DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola

Koko: px
Aloita esitys sivulta:

Download "DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi"

Transkriptio

1 DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola

2 Historiaa Bayesin kaavan hyödyntäminen BN-ohjelmistoja ollut ennenkin Tanskalaisten Hugin Expert Adnan Darwiche & co: SAMIAM Ei tarkoitettuja aikasarja-analyysiin

3 Mitä iloa päättelystä Bayesilaisella päättelyllä tehdään optimaalisia johtopäätöksiä havaitsemattomista asioista Otetaan huomioon esim. aika, paikka, positio kromosomissa tms. konteksti Luokittelu, segmentointi jne. piilomuuttujien avulla Automaattinen puutteellisen datan käsittely

4 BN: verkko Pohjana muuttujien riippuvuudet ilmaiseva suunnattu syklitön verkko DAG Mallin parametrit muotoa p(c pa(c)) C on riippumaton muista kuin vanhemmistaan pa(c) Muuttujia kuvaavien solmujen välillä kaaret vanhemmista lapsiin

5 BN: liittymäpuu E.m. verkko soveltuu huonosti inferenssin vaatimiin laskutoimituksiin Täysi yhteis-tn-jakauma tuhlaa muistia Käytettävä vaihtoehtoista esitystapaa nimeltä liittymäpuu Puun solmut tallentavat nk. perheiden yhteistodennäköisyysjakaumia

6 BN: liittymäpuu Puuhun tallennetut jakaumat nimeltään potentiaaleja (mahd. normalisoimaton) Minimaalinen tapa esittää yhteis-tn-jakauma pienempien tulona Vrt. p(x, y, z) = p(x y) p(y z) p(z) Myös ns. running intersection property

7 BN: liittymäpuu Esimerkki graafista ja liittymäpuusta A A,B A A,C B C

8 BN: päättely Päättely tapahtuu levittämällä potentiaaleja painottavia jakaumia naapurisolmuihin puussa Marginalisoimalla saadaan pienempi projektio potentiaalista: φ(a) = B φ(a, B) Kertolaskulla päivitetään potentiaalia uuden evidenssin mukaan: φ(a, C) := φ(a, C) φ(a)

9 Lisää historiaa Kevin Murphy 2002 Väitöskirja: Dynamic Bayesian Networks: Representation, Inference & Learning Esittää 1.5DBN käsitteen

10 DBN: aikaviipaleet Aikasarjoja varten toistuvarakenteiset mallit Esim. HMM toistaa pientä verkkoa Esitetään malli viipaleena, jota toistetaan Määritettävä toistuva osa liittymäpuusta laskutoimituksia varten Viipaleen käyttö päättelyssä puoliaskelin

11 DBN: aikaviipaleet Esimerkki aikaviipaleesta: HMM Q 0 Q 1 Q 2 Q 3 Q t 1 Q t... Y 1 Y 2 Y 3 staattinen BN Y t 1.5DBN

12 Toteutus: yleistä C-kielinen ohjelmakirjasto Huginin net-tiedostojen jäsennys Muunnos graafeista liittymäpuuksi Aikasarjan lukeminen tiedostosta Edellä kuvattu inferenssi mahd. aikaviipalein EM-algoritmi parametrien oppimiseen

13 Hugin net-formaatti Malli luetaan Huginin asettaman standardin mukaisesta tiedostosta node-määrittelyt kertovat muuttujat Oma NIP_next kenttä aikaviipalemalleille potential-määrittelyt ehdollisille todennäköisyysjakaumille Graafin rakenne samassa implisiittisesti

14 Graafista liittymäpuuksi NP-kova osuus liittymäpuun käytössä Muunnos heti net-tiedoston jäsennyksen jälkeen malli = liittymäpuu + muu kirjanpito Nip model = parse_model( hmm.net );

15 Datan luku tiedostosta Tiedoston 1. rivillä muuttujien nimet Loput rivit aikasarjan askelia Kullakin rivillä muuttujien arvojen nimet Luetaan data tiedostosta aikasarjaa esittäväksi tietorakenteeksi n = read_timeseries(model, data.txt, &n_timeseries);

16 Päättely Inferenssialgoritmi antaa esim. epävarman aikasarjan UncertainSeries ucs = forward_inference(ts, ts->hidden, ts->num_of_hidden); Annettujen muuttujien kunkin arvon todennäköisyys kullakin hetkellä Esim. yhteistodennäköisyydetkin mahdollisia, mutta implementoimatta

17 EM-algoritmi Datan likelihoodin laskenta oli hankala Algoritmille annetaan opetettava malli, aikasarjoittain dataa ja kynnysarvo lopetusehtoa varten Aikasarja sisältää viittauksen malliin em_learn(n_timeseries, n, threshold, &learning_curve);

18 Käytännön kokeilut Laboratoriotesti tunnetusta mallista generoidulla datalla - Havainnollistaa menetelmien toimintaa Kopiolukumuutosten aiheuttamat amplifikaatiot ihmisen perimässä - Osasyyllisiä kasvaimiin (l. syöpään)

19 Keinodatan mallit Alkuperäinen ja vaihtoehtoinen malli D t C t 1 C t C t 1 C t B t A t B t A t

20 Oppimiskäyrät Original model Alternative model Average log.likelihood of data during EM algorithm 1 Log. likelihood / time step Iterations

21 Inferenssituloksia: C Original samples of C (hidden) Results of inference using the original model & parameters Results of inference using the original model & estimated parameters time

22 Inferenssituloksia: D Original samples of D Input data with missing s Results of inference using the original model & parameters Results of inference using the original model & estimated parameters time

23 Inferenssituloksia: B Original samples of B Input data with missing s Results of inference using the original model & parameters Results of inference using the original model & estimated parameters time

24 Inferenssituloksia: C Vaihtoehtoisen mallin piilotila Original samples of C (hidden) Results of inference using an estimated alternative model time

25 Inferenssituloksia: B Original samples of B Input data with missing s Results of inference using an estimated alternative model time

26 Amplifikaatiodata 100 Samples from DNA copy number amplification data Tumor cases X Y Chromosome bands

27 Amplifikaatiomalli Kasvaintyyppi ja amplifikaatiot riippuvat piilomuuttujaketjusta E t 1 E t B t C D t

28 Oppimiskäyrä 0 Model 1 Average log.likelihood of data during EM algorithm Log. likelihood / time step Iterations

29 Amplifikaatioprofiilit Amplification profiles Urinary_tract Skin_tumor Respiratory_tract Nervous_system Male_genital_organs Hematologic_neoplasms Female_genital_organs Eye_tumor Endocrine_glands Digestive_tract Breast Bone_and_soft_tissue 8p23 8p22 8p21 8p12 8p11.2 8p11.1 8q11.1 8q11.2 8q12 8q13 8q21.1 chromosome band 8q21.2 8q21.3 8q22 8q23 8q24.1 8q24.2 8q24.3

30 Vielä muuta? Myös ns. pehmeää evidenssiä voisi syöttää havaintoina Jatkuvat muuttujat graafin lehtisolmuina? Paljon sovelluksia ja dataa?

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Muuttujien riippumattomuus

Muuttujien riippumattomuus 199 Muuttujien riippumattomuus Jos esimerkkiin lisätään muuttuja Säätila, jolla on 4 mahdollista arvoa, on edellä ollut yhteisjakauman taulukko monistettava neljästi Koska hammasongelmat eivät vaikuta

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Reikä. Säätila. Hammassärky Osuma

Reikä. Säätila. Hammassärky Osuma 190 Nuolen X Y intuitiivinen merkitys on, että X vaikuttaa suoraan Y:hyn Verkon topologia solmut ja nuolet määräävät muuttujien ehdolliset riippumattomuudet Kun topologia on kiinnitetty, pitää vielä määrätä

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Harjoitus 4 (7.4.2014)

Harjoitus 4 (7.4.2014) Harjoitus 4 (7.4.2014) Tehtävä 1 Tarkastellaan Harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä solmusta

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Muuttujien eliminointi

Muuttujien eliminointi 228 Muuttujien eliminointi Toistuvat alilauseet voidaan evaluoida kerran ja niiden arvo talletetaan käytettäväksi aina tarvittaessa Tarkastellaan muuttujien eliminointi -algoritmia lausekkeen P(Murto jussikäy,

Lisätiedot

XML prosessori. XML prosessointi. XML:n kirjoittaminen. Validoiva jäsennin. Tapahtumaohjattu käsittely. Tapahtumaohjattu käsittely.

XML prosessori. XML prosessointi. XML:n kirjoittaminen. Validoiva jäsennin. Tapahtumaohjattu käsittely. Tapahtumaohjattu käsittely. XML prosessointi Miten XML dokumentteja luetaan ja kirjoitetaan XML prosessori lukee ja välittää XML dokumentin sovellukselle. Se sisältää entieettikäsittelijän (mahdollisesti) XML jäsentimen Sovellus

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

Approksimatiivinen päättely

Approksimatiivinen päättely 218 Approksimatiivinen päättely Koska tarkka päättely on laskennallisesti vaativaa, niin on syytä tarkastella ratkaisujen approksimointia Approksimointi perustuu satunnaiseen otantaan tunnetusta todennäköisyysjakaumasta

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT GRAAFITEHTÄVIÄ JA -ALGORITMEJA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) GRAAFIN LÄPIKÄYMINEN Perusta useimmille

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

International Olympiad in Informatics 2013

International Olympiad in Informatics 2013 International Olympiad in Informatics 2013 6-13 July 2013 Brisbane, Australia Day 2 tasks robots Finnish 1.0 Maritan pikkuveli on jättänyt lelunsa ympäri olohuonetta! Onneksi Marita on kehittänyt erikoisrobotteja

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT VERKOT ELI GRAAFIT Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) HISTORIAA Verkko- eli graafiteorian historia on saanut

Lisätiedot

Uskomusverkot: Lääketieteelliset sovellukset

Uskomusverkot: Lääketieteelliset sovellukset Teknillinen korkeakoulu Systeemianalyysin laboratorio Mat-2.142 Optimointiopin seminaari Referaatti Uskomusverkot: Lääketieteelliset sovellukset Sami Nousiainen 44433N Tf V 2 1. JOHDANTO 3 2. YKSINKERTAINEN

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

Stabilointi. arvosana. arvostelija. Marja Hassinen

Stabilointi. arvosana. arvostelija. Marja Hassinen hyväksymispäivä arvosana arvostelija Stabilointi Marja Hassinen Helsinki 28.10.2007 Hajautetut algoritmit -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö 1 1 Johdanto 1 2 Resynkroninen

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

S-114.600 Bayesilaisen mallintamisen perusteet

S-114.600 Bayesilaisen mallintamisen perusteet S-114.600 Bayesilaisen mallintamisen perusteet Laajuus: 2 ov Opettajat: TkT Aki Vehtari, DI Toni Tamminen Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit

Lisätiedot

SSL syysseminaari 29.10.2013 Juha Hyssälä

SSL syysseminaari 29.10.2013 Juha Hyssälä SSL syysseminaari 29.10.2013 Juha Hyssälä Lääketieteellisessä tutkimuksessa on perinteisesti käytetty elinaika-analyysissä Coxin suhteellisen vaaran mallia ja/tai tämän johdannaisia. Kyseinen malli kuitenkin

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Pienin virittävä puu (minimum spanning tree)

Pienin virittävä puu (minimum spanning tree) Pienin virittävä puu (minimum spanning tree) Jatkossa puu tarkoittaa vapaata puuta (ks. s. 11) eli suuntaamatonta verkkoa, joka on yhtenäinen: minkä tahansa kahden solmun välillä on polku syklitön: minkä

Lisätiedot

Opinajan käytön aloittaminen koulussa/oppilaitoksessa

Opinajan käytön aloittaminen koulussa/oppilaitoksessa Opinajan käytön aloittaminen koulussa/oppilaitoksessa Yleistä Opinaika löytyy osoitteesta: http://www.opinaika.fi Jokainen oppilas ja opettaja tarvitsevat oman käyttäjätunnuksen ja siihen liittyvän salasanan

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Milloin. kannattaa paaluttaa? Väitöstutkimus. Turun perustustenvahvistuksesta

Milloin. kannattaa paaluttaa? Väitöstutkimus. Turun perustustenvahvistuksesta Milloin kannattaa paaluttaa? Väitöstutkimus Turun perustustenvahvistuksesta Jouko Lehtonen 26.1.2012 Perustustenvahvistushanke; rakennuttajan näkökulmia tekniikkaan, talouteen ja projektinhallintaan Underpinning

Lisätiedot

Aki Taanila AIKASARJOJEN ESITTÄMINEN

Aki Taanila AIKASARJOJEN ESITTÄMINEN Aki Taanila AIKASARJOJEN ESITTÄMINEN 4.12.2012 Viivakaavio Excelissä voit toteuttaa viivakaavion kaaviolajilla Line (Viiva). Viivakaavio onnistuu varmimmin, jos taulukon ensimmäisessä sarakkeessa ovat

Lisätiedot

How to handle uncertainty in future projections?

How to handle uncertainty in future projections? How to handle uncertainty in future projections? Samu Mäntyniemi, Fisheries and Environmental Management group (FEM), University of Helsinki http://www.helsinki.fi/science/fem/ Biotieteellinen tiedekunta

Lisätiedot

HELIA 1 (11) Outi Virkki Tiedonhallinta 4.11.2000

HELIA 1 (11) Outi Virkki Tiedonhallinta 4.11.2000 HELIA 1 (11) Access 1 ACCESS...2 Yleistä...2 Access-tietokanta...3 Perusobjektit...3 Taulu...5 Kysely...7 Lomake...9 Raportti...10 Makro...11 Moduli...11 HELIA 2 (11) ACCESS Yleistä Relaatiotietokantatyyppinen

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Katsaus visualisointitekniikoihin

Katsaus visualisointitekniikoihin Katsaus visualisointitekniikoihin Pohjautuen artikkeliin: Heer, J., Bostock, M., & Ogievetsky, V. 2010. A Tour through the Visualization Zoo. ACM Queue 8, 5. Saatavissa: http://queue.acm.org/detail.cfm?id=1805128

Lisätiedot

Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi

Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 5 Seuraava etappi Datan keruu alkanut 9.2.2005 2.välinäyttönä palautetaan aineisto SPSS-tiedostona 14.2. palaute tiedostosta

Lisätiedot

Tietokantojen suunnittelu, relaatiokantojen perusteita

Tietokantojen suunnittelu, relaatiokantojen perusteita Tietokantojen suunnittelu, relaatiokantojen perusteita A277, Tietokannat Teemu Saarelainen teemu.saarelainen@kyamk.fi Lähteet: Leon Atkinson: core MySQL Ari Hovi: SQL-opas TTY:n tietokantojen perusteet-kurssin

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

Pysyvät tunnukset ja niiden hyödyntäminen

Pysyvät tunnukset ja niiden hyödyntäminen Pysyvät tunnukset ja niiden hyödyntäminen Arkistopalvelut uuteen nousuun 15.9.2015 Esa-Pekka Keskitalo, orcid.org/0000-0002-4411-8452 URN:NBN:fi-fe2015091511591 Sisältö Millaisista tunnuksista on puhe?

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

Vaihtoehtolaskelmien vertailua netissä

Vaihtoehtolaskelmien vertailua netissä Vaihtoehtolaskelmien vertailua netissä Leena Kärkkäinen Metsäsuunnittelu verkossa ja verkostoissa Tikkurila, 23.4.2008 http://www.metla.fi/tapahtumat/2008/metsasuunnitelu/ Metsäntutkimuslaitos Skogsforskningsinstitutet

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä: Matriisi ja vektori laskennan ohjelmisto edellyttää

Lisätiedot

Harjoitus 1 (17.3.2015)

Harjoitus 1 (17.3.2015) Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman

Lisätiedot

Johdatus rakenteisiin dokumentteihin

Johdatus rakenteisiin dokumentteihin -RKGDWXVUDNHQWHLVLLQGRNXPHQWWHLKLQ 5DNHQWHLQHQGRNXPHQWWL= rakenteellinen dokumentti dokumentti, jossa erotetaan toisistaan dokumentin 1)VLVlOW, 2) UDNHQQHja 3) XONRDVX(tai esitystapa) jotakin systemaattista

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Trakla2-opetusympäristö

Trakla2-opetusympäristö Trakla2-opetusympäristö TRAKLA: TietoRakenteet ja Algoritmit; KotiLaskujen Arvostelu TEKNILLINEN KORKEAKOULU Informaatio- ja luonnontieteiden tiedekunta Tietotekniikan laitos Esityksen rakenne Katsaus

Lisätiedot

SDH. Mikä SDH 0DUNR/XRPD

SDH. Mikä SDH 0DUNR/XRPD SDH 0DUNR/XRPD 1988 TVT I / Marko Luoma & Raimo Kantola 1 Mikä SDH Synkronisen digitaalisen hierarkian (SDH) mukaisessa tiedonsiirrossa kaikki tieto on pakattu kehyksiin, jotka toistuvat 8000 kertaa sekunnissa.

Lisätiedot

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12.

Lectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12. Lectio praecursoria Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin Markus Ojala 12. marraskuuta 2011 Käsitteet Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden

Lisätiedot

H6: Tehtävänanto. Taulukkolaskennan perusharjoitus. Harjoituksen tavoitteet

H6: Tehtävänanto. Taulukkolaskennan perusharjoitus. Harjoituksen tavoitteet H6: Tehtävänanto Taulukkolaskennan perusharjoitus Ennen kuin aloitat harjoituksen teon, lue siihen liittyvä taustamateriaali. Se kannattaa käydä läpi kokeilemalla samalla siinä annetut esimerkit käyttämässäsi

Lisätiedot

Relaatiomalli ja -tietokanta

Relaatiomalli ja -tietokanta Relaatiomalli ja -tietokanta > Edgar. F. (Ted) Codd, IBM, 1969 < A Relational Model of Data for Large Shared Data Banks Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387. > 70-luvun lopulla

Lisätiedot

Ohjelmiston toteutussuunnitelma

Ohjelmiston toteutussuunnitelma Ohjelmiston toteutussuunnitelma Ryhmän nimi: Tekijä: Toimeksiantaja: Toimeksiantajan edustaja: Muutospäivämäärä: Versio: Katselmoitu (pvm.): 1 1 Johdanto Tämä luku antaa yleiskuvan koko suunnitteludokumentista,

Lisätiedot

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien

Lisätiedot

Uudistamistuloksen vaihtelun vaikutus uudistamisen kustannustehokkuuteen metsänviljelyssä. Esitelmän sisältö. Taustaa. Tutkimuksen päätavoitteet

Uudistamistuloksen vaihtelun vaikutus uudistamisen kustannustehokkuuteen metsänviljelyssä. Esitelmän sisältö. Taustaa. Tutkimuksen päätavoitteet Uudistamistuloksen vaihtelun vaikutus uudistamisen kustannustehokkuuteen metsänviljelyssä Metsänuudistaminen pohjoisen erityisolosuhteissatutkimushankkeen loppuseminaari 15.3.2012 Rovaniemi Esitelmän sisältö

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

TOIMINNALLINEN MÄÄRITTELY. PROJEKTITYÖ Tik-76.115 Wclique

TOIMINNALLINEN MÄÄRITTELY. PROJEKTITYÖ Tik-76.115 Wclique TOIMINNALLINEN MÄÄRITTELY PROJEKTITYÖ Tik-.115 SISÄLLYSLUETTELO Sisällysluettelo... Versiohistoria... 1. JOHDANTO... 4 1.1 Tarkoitus ja kattavuus... 4 1. Tuote... 4 1. Määritelmät, termit ja lyhenteet...

Lisätiedot

Muodostelmaluistelun SM-sarjojen sääntöinfo

Muodostelmaluistelun SM-sarjojen sääntöinfo Suomen Taitoluisteluliitto Radiokatu 20, 00093 SLU, Finland puhelin 09 3481 21, fax 09 3481 2095 office@stll.fi www.stll.fi Muodostelmaluistelun SM-sarjojen sääntöinfo 14.8.2010 (ja tarkennuksia 17.8.)/

Lisätiedot

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja keskihajonnan

Lisätiedot

Relaatiotietokantojen perusteista. Harri Laine Helsingin yliopisto

Relaatiotietokantojen perusteista. Harri Laine Helsingin yliopisto Harri Laine Helsingin yliopisto Suosion syy? Yksinkertaisuus vähän käsitteitä helppo hahmottaa Selkeä matemaattinen perusta ei tulkintaongelmia kuten esim. UML:ssä teoria käytäntö kaavio: R(A 1 :D 1, A

Lisätiedot

PIKAOHJE USEIDEN VASTAANOTTAJIEN LISÄÄMISEEN YHTIÖN JAKELULISTOILLE

PIKAOHJE USEIDEN VASTAANOTTAJIEN LISÄÄMISEEN YHTIÖN JAKELULISTOILLE PIKAOHJE USEIDEN VASTAANOTTAJIEN LISÄÄMISEEN YHTIÖN JAKELULISTOILLE JOHDANTO Tämä pikaohje on suunniteltu auttamaan useiden vastaanottajien lisäämisessä yhtiön jakelulistoille GlobeNewswire-järjestelmässä

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

Maksuturva-palvelun rajapintakuvaus verkkokaupalle / MAKSUN PERUUTUS

Maksuturva-palvelun rajapintakuvaus verkkokaupalle / MAKSUN PERUUTUS Maksuturva-palvelun rajapintakuvaus verkkokaupalle / MAKSUN PERUUTUS Versio 4.0 2(5) Sisältö 1. Muutokset... 3 2. Maksun peruutuksen tiedot... 3 2.1 Kenttien selitteet Maksun peruutuksen tiedot... 4 3.

Lisätiedot

Mallintamisesta. Mallintamisesta

Mallintamisesta. Mallintamisesta Laajasti ymmärtäen jonkin tarkasteltavan ilmiön kuvaamista (esim. matemaattista) kuhunkin tarkoitukseen (ennustaminen, analysointi, visualisointi) parhaiten sopivalla tavalla. Ilmiön pukemista helposti

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Lahden kaupunki ja EUREF, kokemuksia 7-vuoden yhteiselosta. EUREF-päivä 2.0 4.9.2012

Lahden kaupunki ja EUREF, kokemuksia 7-vuoden yhteiselosta. EUREF-päivä 2.0 4.9.2012 Lahden kaupunki ja EUREF, kokemuksia 7-vuoden yhteiselosta EUREF-päivä 2.0 4.9.2012 ETRS-89 /EUREF-FIN muunnos Lahden kaupungissa 1. Taustaa 2. Muunnosprosessi 2.1 testaus 3. Vaikutukset toimintaympäristöön

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Katkonnanohjaus evoluutiolaskennan keinoin

Katkonnanohjaus evoluutiolaskennan keinoin Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi

Lisätiedot

Web-seminaari 10.11.2009

Web-seminaari 10.11.2009 Web-seminaari 10.11.2009 Tervetuloa päivän seminaariin: Tietovarastoinnilla irti ERP riippuvuuksista Esiintyjät: Ari Hovi, Ari Hovi Oy ja Jari Ylinen, Kehityspolut Oy Seminaari alkaa kello 10.00 Tämä ERP

Lisätiedot

Ongelmien ja menetelmien tyypittelyä. Käyttötarkoituksia. Konsistentti ja epäkonsistentti data. Esimerkki: Deterministinen luokittelu

Ongelmien ja menetelmien tyypittelyä. Käyttötarkoituksia. Konsistentti ja epäkonsistentti data. Esimerkki: Deterministinen luokittelu Luento 5: Luokittelu Määritelmä Käyttötarkoitukset Ongelmien ja luokittelijoiden tyypittely auttaa valitsemaan oikean menetelmän Tärkeimmät menetelmät Päätöspuut ja luokittelusäännöt Bayes-luokittelijat

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

521365S Tietoliikenteen simuloinnit ja työkalut HFSS MARKO SONKKI 10.5.2006. Sisältö:

521365S Tietoliikenteen simuloinnit ja työkalut HFSS MARKO SONKKI 10.5.2006. Sisältö: 521365S Tietoliikenteen simuloinnit ja työkalut HFSS MARKO SONKKI 10.5.2006 10.5.2006 1 Sisältö: 1. Johdanto 2. Mihin HFSS:ää käytetään 3. Yleisimmät HFSS sovelluskohteet 4. Ratkaistu data ja sen soveltaminen

Lisätiedot

Järjestelmäarkkitehtuuri (TK081702) Hajautettu tietokanta. Hajautuksen hyötyjä

Järjestelmäarkkitehtuuri (TK081702) Hajautettu tietokanta. Hajautuksen hyötyjä Järjestelmäarkkitehtuuri (TK081702) Hajautettu tietokanta Hajautettu tietokanta Jokainen hajautettu tietokanta muodostaa oman kokonaisuutensa Loogisesti yhtenäinen data on hajautettu tietokantoihin (eri

Lisätiedot

Määrittelydokumentti

Määrittelydokumentti Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS 466111S Rakennusfysiikka, 5 op. RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma,

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015 TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free

Lisätiedot

Puuttuvan tiedon ongelmat pitkittäistutkimuksissa

Puuttuvan tiedon ongelmat pitkittäistutkimuksissa 1/27 Puuttuvan tiedon ongelmat pitkittäistutkimuksissa Jaakko Nevalainen Tampereen yliopisto Sosiaalilääketieteen päivät 3.-4.11.2014 2/27 Sisältö 1 Johdanto ja peruskäsitteet 2 Mallintamiseen pohjautuvat

Lisätiedot

JWT 2016 luento 11. to 21.4.2016 klo 14-15. Aulikki Hyrskykari. PinniB 1097. Aulikki Hyrskykari

JWT 2016 luento 11. to 21.4.2016 klo 14-15. Aulikki Hyrskykari. PinniB 1097. Aulikki Hyrskykari JWT 2016 luento 11 to 21.4.2016 klo 14-15 Aulikki Hyrskykari PinniB 1097 1 Viime luennolla o AJAX ja JSON, harjoitustyön tehtävänanto, vierailuluento avoimesta datasta Tänään o APIt rajapinnoista yleisesti

Lisätiedot

Tehtävä: FIL Tiedostopolut

Tehtävä: FIL Tiedostopolut Tehtävä: FIL Tiedostopolut finnish BOI 2015, päivä 2. Muistiraja: 256 MB. 1.05.2015 Jarkka pitää vaarallisesta elämästä. Hän juoksee saksien kanssa, lähettää ratkaisuja kisatehtäviin testaamatta esimerkkisyötteillä

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

Excel 2010 -funktiot. Sisällys

Excel 2010 -funktiot. Sisällys Excel 2010 -funktiot 5.11.2015 Markku Könkkölä J Y / Tietohallintokeskus Soluihin viittaaminen Sisällys Laskentakaavojen kirjoittaminen, kopiointi ja arvojen vakiointi Funktioiden käyttö: Laskenta Merkkijonot

Lisätiedot

DOORSin Spreadsheet export/import

DOORSin Spreadsheet export/import DOORSin Spreadsheet export/import 17.10.2006 SoftQA Oy http/www.softqa.fi/ Pekka Mäkinen Pekka.Makinen@softqa.fi Tietojen siirto DOORSista ja DOORSiin Yhteistyökumppaneilla ei välttämättä ole käytössä

Lisätiedot

Ongelma(t): Jotta tietokone olisi mahdollisimman yleiskäyttöinen ja suorituskykyinen, niin miten tietokoneen resurssit tulisi tarjota ohjelmoijalle,

Ongelma(t): Jotta tietokone olisi mahdollisimman yleiskäyttöinen ja suorituskykyinen, niin miten tietokoneen resurssit tulisi tarjota ohjelmoijalle, Ongelma(t): Jotta tietokone olisi mahdollisimman yleiskäyttöinen ja suorituskykyinen, niin miten tietokoneen resurssit tulisi tarjota ohjelmoijalle, sovellusohjelmille ja käyttäjille? 2012-2013 Lasse Lensu

Lisätiedot

KIRJANPITO JA RESKONTRA

KIRJANPITO JA RESKONTRA KIRJANPITO JA RESKONTRA Ketjutukset ja ajastukset 30.5.2016 1 KOULUTUKSEN SISÄLTÖ Ketjutus Yleistä Käyttöönotto Ketjujonot Ketjuttaminen Ajastukset Yleistä Ajastettavia toimintoja Eräajot ja lokit NetTikon

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 28.2.2011 1 / 46 Ohjelmointiprojektin vaiheet 1. Määrittely 2. Ohjelman suunnittelu (ohjelman rakenne ja ohjelman

Lisätiedot

Forest Knowledge Know how Well being. METLA Itä Suomen alueyksikkö Joensuu. Email veikko.mottonen@metla.fi

Forest Knowledge Know how Well being. METLA Itä Suomen alueyksikkö Joensuu. Email veikko.mottonen@metla.fi Forest Knowledge Know how Well being Puusta parempaa mäntyöljyllä Veikko Möttönen METLA Itä Suomen alueyksikkö Joensuu Email veikko.mottonen@metla.fi Tausta Ensiharvennuksista tulevan pieniläpimittaisen

Lisätiedot

Tapahtuipa Testaajalle...

Tapahtuipa Testaajalle... Tapahtuipa Testaajalle... - eli testaus tosielämässä 09.10.2007 Juhani Snellman Qentinel Oy 2007 Agenda Minä ja mistä tulen Testauksen konteksti Tapauksia tosielämästä ja työkaluja 2 Minä Juhani Snellman

Lisätiedot

ASTERI TULOVEROILMOITUS ESITTELYMATERIAALIA 9.1.2012

ASTERI TULOVEROILMOITUS ESITTELYMATERIAALIA 9.1.2012 ASTERI TULOVEROILMOITUS ESITTELYMATERIAALIA 9.1.2012 AIHEET Mitä Asteri Tuloveroilmoitus ohjelmalla voi tehdä? Mistä neuvoja tuloveroilmoituksen tekemiseen? Ohjelman asentaminen Verovuoden perustaminen

Lisätiedot

Epävarmuus ja sen huomioiminen hydrologisessa mallinnuksessa

Epävarmuus ja sen huomioiminen hydrologisessa mallinnuksessa Epävarmuus ja sen huomioiminen hydrologisessa mallinnuksessa Jarkko J. Koskela Harri Koivusalo Yhdyskunta- ja ympäristötekniikan laitos Aalto-yliopiston insinööritieteiden korkeakoulu Mallinnusseminaari

Lisätiedot

Fylogeneettiset puut. Fylogeneettiset puut. UPGMA: esimerkki 2/2 UPGMA

Fylogeneettiset puut. Fylogeneettiset puut. UPGMA: esimerkki 2/2 UPGMA ylogeneettiset puut ylogeneettisen puun rakentaminen koostuu seuraavista vaiheista ) atan valinta (sekvenssi,piirredata) ) Sekvenssien linjaus 3) Puun rakentamismenetelmän/menetelmien valinta: - etäisyysmenetelmät

Lisätiedot