa, esimerkiksi kuukausittaisia myyntilukemia ja halutaan tuottaa ennusteita edellisvuosien myynnin mukaan tai halutaan tarkastella bruttokansantuotteen kehittymistä vuosien varrella, SPSS Statistics Forecasting aikasarjapaketti tarjoaa tähän välineet. Forecasting-lisämodulin Expert Modeler etsii automaattisesti parhaan mallin, se myös kertoo mitkä tekijät parhaiten kykenevät selittämään aikajänteen kehitystä. Voit myös itse määritellä manuaalisesti omilla parametreilla sopivan mallin. ARIMA-mallien ja eksponentiaalisen tasoituksen lisäksi mukana myös spektraalianalyysi (SPECTRA) ja kausivaihtelutasoitus (SEASON) Kuva 1: Aikasarja-analyysin tuottama kuva (ennuste vs tapahtunut) Kuva 2: ACF-kuva kertoo autokorrelaation suuruuden eri viiveillä 8

9 SPSS Statistics 17 Exact Tests SPSS Statistics 17 Exact Test SPSS Statistics Exact Tests on lisämoduli tilanteisiin, joissa halutaan analysoida vinosti jakautuneita aineistoja (esimerkiksi suuri prosentti vastanneista yhdessä luokassa), tai kun otoskoko on pieni. SPSS Statistics Exact Tests laskee luotettavat tulokset huolimatta otoksesi rakenteesta ja jakaumasta. Mukana yli 30 tarkkaa testiä tilanteisiin, joissa perinteiset testit epäonnistuvat. Exact testeillä voit käyttää pienempiä otoskokoja ja silti luottaa tuloksiisi. Exact testit varmistavat että sinulla on aina oikea testi käytettävissäsi. Sisältää: Exact p-arvot (1- ja 2-suuntaisen testauksen p-arvot) Fisherin Exact -testin Monte Carlon p-arvot Exact testit löytyvät ristiintaulukoinnin (Crosstabs) alla oleville menetelmille sekä eiparametrisille testeille. Kuva: Lisämoduli ei tuo valikoihin lisäkohtia, mutta sen sisältämät testit näkyvät vaihtoehtoisina analyyseinä Exact -painakkeen alla. 9

10 SPSS Statistics 17 Categories SPSS Statistics 17 Categories SPSS Statistics Categories lisämodulin avulla ei tarvitse tyytyä epätarkkoihin tuloksiin aineiston ollessa perinteisten mallien vaatimusten vastainen. Korkealuokkaisten havaintokarttojen avulla voidaan nähdä helposti muuttujien ja eri luokkien väliset riippuvuudet. Lähellä toisiaan olevat luokat tai muuttujat riippuvat toisistaan ja mitä pidempi välimatka eri muuttujien tai luokkien välillä on, sitä vähemmän niillä on tekemistä toistensa kanssa. Kts kuva alla. SPSS Statistics Categories -lisämodulin tekniikat varmistavat, että kaikki tarvittavat työkalut ovat käytettävissä monimuuttujaisen luokitellun datan ja sen riippuvuuksien täydelliseen tutkimiseen. Categories sisältää seuraavat analyysit: Luokkamuuttujille regressioanalyysi (CATREG) Korrespondenssianalyysi perusristiintaulukoinnin jatkotarkasteluihin Moniulotteinen korrespondenssianalyysi (Multiple correspondence analysis) Luokkamuuttujille pääkomponenttianalyysi (CATPCA) Epälineaarinen kanoninen korrelaatioanalyysi (OVERALS) Moniulotteisen skaalauksen menetelmä PROXSCAL PREFSCAL (preference scaling) syntaksin kautta. Kuva: Tutki muuttujien eri luokkien välisiä yhteyksiä korrespondenssianalyysillä 10

11 SPSS Statistics 17 Missing Values SPSS Statistics 17 Missing Values Kyselytutkimukset tuottavat paljon puuttuvia tietoja, kun vastaajat eivät halua tai eivät osaa vastata joihinkin kysymyksiin. Missing Values on paljon puuttuvaa tietoa sisältävän aineiston analysointimenetelmä. Se tutkii aineiston reikiä eli puuttuvia arvoja. Kun otat puuttuvat havainnot mukaan tarkasteluun, saat tilastollisesti merkitsevämpiä tuloksia. Ohjelma tuottaa nopeasti ja helposti yhteenvedot puuttuvien tietojen yhteisistä tekijöistä. Missing Values -lisämodulin avulla tutkit, löytyykö puuttuvien tietojen taustalta yhtenäisiä ryhmiä. Ketkä ovat ne jotka eivät vastaa kysymyksiin, ja ovatko puuttuvat tiedot satunnaisia vai tietyn ryhmän aikaansaannoksia? Missing Values vertaa tiettyjen luokkamuuttujien välisiä eroja puuttuvien tietojen ja vastattujen välillä. Se sisältää myös puuttuvien tietojen korvaamismenetelmiä (EM ja Regressiomenetelmät) sekä SPSS Statistics 17:een uutena tulleen Multiple Imputation - menetelmän. supu Total Mies Nainen avioika Present Missing Count Percent % nap % na ,1 19,1, ,8 22,2 1,1 Indicator variables with less than 5% missing are not displayed ,7 16,8,6 Tabulated Patterns Missing Patterns a c sivsaaty c Number of Cases 1189 rotu supu sivsaaty ika opiskvuo tvkatsel avioika Complete if... b 1189 naimisissa 786 leski 159 eronnut 207 asumuserossa 37 naimaton X Patterns with less than 10% cases (150 or fewer) are not displayed. a. Variables are sorted on missing patterns. b. Number of complete cases if variables missing in that pattern (marked with X) are not used. c. Frequency distribution at each unique pattern Kuva: Missing Values luo ryhmittymiä puuttuvien tietojen perusteella, joista saa halutessa jakaumatiedot ja tunnusluvut taustatiedoille. Näiden avulla voidaan nähdä, jos ryhmittymissä on samanlaisia joukkoja. 11

12 SPSS Statistics 17 Conjoint SPSS Statistics 17 Conjoint Conjoint on analyysipaketti, jolla analysoit helposti asiakkaasi mieltymyksiä eri tuotteiden ominaisuuksien suhteen. Esimerkiksi Kuinka tärkeitä tuotteen hinta ja ympäristöystävällisyys itse asiassa ovatkaan? Kun halutaan tietää esim. Mitkä tuotteen ominaisuudet, piirteet tai palvelut tuottavat ostopäätöksen? Mitkä ominaisuudet yhdessä tuovat parhaan tuloksen? Mikä markkinasegmentti on kiinnostunein tuotteesta? Millainen viesti vetoaa parhaiten juuri tähän asiakasryhmään? SPSS Statistics Conjoint sisältää: Orthogonaalisen design menetelmän (Orthoplan) Plancards korttien tuottaminen suoraan siirrettäväksi esim. Wordiin jatkokäsiteltäväksi Conjoint analyysin (3 simulointimenetelmää) - Max utility - Bradley-Terry-Luce (BTL) - Logit Kuva: Conjointin tuottama Summary Utilities kuva. Voidaan nähdä ModelKR2 saanut parhaat pisteet, A-Design -tuotteella vähiten brändiarvoa 12

13 SPSS Statistics 17 Complex Samples SPSS Statistics 17 Complex Samples SPSS Statistics Complex Samples -lisämodulilla käsitellään luotettavasti moniasteisella otannalla poimittuja otoksia. Otanta voidaan suorittaa käyttäen perinteisiä otantamenetelmiä yksinkertaista satunnaisotantaa, systemaattista otantaa tai ositettua otantaa asteittain. Voidaan käyttää Complex Samplesin analyysejä myös valmiille moniasteisella otannalla poimitulle otokselle vain määrittelemällä, miten otanta on tehty. Sisältää kompleksisten otosten Frekvenssit Tunnusluvut Ristiintaulukoinnin (Crosstabs) Suhdeluvut (Ratio) Yleistetyt lineaariset mallit (CSGLM) Logistisen Regression (CSLOGISTIC) Ordinal Regression (CSORDINAL) Cox Regression (CSCOXREG) Sampling Plan Wizardin avulla suunnittelet ja määrittelet helposti otantaraamit moniasteiselle otannalle ja suoritat otannan halutulla tavalla. Analysis Preparation Wizardin avulla määrittelet otanta-asetelmasi ohjelmalle sekä valitset halutun estimointimetodin. Kun määrittelyt on tehty (käytetään ns. plan-tiedostoja, missä käytetyt menetelmät ja painot on määritelty), voidaan käyttää Complex Samplesin analysointitoimintoja. 13

14 SPSS Statistics 17 Decision Trees SPSS Statistics 17 Decision Trees Decision Trees on segmentointipaketti, joka tuottaa päätöspuita. Se etsii automaattisesti toisistaan eroavia tapaussegmenttejä tai ryhmiä sekä esittää tuloksen helposti luettavassa muodossa puudiagrammina. SPSS Statistics Decision Trees lisämodulin avulla voidaan selittää niin luokitellun kuin jatkuvankin muuttujan jakaumia. Menetelmät sopivat hyvin esimerkiksi markkinatutkimuksiin ja luottotietoanalyyseihin. Valittavana on neljä eri menetelmää: CHAID Exhaustive CHAID CRT QUEST Kuva: Tulokset ovat luettavissa helposti visuaalisen puudiagrammin avulla, jossa jakaumat esitetään joko taulukoina, kuvina tai molempina. 14

15 SPSS Statistics 17 Data Preparation SPSS Statistics 17 Data Preparation Data Preparation lisämoduli tutkii aineiston validiuden, puuttuvien havaintojen määrän ja poikkeavat havinnot. Voidaan luoda sääntöjä, joiden avulla löytyvät epä-validit arvot (esim. ei yli 100-vuotiaita) ja loogisia tarkistusehtoja (esim. ei voi olla sekä raskaana että mies ). Ohjelma tuottaa muuttujia, joiden avulla epä-validit tapaukset/havainnot voidaan halutessa poistaa tai niitä voidaan tutkia erikseen. Identify Unusual Cases toiminnolla voidaan löytää datasta poikkeavia havaintoja, joita yksittäisiä muuttujia tarkastelemalla ei pystyisi havaitsemaan. Optimal Binning luokittelee muuttujan automaattisesti toisistaan eroaviin ryhmiin. Case Case Report Validation Rule Violations Single-Variable a Cross-Variable Aikuisvastaajat (1) naimattomat avioituneet naimattomat avioituneet avioitunut ennen syntym avioitunut ennen syntym avioitunut ennen syntym Identifier Vastaajan id numero avioitunut ennen syntym 1581 a. The number of variables that violated the rule follows each rule Kuva: Validate data tuottaa taulukon, joka identifioi havainnot, jotka rikkovat luotuja sääntöjä 15

16 SPSS Statistics 17 Neural Networks SPSS Statistics 17 Neural Networks Lisämoduli Neural Networks tuo neuroverkkomenetelmät SPSS-käyttäjien avuksi. Se rakentaa neuroverkkojen avulla ennakointimalleja niin luokka- kuin jatkuvillekin muuttujille. Menetelmät: MLP Multilayer Perceptron RBF Radial Basis Function 16

17 SPSS Statistics 17 EZ RFM TM SPSS Statistics 17 EZ RFM TM SPSS Statistics 17:n myötä tullut uusi lisämoduli EZ RFM TM (nimi tulee sanoista: recency, frequency ja monetary) tuo RFM analyysit käyttöösi: RFM-analyysi antaa vastauksen kolmeen tärkeään kysymykseen: - kuinka usein? - paljonko määrällisesti? - paljonko rahallisesti? 17

18 SPSS Predictive Enterprise Services SPSS Predictive Enterprise Services PES on järjestelmä, joka mahdollistaa analyysiprosessin tehokkaamman hallinnan ja auttaa tulosten käyttöönottamisessa läpi koko organisaation. Analyyttisen omaisuuden hallinta PES parantaa tehokkuutta ja turvallisuutta keskittämällä aineistojen, mallien ja tulosten säilyttämisen yhteiseen tietovarastoon. Käyttöoikeudet ja versionhallinta tuovat toistettavuutta ja varmuutta koko prosessiin. Työn tulosten jakaminen ja uudelleenkäyttäminen puolestaan parantavat analyytikkotyön tuottavuutta. Kuva: Käyttäjien, mallien ja aineistojen lisäksi hallintatyökaluilla voidaan ohjata ja monitoroida palvelintuotteita kuten Clementine Server ja SPSS Server. 18

19 SPSS Predictive Enterprise Services Automatisointi ja prosessin hallinta PES mahdollistaa monia toimintoja sisältävien laskenta-ajojen automatisoinnin ja ajastamisen. PES voi käynnistää myös muita ohjelmia, kuten tietokanta-ajoja tai aineiston siirron verkosta. Työhön ja sen vaiheisiin voidaan liittää sähköposti-ilmoitukset, jotka kertovat prosessin kulusta. Kuva: Predictive Enterprise Services mahdollistaa monivaiheisten prosessien automatisoinnin ja ajastamisen. Kun eri tietolähteet, käytettävät palvelimet ja käyttäjätilit on määritelty PESiin, voidaan vakioprosessit suorittaa automaattisesti. Sähköpostiilmoitus ja hallintaportaalista luettavat logitiedot kertovat, mikäli toiminto ei suju odotetusti Vakioidut aineistonäkymät Vakioitu aineistonäkymä tarkoittaa sitä, että mallintamiseen käytettävän aineiston ja sen fyysisen sijainnin väliin luodaan rajapinta Predictive Enterprise View joka vakioi tiettyyn käyttötarkoitukseen tehtävien mallien käyttämän aineiston muodon. Tällä tavalla suurenkin mallimäärän kehittäminen, testaaminen ja jopa automaattinen päivittäminen muuttuu mahdolliseksi. Rajapintaa käyttävien mallien tarkkuutta voidaan seurata suorituskykymittaristosta, ja huonosti toimiva malli voidaan korvata kilpailevalla jopa automaattisesti. 19

20 SPSS Finland Oy Sinikalliontie ESPOO FINLAND Puh Fax SPSS on SPSS Inc:n rekisteröity tavaramerkki SPSS Finland Oy 2008

PASW Statistics 18 tuoteperhe

PASW Statistics 18 tuoteperhe PASW Statistics 18 tuoteperhe Sisältö Peruspaketti: 3 PASW Statistics Programmability 4 Lisämodulit: PASW Tables 5 PASW Regression 6 PASW Advanced Statistics 7 PASW Forecasting 8 PASW Exact Tests 9 PASW

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1 ATH-aineiston tilastolliset analyysit SPSS/PASW 16.2.2011 SPSS analyysit / Risto Sippola 1 Aineiston avaaminen Aineisto on saatu SPSS-muotoon ja tallennettu koneelle sijaintiin, josta sitä voidaan käyttää

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014 TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA LUKIJAN NÄKÖKULMA 2 TAUSTAKYSYMYKSIÄ 3 Mitä tutkimusmenetelmiä ja taitoja opiskelijoille tulisi opettaa koulutuksen eri vaiheissa?

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

IBM SPSS Statistics 21 (= SPSS 21)

IBM SPSS Statistics 21 (= SPSS 21) Tarja Heikkilä IBM SPSS Statistics 21 (= SPSS 21) SPSS = Statistical Package for Social Sciences Ohjelman käynnistys Aloitusikkuna Päävalikot Työkalut Muuttujat (Variables) Tapaukset (Cases) Tyhjä datataulukko

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Tutkimuksen suunnittelu / tilastolliset menetelmät Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Kvantitatiivisen tutkimuksen vaiheet Suunnittelu Datan keruu Aineiston analysointi

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 Sisällysluettelo ALKUSANAT 4 ALKUSANAT E-KIRJA VERSIOON 5 SISÄLLYSLUETTELO 6 1 PERUSASIOITA JA AINEISTON SYÖTTÖ 8 11 PERUSNÄKYMÄ 8 12 AINEISTON SYÖTTÖ VERSIOSSA 9 8 Muuttujan määrittely versiossa 9 11

Lisätiedot

Tilastomenetelmien lopputyö

Tilastomenetelmien lopputyö Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien

Lisätiedot

SPSS ohje. Metropolia Business School/ Pepe Vilpas

SPSS ohje. Metropolia Business School/ Pepe Vilpas 1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Automaattinen regressiotestaus ilman testitapauksia. Pekka Aho, VTT Matias Suarez, F-Secure

Automaattinen regressiotestaus ilman testitapauksia. Pekka Aho, VTT Matias Suarez, F-Secure Automaattinen regressiotestaus ilman testitapauksia Pekka Aho, VTT Matias Suarez, F-Secure 2 Mitä on regressiotestaus ja miksi sitä tehdään? Kun ohjelmistoon tehdään muutoksia kehityksen tai ylläpidon

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Usean selittävän muuttujan regressioanalyysi

Usean selittävän muuttujan regressioanalyysi Tarja Heikkilä Usean selittävän muuttujan regressioanalyysi Yhden selittävän muuttujan regressioanalyysia on selvitetty kirjan luvussa 11, jonka esimerkissä18 muodostettiin lapsen syntymäpainolle lineaarinen

Lisätiedot

Muuttujien määrittely

Muuttujien määrittely Tarja Heikkilä Muuttujien määrittely Määrittele muuttujat SPSS-ohjelmaan lomakkeen kysymyksistä. Harjoitusta varten lomakkeeseen on muokattu kysymyksiä kahdesta opiskelijoiden tekemästä Joupiskan rinneravintolaa

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Risto Lehtonen risto.lehtonen@helsini.fi Analyysimenetelmiä ja työaluja Lineaariset mallit Regressioanalyysi

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

SPSS OPAS. Metropolia Liiketalous

SPSS OPAS. Metropolia Liiketalous 1 Metropolia Liiketalous SPSS OPAS Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio 8 8.Korrelaatio

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

SPSS-ohjeita. Metropolia Pertti Vilpas

SPSS-ohjeita. Metropolia Pertti Vilpas 1 Metropolia Pertti Vilpas SPSS-ohjeita Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: Stata 11 THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen Stata 11:llä Perustunnusluvut Regressioanalyysit Mallivakiointi 16. 2. 2011 ATH-koulutus

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Tech Conference 28.-29.5.2015. On-Premises Data Mining. Peruskäsitteet. Pekka.Korhonen@sovelto.fi. Sovelto Oyj 28.5.2015.

Tech Conference 28.-29.5.2015. On-Premises Data Mining. Peruskäsitteet. Pekka.Korhonen@sovelto.fi. Sovelto Oyj 28.5.2015. 1 Tech Conference 28.-29.5.2015 On-Premises Data Mining Pekka.Korhonen@sovelto.fi #TechConfFI Peruskäsitteet 2 2 Microsoft BI komponentit Azure Machine Learning Stream Analytics HDInsight DocumentDB Blob/table

Lisätiedot

Epävarmuuden hallinta bootstrap-menetelmillä

Epävarmuuden hallinta bootstrap-menetelmillä 1/17 Epävarmuuden hallinta bootstrap-menetelmillä Esimerkkinä taloudellinen arviointi Jaakko Nevalainen Tampereen yliopisto Metodifestivaalit 2015 2/17 Sisältö 1 Johdanto 2 Tavanomainen bootstrap Bootstrap-menettelyn

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

StatCrunch -laskentasovellus

StatCrunch -laskentasovellus StatCrunch -laskentasovellus Yleistä sovelluksesta StatCrunch on Integrated Analytics LLC:n valmistama sovellus tilastotieteellisten analyysien tuottamista varten. Se on verkon yli käytettävä analyysisovellus,

Lisätiedot

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta... JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2 Otantamenetelmät (78143) Syksy 2009 TEEMAT 3 & 4 Risto Lehtonen risto.lehtonen@helsinki.fi Teema 3 ERITYISKYSYMYKSIÄ Risto Lehtonen 2 1 Otannan erityiskysymyksiä Ryväsotanta Survey sampling reference guidelines

Lisätiedot

Webropol-kyselyt. Tarja Heikkilä

Webropol-kyselyt. Tarja Heikkilä Webropol-kyselyt Tarja Heikkilä Internet-kyselyt Soveltuvat kyselyihin, joissa kaikilla perusjoukon jäsenillä on mahdollisuus internetin käyttöön, toisin sanoen on mahdollisuus edustavan aineiston saamiseen.

Lisätiedot

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Martti Vainio, Juhani Järvikivi & Stefan Werner Helsinki/Turku/Joensuu Fonetiikan päivät 2004, Oulu 27.-28.8.2004

Lisätiedot

Otanta-aineistojen analyysi

Otanta-aineistojen analyysi Helsingin yliopisto Otanta-aineistojen analyysi Kevät 2010 Periodi III Risto Lehtonen Teema 4 Asetelmaperusteinen monimuuttujaanalyysi Logistinen ANOVA ja GWLS-estimointi Binäärinen tulosmuuttuja Diskreetit

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Monivalintamuuttujien käsittely

Monivalintamuuttujien käsittely Tarja Heikkilä Monivalintamuuttujien käsittely Datatiedosto: Yhdistä.sav Yhdistetään SPSS-ohjelmalla samaan kysymykseen kuuluvat muuttujat. Esimerkkiin liittyvä kysymys ja muita vastaavia kysymyksiä on

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

TIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO

TIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO TIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO JOUNI HUOTARI 2005-2010 OLAP-OHJETEKSTIT KOPIOITU MICROSOFTIN OHJATUN OLAP-KUUTION TEKO-OHJEESTA ESIMERKIN KUVAUS JA OLAP-MÄÄRITELMÄ

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

15 askelta kohti. Parempia kyselyitä ja tutkimuksia

15 askelta kohti. Parempia kyselyitä ja tutkimuksia 15 askelta kohti Parempia kyselyitä ja tutkimuksia Onnittelut! Lataamalla Webropol-tutkimusoppaan olet ottanut ensimmäisen askeleen kohti entistä parempien kyselyiden ja tutkimusten tekoa. Tämä opas tarjoaa

Lisätiedot

2. Aineiston kuvailua

2. Aineiston kuvailua 2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien

Lisätiedot

Jouni Huotari OLAP-ohjetekstit kopioitu Microsoftin ohjatun OLAP-kuution teko-ohjeesta. Esimerkin kuvaus ja OLAP-määritelmä

Jouni Huotari OLAP-ohjetekstit kopioitu Microsoftin ohjatun OLAP-kuution teko-ohjeesta. Esimerkin kuvaus ja OLAP-määritelmä OLAP-kuution teko Jouni Huotari OLAP-ohjetekstit kopioitu Microsoftin ohjatun OLAP-kuution teko-ohjeesta Esimerkin kuvaus ja OLAP-määritelmä Tavoitteena on luoda OLAP-kuutio Northwind-tietokannan tilaustiedoista

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä..

Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä.. Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä.. TEHTÄVÄ 1 Taulukko 1 Kuvailevat tunnusluvut pääkaupunkiseudun terveystutkimuksesta vuonna 2007 (n=941) Keskiarvo (keskihajonta) Ikä

Lisätiedot

Kirjastoasiointien tuottama hiilikuorma pääkaupunkiseudulla

Kirjastoasiointien tuottama hiilikuorma pääkaupunkiseudulla Kirjastoasiointien tuottama hiilikuorma pääkaupunkiseudulla MetropAccess-hankkeen (2011 2014) menetelmiä ja tuloksia jaani.lahtinen@helsinki.fi Päämäärä Muodostaa ennuste lainaajakannan lainaajien käyttämälle

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

I. Ristiintaulukointi Excelillä / Microsoft Office 2010

I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Savonia-ammattikorkeakoulu Liiketalous Kuopio Tutkimusmenetelmät Likitalo & Mäkelä I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Tässä ohjeessa on mainittu ensi Excelin valinnan/komennon englanninkielinen

Lisätiedot

Lajittelumenetelmät ilmakehän kaukokartoituksen laadun tarkkailussa (valmiin työn esittely)

Lajittelumenetelmät ilmakehän kaukokartoituksen laadun tarkkailussa (valmiin työn esittely) Lajittelumenetelmät ilmakehän kaukokartoituksen laadun tarkkailussa (valmiin työn esittely) Viivi Halla-aho 30.9.2013 Ohjaaja: Dos. Johanna Tamminen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4 TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Harjoitukset 4 : Paneelidata (Palautus )

Harjoitukset 4 : Paneelidata (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Automatisoinnilla tehokkuutta mittaamiseen

Automatisoinnilla tehokkuutta mittaamiseen Automatisoinnilla tehokkuutta mittaamiseen Finesse seminaari 22.3.2000 Päivi Parviainen 1 Miksi automatisoida? Mittaamisen hyödyt ohjelmistokehityksen ajantasainen seuranta ja hallinta tuotteen laadun

Lisätiedot

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi Historiaa Bayesin kaavan hyödyntäminen BN-ohjelmistoja ollut ennenkin Tanskalaisten Hugin

Lisätiedot

Alustavia käyttökokemuksia SAS Studiosta. Timo Hurme Maa- ja elintarviketalouden tutkimuskeskus MTT (v. 2015 alusta Luonnonvarakeskus / Luke)

Alustavia käyttökokemuksia SAS Studiosta. Timo Hurme Maa- ja elintarviketalouden tutkimuskeskus MTT (v. 2015 alusta Luonnonvarakeskus / Luke) Alustavia käyttökokemuksia SAS Studiosta Timo Hurme Maa- ja elintarviketalouden tutkimuskeskus MTT (v. 2015 alusta Luonnonvarakeskus / Luke) 19.9.2014 Lyhyesti SAS-koodareille suunnattu uusi käyttöliittymä

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Microsoft Dynamics CRM 4.0. Jani Liukkonen

Microsoft Dynamics CRM 4.0. Jani Liukkonen Microsoft Dynamics CRM 4.0 Jani Liukkonen Microsoft Dynamics CRM kokonaisuus Täysi CRM toiminnallisuus ja joustavuus Vuorovaikutukset -Markkinointi Myynti -Asiakaspalvelu xrm -Prosessituki SOA -Joustava

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET

HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET OHJELMAN KÄYNNISTÄMINEN Käynnistääksesi ohjelman valitse All Programs > > IBM SPSS Statistics 2x, tai käynnistä ohjelma työpöydän kuvakkeesta.

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten.

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. Tilastollinen tietojenkäsittely / SPSS Harjoitus 1 VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. 1. Avaa SPSS-ohjelma. Tarkoitus olisi muodostaa tämän sivun

Lisätiedot

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? 1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Puuttuvan tiedon ongelmat pitkittäistutkimuksissa

Puuttuvan tiedon ongelmat pitkittäistutkimuksissa 1/27 Puuttuvan tiedon ongelmat pitkittäistutkimuksissa Jaakko Nevalainen Tampereen yliopisto Sosiaalilääketieteen päivät 3.-4.11.2014 2/27 Sisältö 1 Johdanto ja peruskäsitteet 2 Mallintamiseen pohjautuvat

Lisätiedot

Määrällisen aineiston esittämistapoja. Aki Taanila

Määrällisen aineiston esittämistapoja. Aki Taanila Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot