Toteutustavat - sovelluksia

Koko: px
Aloita esitys sivulta:

Download "Toteutustavat - sovelluksia"

Transkriptio

1 Toteutustavat - sovelluksia Panosfermentointi yksinkertainen toteutus; sopii sekä prim. että sek. metaboliiteille pienin riski kontaminaatioille ja tuotantokannan muutoksille (esim. muutokset geenitasolla eli kannan degeneraatio, palautuminen tai plasmidilukumäärän pieneneminen vähäisiä) tuotettua solumassaa hyödynnetään huonosti tuotantoon liittyy paljon luppoaikaa (downtime): panoksen valmistelu, sterilointi, lag-vaihe, fermentorin tyhjennys panoksen jälkeen ja pesu panosfermentoinnissa ei missään vaiheessa solut tai prosessi ole steady-state tilassa useat panosprosessit on muutettu fed-batch toteutukseen panosfermentointi sopii edelleen hyvin, kun prosessi sietää huonosti fed-batchissä syötettävien komponenttien paikallisia pitoisuuseroja (epähomogeenisuus) Miksi tämä korostuu fed-batchissä? Bioprosessitekniikka - olu tuotantolaitoksena 1

2 Toteutustavat - sovelluksia Fed-batch fermentointi sopii kaikentyyppisille tuotteille, erityisesti sek. metaboliiteille hyödyntää solumassaa hieman paremmin kuin panosfermentointi syötön avulla voidaan järjestää joidenkin muuttujien suhteen steady-state (= quasi-steady-state); usein tavoitteena välttää ns. overflow-metabolia tai solujen helposti käyttämän hiililähteen (carbon- eli C-source) aiheuttama kataboliittirepressio (ccr: carbon catabolite repression) sovelluksia runsaasti: entsyymien tuotto, antibioottien tuotto, indusoitu proteiinien heterologinen tuotto, aminohappojen tuotto, leivinhiivan tuotto 2

3 Fermentoinnin toteutus (mode of fermentation) Fed-batch fermentointi aloitetaan panoksena kun kasvu muuttaa olosuhteet halutuiksi, aloitetaan jonkin komponentin syöttö korkeassa pitoisuudessa fermentoriin yleensä syöttö lopetetaan vasta fermentorin täytyttyä ja fermentointi lopetetaan ja aloitetaan jälkikäsittelyprosessi ja sitten taas uusi panos samaan tyyliin Kuvassa 3

4 Fermentoinnin toteutus (mode of fermentation) Jatkuva fermentointi: fermentori valmistellaan ja siirrostetaan prosessi ajetaan ylös panosfermentointina tämän jälkeen prosessiin aletaan syöttää ravinneliuosta ja vastaavasti otetaan fermentorista pois valmista kasvuliuosta prosessia jatketaan periaatteessa loputtomasti; käytännössä viikkoja kuukausia vuosia prosessi pyritään pitämään tasapainotilassa (steady-state) tavallisin toteutus: kemostaatti, jossa Fin = Fout eli V = vakio F in F out V 4

5 Toteutustavat - sovelluksia Jatkuva fermentointi sopii prim. metaboliiteille, parhaiten itse solumassan tuotolle ongelma prim. metaboliiteillakin: kun tuotteen muodostus vähentää solumassan saantoa substraatista, jatkuva fermentointi usein johtaa alhaiseen solupitoisuuteen, mikä taas alentaa volumetrista tuottavuutta volumetrinen tuottavuus (R) = spesifinen tuottonopeus (r) x solupitoisuus (X) pitkäkestoisena herkkä kontaminaatioille ja kannan muutoksille vähiten luppoaikaa; mahdollistaa suurimman volumetrisen tuottonopeuden (g L -1 h -1 ) jatkuva fermentointi, jossa on jatkuva ravinteiden syöttö ja samalla tilavuusvirtauksella kasvuliuoksen poisto fermentorista (kemostaatti) johtaa muuttujien steady-state tilaan (muuttujan arvo ei ole ajan funktio) sovelluksia: esim. CP:n tuotto (CP: single cell protein), jätevesien puhdistus muita harvemmin käytettyjä: turbidostaatti (sameus vakio), ph-staatti (ph vakio), A-stat (accelerostat) (laimennusnopeutta lisätään vakionopeudella), -stat (=vakio, mutta jonkin komponentin pitoisuutta muutetaan vakionopeudella) 5

6 Muita toteutustapoja Jatkuva fermentointi solujen (osittaisella) palautuksella: solujen erotus (=konsentrointi) poistovirrasta esim. kalvo-suodatuksella tai keskipakoerotuksella (cell recycle) [lohkokaaviona kirjassa s. 115] Jatkuva fermentointi, jossa solut pidätetään fermentorissa (cell retention): esim. siivilän avulla (isot partikkelit), solujen flokkuloinnin avulla tai immobilisoimalla solut kiinteän kantajamateriaaliin Useampivaiheinen jatkuva (eri fermentoreissa erilaiset olosuhteet, esim. tilavuudet voivat poiketa toisistaan) Toistettu panos: panoksen loputtua jätetään pieni osa kasvuliuoksesta siirrosteeksi seuraavaan panokseen 6

7 Kasvun ja toteutusten matemaattisia kuvauksia (malleja) Yleisimmin käytetty kasvumalli: Monod n malli perustuen ajatukseen kasvua rajoittavasta substraatista (pitoisuus kasvuliuoksessa = ) pesifinen kasvunopeus: dx µ = ( ) t 1 X ( t) X,, P ovat prosessin tilasuureita Monod n yhtälö: µ = µ max + K Panoskasvatus: dx = µ X X: solupitoisuus [esim. g L -1 ] Y X : solusaanto :stä [esim. g g -1 ] d µ X = + m m : ylläpitokerroin [esim. g g -1 h -1 ] X YX Y PX : kasvuun liittyvä tuotesaanto dp µ X m P : ylläpitoon liittyvä tuottonopeus = + mp X Y K : kyllästysvakio [mg L -1 tai mm] PX 7

8 Matemaattisia malleja Yksinkertaisimmat mallit perustuvat ainetaseisiin (kokonaisainetase, komponentin ainetase, alkuainetase); voidaan käyttää myös energiataseita olujen kasvuun liittyvä erityismenetelmä on elektronitase eli pelkistystase, jossa tarkastellaan summareaktioita solujen sisällä (= aineenvaihdunnassa) Aineenvaihduntaa voidaan myös mallittaa aineen ja alkuaineiden häviämättömyyden lakiin perustuen (kts. kirja s. 89) (nämäkin siis tasemalleja), kun metaboliareitit tunnetaan, (kts. metaboliareitit esim. ja 8

9 Bioprosessien mallinnus Mekanistiset ja empiiriset mallit taattiset ja dynaamiset mallit Bioprosessi on monimutkainen kokonaisuus. Yksinkertaistusten määrää voidaan kuvata solupopulaatioiden ja rakenteen huomioimisen kannalta tyypillisellä nelikentällä (kuva) Bioprosessitekniikka - olu tuotantolaitoksena 9

10 Jatkuva fermentointi Kemostaatissa laimennusnopeus () määrää spesifisen kasvunopeuden Kemostaatti on lähinnä tutkimusmenetelmä, jossa prosessi ja solut ovat tasapainotilassa (-) => voidaan tutkia prosessin ja solujen käyttäytymistä eri tasapainotiloissa Miksi panoskasvatus ei ole tasapainotilassa? dv = Fin Fout = 0 ; Fin = Fout = F (kemostaatti) olumassatase: d( V X ) Fin X in + = Fout X out d( V X ) dx dv X in = 0; X out = X ; = V + X = V 0 + V dx = F X V µ X = F X µ = F V = dx Jokaisen prosessiin tehdyn muutoksen jälkeen on odotettava uuden tasapainotilan syntymistä; yleensä tämä aika = 5 x viipymäaika = 5 x (1/) µ = dx 1 X -: steady-state = tasapainotila: muuttujien arvot f(t) 10

11 Tilasuureet X ja kemostaatissa Monod n yhtälön avulla: olumassan tuottonopeus R X = x X Miten ratkaistaan solumassan tuoton kannalta optimaalinen? Ratkaise. Oikea vastaus: 11 Bioprosessitekniikka 1 - olu tuotantolaitoksena ) ( µ m µ K Y X µ K K µ m in X m out out out = = + = = Jatkuva fermentointi ) ( R X µ K Y X m in X = = ) (1 0 K K µ m opt + =

12 Jatkuva fermentointi 12

13 Jatkuva fermentointi solujen palautuksella Kemostaatissa < µ max, muuten solut huuhtoutuvat ulos fermentorista Toimittaessa lähellä = µ max on systeemi haavoittuva, koska häiriöt voivat johtaa uloshuuhtoutumiseen Tuotteen volumetrista tuottonopeutta voidaan parantaa palauttamalla osa ulosvirtauksen soluista takaisin fermentoriin solujen konsentroinnin jälkeen* Tyypillinen esimerkki: aktiivilieteprosessi jäteveden puhdistuksessa *: Mikä voi :n arvo teoreettisesti olla, jos kaikki solut palautetaan elinkykyisinä? Mitä ongelmia voit kuvitella liittyvän solujen palautukseen? 13

14 Bioprosessitekniikka - olu tuotantolaitoksena 14

15 Jatkuva fermentointi solujen palautuksella F, F (1+r)F (1+r)F (1-w)F X E, E V x dx/=µxv X, µ = Ainetaseet: X:n suhteen/ilmastusallas: µxv + rfx R = (1+r)FX (1) X:n suhteen/koko prosessi: 0 + µxv = (1-w)FX E + wfx R (2) Oletetaan: X E = 0 (1) : µxv + rfx = F V F V (1 + r r = ( 1+ r)fx µxv = (1 + r) FX rfx R X X R rf, X R, R ) = nimellinen laimennusnopeus R F F µ = (1 + r) r V V X R µ = [1 ( 1) r] X X X Bioprosessitekniikka 1 - olu tuotantolaitoksena R (2) : wf, X R, R µxv = 0 + wfx R <=> kaikki muodostunut solumassa poistuu ylijäämälietteenä 15

16 Fed-batch Usein syöttö on solujen hiililähdettä (esim. glukoosi) hyvin korkeassa pitoisuudessa ja pyrkimyksenä on pitää ko. komponentin pitoisuus fermentorissa lähellä 0 g/l Kaksi tyypillistä tapausta: 1) syöttönopeus on vakio 2) µ on vakio; 1) µ =? 2) F =? 1) V 0 = alkutilavuus fermentorissa F = syöttönopeus X total = solumassan kokonaismäärä fermentorissa dx total dv V ( ) X X dx total ( ) total V ( t) = V 0 + F t X = = 2 V V dx total dv F = µ X total ja = F ja = V dx dx F F = ( µ ) X = 0 µ = = = V V + F t 0 µ pienenee kasvatuksen edetessä 2) µ = V V 0 dv V = µ F = µ V t 0 F V = µ as ln dv V V F = µ V e 0 0 = F = µ t µt dv = µ V V = V e 0 µt V feed = t 0 µ V e e µ µ t 0 µt µt 0 e = µ V0 = V0 ( e 1) 16

17 Prosessin kvantitointi aantokertoimet: Y X : solumassan saanto substraatista RX = µ X k X Y P : tuotteen saanto substraatista Y PX : tuotteen saanto soluista µ X R Y XO : solumassan saanto hapesta = + m X YX Y XH : solumassan saanto per tuotettu lämpö µ X Tuottonopeudet: RO = + mo X YXO R i : volumetrinen tuotto/kulutusnopeus; i: X,, P, O, H perusajatus: kasvuun verrannollinen osa + ylläpito µ X R r i : spesifinen tuotto/kulutusnopeus = R i / X H = + mh X Y k : kuolemisnopeusvakio [h -1 XH ] RO = OUR; RH = HER Käytännön merkitykset: saantokertoimet => raaka-ainekustannukset (), hapensiirtokustannukset(o), lämmönsiirtokustannukset (H) volumetriset tuottonopeudet => investointikustannukset, hapensiirtokustannukset(o), lämmönsiirtokustannukset (H) spesifiset tuotto/kulutusnopeudet => prosessin optimointi Panos ja fed-batch fermentoinneissa joko keskimääräiset tai hetkelliset arvot X: solumassa; : substraatti; O: happi; H: lämpö; OUR: volumetrinen hapenkuutusnopeus; HER: volumetrinen lämmöntuottonopeus 17 met

18 Kasvun ja tuoton stokiometria Useat mikrobit pystyvät kasvamaan hyvin yksinkertaisilla ravinteilla tai ainakin kasvua ja tuotteen muodostusta voidaan approksimoida (tapana on, että solumassan kertoimeksi merkitään 1): α CH O + βnh + l m 3 + γo2 CH aob Nc + δch poq Nr + εh 2O κco2 C : = 1+ + Tästä saadaan alkuainetase H : l α + 3 β = a + p δ + ε + 2 κ Veden muodostumista on lähes aina mahdoton mitata O : m α + 2γ = b + q δ + ε + 2 κ H- ja O-tase hyödyttömiä N : β = c + r δ 2 yhtälöä, 5 tuntematonta (kertoimet α,β,γ,δ,κ) tarvitaan mittausdataa, jotta kerrointen arvot selviävät; esim. soluhengityssuhde = RQ = CER/OUR = κ/γ (poistokaasumittauksista) sekä saantokerrointen arvot (kokemus tai mittaus); esim. Y X =1/α, Y XO =1/γ Lisäksi voidaan hyödyntää pelkistystasetta eli elektronitasetta α δ κ Huom: kirjassa erilaiset merkinnät (s. 116) 18

19 Pelkistystase Jokaiselle komponentille ja yhdisteelle voidaan laskea pelkistysaste (degree of reduction, γ): kertoo kuinka monta elektronia komponentti tai yhdiste voi luovuttaa hapelle palaessaan täydellisesti (esim. C CO 2 ) (hiiliyhdisteet esitetään per C-atomi) alkuaineille: olut: γ b = 4+ a2b3c C: 4 per atomi C H: 1 ubstraatti: γ s = 4+ l 2m O: -2 Tuote: γ p = 4+ p2q3r N: -3 [kun NH 3 on N-lähde] α γ s 4 γ = γ b + δ γ p +5 [kun NO -1 3 on N-lähde] esim. glukoosi C 6 H 12 O 6 : γ= ( )/6=4 per C atomi 3 + γo2 CH aob Nc + δch poq Nr + εh 2O κco2 α CH O + βnh + l m Tyypillinen mikrobisolun pelkistysaste: 4.291±0,172 (usein: CH 1.8 O 0.5 N 0.2 : MW 24.6 ) 19

20 Pelkistystase:esimerkki Hiiva kasvaa aerobisesti glukoosilla (kasvua rajoittava C-lähde) kemostaatissa ja tuottaa 0,37 g solumassaa per g kulutettua glukoosia. 0,88 g happea kuluu per g muodostunutta solumassaa. Typen lähteenä toimii ammoniakki. olumassan koostumus on CH 1.79 N 0.17 O Muodostuuko sivutuotteita? Kts. kasvun ja tuoton stokiometria sivulla

21 Ravinteiden tarve Tyypilllinen mikrobisolujen koostumus: CH 1,8 O 0,5 N 0,2 Kaikki solujen alkuaineet ovat peräisin ravinteista; eri lajien vaatimukset ravinteiden kemiallisesta laadusta vaihtelevat suuresti Teollinen rikas kasvualusta Melassi 198 kg Ammoniakki 10,5 kg Kaliumdivetyfosfaatti 8,75 kg Magnesiumsulfaatti 0,75 kg Biotiini 50 mg Kalsiumpantotenaatti 10 mg Inositoli 10 g ynteettinen alusta yhteensä 21 eri yhdistettä: Glukoosi Ammoniumsulfaatti 12 eri hivenainetta 6 vitamiinia 21

22 Ravinteiden tarve <= solujen alkuainekoostumus Hiili 50 % dw Happi 20 Typpi 14 Vety 8 Kalium 1 Fosfori 3 Magnesium 0.5 Kalsium 0.5 Rikki 1 Muuta 2 Hivenaineita: Zn, Fe, Cu, Na, Mn, Mo Fungeissa bakteereita vähemmän N Mistä tämä johtuu? 22

23 Bioprosessitekniikka - olu tuotantolaitoksena 23

24 Ravinnekomponentteja Hiilen/energian lähteitä Melassi Mallasuute Tärkkelys ulfiittijäteliemi Lignoselluloosa Hera Metanoli, etanoli Biomassa Typen/vitamiinien, hivenaineiden lähteitä Ammoniumsuolat, ammoniakki Urea Hiivauute Autolyysi, o C Plasmolyysi, NaCl Peptonit (proteiinihydrolysaatit) Liha-, kaseiini- oijajauho 50% proteiinia, 30% hiilihydraattia 24

Fermentoinnin toteutustavat Panosfermentointi

Fermentoinnin toteutustavat Panosfermentointi Fermentoinnin toteutustavat Panosfermentointi jokaista panosta varten tuotetaan oma siirroste (engl. inoculum; monikko inocula) siirrostelinjassa (inoculum train) varsinainen tuotantoreaktori (fermentori)

Lisätiedot

Fermentoinnin toteutustavat 1. Panosfermentointi

Fermentoinnin toteutustavat 1. Panosfermentointi Fermentoinnin toteutustavat 1. Panosfermentointi jokaista panosta varten tuotetaan oma siirroste (engl. inoculum; monikko inocula) siirrostelinjassa (inoculum train) varsinainen tuotantoreaktori (fermentori)

Lisätiedot

Solu tuotantolaitoksena Cell factory

Solu tuotantolaitoksena Cell factory olu tuotantolaitoksena Cell factory Bioteknisiä prosesseja, joissa biokatalyyttinä toimivat solut kutsutaan fermentoinniksi/fermentaatioksi/fermentointi-prosesseiksi Mitä sana fermentaatio alun perin tarkoittaa?

Lisätiedot

Solu tuotantolaitoksena Cell factory

Solu tuotantolaitoksena Cell factory Solu tuotantolaitoksena Cell factory Bioteknisiä prosesseja, joissa biokatalyyttinä toimivat solut kutsutaan fermentoinniksi / fermentaatioksi / fermentointiprosesseiksi Tuotteena voi olla solumassa itse

Lisätiedot

Solu tuotantolaitoksena Cell factory

Solu tuotantolaitoksena Cell factory Solu tuotantolaitoksena Cell factory Bioteknisiä prosesseja, joissa biokatalyyttinä toimivat solut kutsutaan fermentoinniksi / fermentaatioksi / fermentointiprosesseiksi Tuotteena voi olla solumassa itse

Lisätiedot

PROSESSITEKNIIKAN PERUSTA 2011 Bioprosessitekniikan mahdollisuudet. Biotekniikan määritelmä

PROSESSITEKNIIKAN PERUSTA 2011 Bioprosessitekniikan mahdollisuudet. Biotekniikan määritelmä Biotekniikan määritelmä Biotekniikka yhdistää luonnontieteitä ja insinööritieteitä tavalla, joka mahdollistaa elävien organismien, solujen ja niiden osien ja molekyylien sekä molekyylianalogien hyödyntämisen

Lisätiedot

BIOREAKTORIT CHEM C2310 Bioprosessitekniikka Tero Eerikäinen

BIOREAKTORIT CHEM C2310 Bioprosessitekniikka Tero Eerikäinen BIOREAKTORIT CHEM C2310 Bioprosessitekniikka Tero Eerikäinen 21.3.2017 Bioprosessin kehitystyö Bioreaktorit Reaktorin tyyppi: sekoitussäiliö, ilmastuksella ohjattu ilman mekaanista sekoittamista, tulppavirta,

Lisätiedot

Tekniikan tohtori Tero Eerikäinen Tekniikan tohtori Ilkka Malinen

Tekniikan tohtori Tero Eerikäinen Tekniikan tohtori Ilkka Malinen Kemian tekniikan korkeakoulu Kemian tekniikan koulutusohjelma Johanna Pennanen FERMENTOINNIN KINEETTINEN MALLI Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomiinsinöörin tutkintoa varten

Lisätiedot

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi.

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi. Harjoituksia yhtälöryhmistä ja matriiseista 1. Ratkaise yhtälöpari (F 1 ja F 2 ovat tuntemattomia) cos( ) F 1 + cos( ) F 2 = 0 sin( ) F 1 + sin( ) F 2 = -1730, kun = -50 ja = -145. 2. Ratkaise yhtälöpari

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena

Lisätiedot

Entsyymit ja niiden tuotanto. Niklas von Weymarn, VTT Erikoistutkija ja tiiminvetäjä

Entsyymit ja niiden tuotanto. Niklas von Weymarn, VTT Erikoistutkija ja tiiminvetäjä Entsyymit ja niiden tuotanto Niklas von Weymarn, VTT Erikoistutkija ja tiiminvetäjä Mitä ovat entsyymit? Entsyymit ovat proteiineja (eli valkuaisaineita), jotka vauhdittavat (katalysoivat) kemiallisia

Lisätiedot

BIOREAKTORIT CHEM C2310 Bioprosessitekniikka Tero Eerikäinen

BIOREAKTORIT CHEM C2310 Bioprosessitekniikka Tero Eerikäinen BIOREAKTORIT CHEM C2310 Bioprosessitekniikka Tero Eerikäinen Bioreaktorit Reaktorin tyyppi: sekoitussäiliö, ilmastuksella ohjattu ilman mekaanista sekoittamista, tulppavirta, kiinteän olomuodon Reaktorin

Lisätiedot

BIOprosessitekniikka - Johdanto

BIOprosessitekniikka - Johdanto Bioprosessitekniikka BIOprosessitekniikka - Johdanto Tero Eerikäinen 1979 TKK Kemia 1980-1981 Laivasto 1986 DI 1989 TkL 1993 TkT 1991-1992 Detmold Saksa; tutkija 1989-1998 TKK laboratorioinsinööri 1998-2003

Lisätiedot

Ei ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja

Ei ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja Jätehuolto Ei ole olemassa jätteitä, on vain helposti ja hieman hankalammin uudelleen käytettäviä materiaaleja Jätteiden käyttötapoja: Kierrätettävät materiaalit (pullot, paperi ja metalli kiertävät jo

Lisätiedot

Tulosten analysointi. Liite 1. Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma

Tulosten analysointi. Liite 1. Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Liite 1 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Tulosten analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys 1.Tutkimustulosten

Lisätiedot

VILJAVUUSTUTKIMUS s-posti: neuvonta@viljavuuspalvelu.fi Päivämäärä Asiakasnro Tutkimusnro

VILJAVUUSTUTKIMUS s-posti: neuvonta@viljavuuspalvelu.fi Päivämäärä Asiakasnro Tutkimusnro 1/8 Näytteen numero 1 2 3 4 5 6 7 Peruslohkotunnus 754-07722- 19 754-07334- 19 Pintamaan maalaji a) HeS HeS HeS HeS HsS HsS HeS Multavuus a) rm rm rm rm rm rm rm 0,8 1,0 0,7 0,5 0,4 0,6 0,5 Happamuus ph

Lisätiedot

Vähärauma, Teknologiakeskus Pripoli, A-siipi, 3. kerros. Suorat puhelinnumerot: Toimisto 02-621 3342

Vähärauma, Teknologiakeskus Pripoli, A-siipi, 3. kerros. Suorat puhelinnumerot: Toimisto 02-621 3342 1 YHTEYSTIEDOT: AVOINNA: ma - pe klo 8.00-15.30 KÄYNTIOSOITE: POSTIOSOITE: INTERNETOSOITE: SÄHKÖPOSTIOSOITE: Vähärauma, Teknologiakeskus Pripoli, A-siipi, 3. kerros Tiedepuisto 4, 28600 PORI www.pori.fi/porilab

Lisätiedot

NIMI: Luokka: c) Atomin varaukseton hiukkanen on nimeltään i) protoni ii) neutroni iii) elektroni

NIMI: Luokka: c) Atomin varaukseton hiukkanen on nimeltään i) protoni ii) neutroni iii) elektroni Peruskoulun kemian valtakunnallinen koe 2010-2011 NIMI: Luokka: 1. Ympyröi oikea vaihtoehto. a) Ruokasuolan kemiallinen kaava on i) CaOH ii) NaCl iii) KCl b) Natriumhydroksidi on i) emäksinen aine, jonka

Lisätiedot

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L 1/5 Boliden Kevitsa Mining Oy Kevitsantie 730 99670 PETKULA Tutkimuksen nimi: Kevitsan vesistötarkkailu 2017, elokuu Näytteenottopvm: 22.8.2017 Näyte saapui: 23.8.2017 Näytteenottaja: Eerikki Tervo Analysointi

Lisätiedot

17VV VV 01021

17VV VV 01021 Pvm: 4.5.2017 1/5 Boliden Kevitsa Mining Oy Kevitsantie 730 99670 PETKULA Tutkimuksen nimi: Kevitsan vesistötarkkailu 2017, huhtikuu Näytteenottopvm: 4.4.2017 Näyte saapui: 6.4.2017 Näytteenottaja: Mika

Lisätiedot

Biodiesel Tuotantomenetelmien kemiaa

Biodiesel Tuotantomenetelmien kemiaa Biodiesel Tuotantomenetelmien kemiaa Tuotantomenetelmät Kasviöljyjen vaihtoesteröinti Kasviöljyjen hydrogenointi Fischer-Tropsch-synteesi Kasviöljyt Rasvan kemiallinen rakenne Lähde: Malkki, Rypsiöljyn

Lisätiedot

Sokerijuurikas ja ravinteet 14.-15.4.2016. Susanna Muurinen

Sokerijuurikas ja ravinteet 14.-15.4.2016. Susanna Muurinen Sokerijuurikas ja ravinteet 14.-15.4.2016 Susanna Muurinen Pääravinteet N-typpi P-fosfori K-kalium Ca-kalsium Mg-magnesium Na-natrium S-rikki Pääravinteiden otto 50-500 kg ha -1 Hivenravinteet B- boori

Lisätiedot

UUDET LANNOITEFOSFORIN LÄHTEET

UUDET LANNOITEFOSFORIN LÄHTEET UUDET LANNOITEFOSFORIN LÄHTEET Ari Väisänen 20.9.2017 TUTKIMUSRYHMÄMME HANKKEITA Harvinaisten maametallien talteenotto puun- ja turpeenpolton tuhkasta (Jyväskylän Energia Oy) INKI Innovatiivinen kiertotalous

Lisätiedot

MOOLIMASSA. Vedyllä on yksi atomi, joten Vedyn moolimassa M(H) = 1* g/mol = g/mol. ATOMIMASSAT TAULUKKO

MOOLIMASSA. Vedyllä on yksi atomi, joten Vedyn moolimassa M(H) = 1* g/mol = g/mol. ATOMIMASSAT TAULUKKO MOOLIMASSA Moolimassan symboli on M ja yksikkö g/mol. Yksikkö ilmoittaa kuinka monta grammaa on yksi mooli. Moolimassa on yhden moolin massa, joka lasketaan suhteellisten atomimassojen avulla (ATOMIMASSAT

Lisätiedot

Miten kasvit saavat vetensä?

Miten kasvit saavat vetensä? Miten kasvit saavat vetensä? 1. Haihtumisimulla: osmoosilla juureen ilmaraoista haihtuu vettä ulos vesi nousee koheesiovoiman ansiosta ketjuna ylös. Lehtien ilmaraot säätelevät haihtuvan veden määrää.

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

LaPaMa Lannoita paremmin -malli. Lannoitus prosessina

LaPaMa Lannoita paremmin -malli. Lannoitus prosessina LaPaMa Lannoita paremmin -malli Lannoitus prosessina Tuomas J. Mattila Erikoistutkija, SYKE Maanviljelijä 2019 Sisällys Lannoitus on merkittävä osa tuotantokustannuksista Miten suunnittelet lannoituksen?

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Ravinteet. Mansikan lannoitus ja kastelu -koulutus Raija Kumpula

Ravinteet. Mansikan lannoitus ja kastelu -koulutus Raija Kumpula Ravinteet Mansikan lannoitus ja kastelu -koulutus 1.11.2017 Raija Kumpula Sivu 1 3.11.2017 sisältö muutama asia kasvin veden ja ravinteiden otosta (edellisviikon aiheet) sivu- ja hivenravinteet ravinteisiin

Lisätiedot

Diskreettiaikainen dynaaminen optimointi

Diskreettiaikainen dynaaminen optimointi Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u

Lisätiedot

Polar Pharma Oy Kyttäläntie 8 A 00390 Helsinki. puh. 09 8493 630 info@polarpharma.fi www.polarpharma.fi

Polar Pharma Oy Kyttäläntie 8 A 00390 Helsinki. puh. 09 8493 630 info@polarpharma.fi www.polarpharma.fi Polar Pharma Oy Kyttäläntie 8 A 00390 Helsinki puh. 09 8493 630 info@polarpharma.fi www.polarpharma.fi Suomen vanhin urheilujuoma, joka kehitettiin 80-luvulla. Alun perin Suomen suurimman virvoitusjuomien

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Broilerivehnän viljelypäivä 2.2.2012 Essi Tuomola

Broilerivehnän viljelypäivä 2.2.2012 Essi Tuomola Hankeaika 10.10.2007-31.12.2012 Yhteistyössä: Siipikarjan tuottajat Broilerivehnän viljelypäivä 2.2.2012 Essi Tuomola Broilerin rehustuksen koostumus Valkuaisaineet Aminohapot Vehnän rehuarvo broilerille

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Mitä tarkoitetaan biopolymeerilla? Mihin kolmeen ryhmään biopolymeerit voidaan jakaa? (1,5 p) Biopolymeerit ovat luonnossa esiintyviä / elävien solujen muodostamia polymeerejä / makromolekyylejä.

Lisätiedot

Seoksen pitoisuuslaskuja

Seoksen pitoisuuslaskuja Seoksen pitoisuuslaskuja KEMIAA KAIKKIALLA, KE1 Analyyttinen kemia tutkii aineiden määriä ja pitoisuuksia näytteissä. Pitoisuudet voidaan ilmoittaa: - massa- tai tilavuusprosentteina - promilleina tai

Lisätiedot

Miten kasvit saavat vetensä?

Miten kasvit saavat vetensä? Miten kasvit saavat vetensä? 1. Haihtumisimulla: osmoosilla juureen ilmaraoista haihtuu vettä ulos vesi nousee koheesiovoiman ansiosta ketjuna ylös. Lehtien ilmaraot säätelevät haihtuvan veden määrää.

Lisätiedot

METSÄTAIMITARHAPÄIVÄT 2016 KEKKILÄ PROFESSIONAL

METSÄTAIMITARHAPÄIVÄT 2016 KEKKILÄ PROFESSIONAL METSÄTAIMITARHAPÄIVÄT 2016 KEKKILÄ PROFESSIONAL Superex - kastelulannoitteet Vesiliukoiset Superex lannoitteet Puhtaita ja täysin vesiliukoisia ph 4,5-4,8 Kastelusuuttimet pysyvät auki Voidaan sekoittaa

Lisätiedot

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 4. Entsyymit ovat solun kemiallisia robotteja

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 4. Entsyymit ovat solun kemiallisia robotteja Solun perusrakenne I Solun perusrakenne 4. Entsyymit ovat solun kemiallisia robotteja 1. Avainsanat 2. Solut tuottavat entsyymejä katalyyteiksi 3. Entsyymien rakenne ja toiminta 4. Entsyymit vaativat toimiakseen

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Aine-, energia- ja rahataseet prof. Olli Dahl

Aine-, energia- ja rahataseet prof. Olli Dahl Aine-, energia- ja rahataseet prof. Olli Dahl Puhtaat teknologiat tutkimusryhmä Sisältö Johdanto Aine- ja energiatase Reaaliset rahavirrat, yritystaso rahatase Esimerkkejä: Kemiallisen massan eli sellun

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. Valitse listasta kunkin yhdisteen yleiskielessä käytettävä ei-systemaattinen nimi. (pisteet yht. 5p) a) C-vitamiini b) glukoosi c) etikkahappo d) salisyylihappo e) beta-karoteeni a. b. c. d. e. ksylitoli

Lisätiedot

Kenttätutkimus hiiliteräksen korroosiosta kaukolämpöverkossa

Kenttätutkimus hiiliteräksen korroosiosta kaukolämpöverkossa 1 (17) Tilaajat Suomen KL Lämpö Oy Sari Kurvinen Keisarinviitta 22 33960 Pirkkala Lahti Energia Olli Lindstam PL93 15141 Lahti Tilaus Yhteyshenkilö VTT:ssä Sähköposti 30.5.2007, Sari Kurvinen, sähköposti

Lisätiedot

BIOKATALYYSIN MAHDOLLISUUDET

BIOKATALYYSIN MAHDOLLISUUDET PROSESSI- JA YMPÄRISTÖTEKNIIKAN PERUSTA 2013 BIOKATALYYSIN MAHDOLLISUUDET Sanna Taskila Bioprosessitekniikka / Kemiallinen prosessitekniikka 12.12.2013 Biotekniikan määritelmä Biotekniikka yhdistää luonnontieteitä

Lisätiedot

Luku 2. Kemiallisen reaktion tasapaino

Luku 2. Kemiallisen reaktion tasapaino Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Substraatin gradientin vaikutus leivinhiivan panossyöttöprosessissa

Substraatin gradientin vaikutus leivinhiivan panossyöttöprosessissa Valtteri Walta Substraatin gradientin vaikutus leivinhiivan panossyöttöprosessissa Metropolia Ammattikorkeakoulu Insinööri (AMK) Bio- ja elintarviketekniikka Insinöörityö 26.5.2014 Tiivistelmä Tekijä Otsikko

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

Nummelan hulevesikosteikon puhdistusteho

Nummelan hulevesikosteikon puhdistusteho Nummelan hulevesikosteikon puhdistusteho Pasi ivlk Valkama, Emmi imäkinen, Anne Ojala, Ojl Heli HliVht Vahtera, Kirsti tilhti Lahti, Kari irantakokko, tkkk Harri Vasander, Eero Nikinmaa & Outi Wahlroos

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Edullinen MODHEAT-teknologia pienten materiaalivirtojen kuivaukseen ja edelleen jalostukseen. Seminaari 21.11.2014 Hanna Kontturi

Edullinen MODHEAT-teknologia pienten materiaalivirtojen kuivaukseen ja edelleen jalostukseen. Seminaari 21.11.2014 Hanna Kontturi 8.4.2014 Edullinen MODHEAT-teknologia pienten materiaalivirtojen kuivaukseen ja edelleen jalostukseen Seminaari 21.11.2014 Hanna Kontturi SFTech Oy Kehittää innovaatioita materiaalitehokkuuden tarpeisiin

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Määritelmä, metallisidos, metallihila:

Määritelmä, metallisidos, metallihila: ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Kotipuutarhan ravinneanalyysit

Kotipuutarhan ravinneanalyysit 1 Kotipuutarhan ravinneanalyysit Eurofins Viljavuuspalvelu Oy 22.4.2018 Manna Kaartinen myyntipäällikkö puh. 044 320 4012 Eurofins Viljavuuspalvelu Oy Viljavuuspalvelu on perustettu 1952 Helsingissä Vuodesta

Lisätiedot

Laaja ravinnetilatutkimus: Mikrobiologinen aktiivisuus

Laaja ravinnetilatutkimus: Mikrobiologinen aktiivisuus Laaja ravinnetilatutkimus: Mikrobiologinen aktiivisuus Vaihtoehtoja lannoitukseen kierrätysravinnepäivä Hämeenlinna 9.12.2016 Manna Kaartinen Eurofins Viljavuuspalvelu Oy Eurofins Viljavuuspalvelu Oy Viljavuuspalvelu

Lisätiedot

2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =

2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y = BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu

Lisätiedot

Reaktiosarjat

Reaktiosarjat Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine

Lisätiedot

energiatehottomista komponenteista tai turhasta käyntiajasta

energiatehottomista komponenteista tai turhasta käyntiajasta LUT laboratorio- ato o ja mittauspalvelut ut Esimerkkinä energiatehokkuus -> keskeinen keino ilmastomuutoksen hallinnassa Euroopan sähkönkulutuksesta n. 15 % kuluu pumppusovelluksissa On arvioitu, että

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015 Lukion kemia 3, Reaktiot ja energia Leena Piiroinen Luento 2 2015 Reaktioyhtälöön liittyviä laskuja 1. Reaktioyhtälön kertoimet ja tuotteiden määrä 2. Lähtöaineiden riittävyys 3. Reaktiosarjat 4. Seoslaskut

Lisätiedot

Kasvien ravinteiden otto, sadon ravinteet ja sadon määrän arviointi

Kasvien ravinteiden otto, sadon ravinteet ja sadon määrän arviointi Netta Junnola ProAgria Etelä-Suomi Sari Peltonen ProAgria Keskusten Liitto Kasvien ravinteiden otto, sadon ravinteet ja sadon määrän arviointi Kasvien ravinteiden otto Tapahtuu ilman ja maan kautta Ilmasta

Lisätiedot

α-amylaasi α-amylaasin eristäminen syljestä ja spesifisen aktiivisuuden määritys. Johdanto Tärkkelys Oligosakkaridit Maltoosi + glukoosi

α-amylaasi α-amylaasin eristäminen syljestä ja spesifisen aktiivisuuden määritys. Johdanto Tärkkelys Oligosakkaridit Maltoosi + glukoosi n eristäminen syljestä ja spesifisen aktiivisuuden määritys. Johdanto Työssä eristetään ja puhdistetaan merkittävä ja laajalti käytetty teollisuusentsyymi syljestä. pilkkoo tärkkelystä ensin oligosakkarideiksi

Lisätiedot

JAKSOLLINEN JÄRJESTELMÄ

JAKSOLLINEN JÄRJESTELMÄ JASOLLINEN JÄRJESTELMÄ Oppitunnin tavoite: Oppitunnin tavoitteena on opettaa jaksollinen järjestelmä sekä sen historiaa alkuainepelin avulla. Tunnin tavoitteena on, että oppilaat oppivat tieteellisen tutkimuksen

Lisätiedot

Uusi teollinen biotekniikka ja biotalous. Prof. Merja Penttilä VTT

Uusi teollinen biotekniikka ja biotalous. Prof. Merja Penttilä VTT Uusi teollinen biotekniikka ja biotalous Prof. Merja Penttilä VTT ÖLJYJALOSTAMO Yhteiskuntamme on öljystä riippuvainen Öljyn riittämättömyys ja hinta CO 2 Ilmaston muutos BIOJALOSTAMO Iso haaste - mutta

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

Lehtilannoitekokeet Sokerijuurikkaan Tutkimuskeskus (SjT)

Lehtilannoitekokeet Sokerijuurikkaan Tutkimuskeskus (SjT) Lehtilannoitekokeet 2014-2016 Sokerijuurikkaan Tutkimuskeskus (SjT) HtS, m ph 6.4 Ca 3900 K 253 P 10 Mg 248 Na 44 Mn 9 Huononlainen B 1.4 Hyvä Koevuosi 2014 Lajike: Diana KWS Ruudun koko: 8m X 2m Siemenetäisyys:

Lisätiedot

Jos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on. p(0) = p(s) = 0.

Jos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on. p(0) = p(s) = 0. Mat-.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 1 1. Olkoon maaston korkeus y(s) derivoituva funktio ja etsitään tien profiilia x(s). Päätösmuuttuja on tien jyrkkyys

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede

2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede YLE5 / YET-09 Luonnonvarataloustieteen jatkokurssi. Uusiutuvat luonnonvarat: alastuksen taloustiede Marko Lindroos & Maija Holma Uusiutuvat luonnonvarat alastuksen taloustiede: Luentoteemat.1 Johdanto.

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen

Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä

Lisätiedot

Kaikki ympärillämme oleva aine koostuu alkuaineista.

Kaikki ympärillämme oleva aine koostuu alkuaineista. YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle Solun toiminta II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle 1. Avainsanat 2. Fotosynteesi eli yhteyttäminen 3. Viherhiukkanen eli kloroplasti 4. Fotosynteesin reaktiot 5. Mitä kasvit

Lisätiedot

Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin. Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos

Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin. Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos Hiilenkierto järvessä Valuma alueelta peräisin oleva orgaaninen aine (humus)

Lisätiedot

Biotekniikka elintarviketeollisuudessa. Matti Leisola TKK/Bioprosessitekniikka

Biotekniikka elintarviketeollisuudessa. Matti Leisola TKK/Bioprosessitekniikka Biotekniikka elintarviketeollisuudessa Matti Leisola TKK/Bioprosessitekniikka Merkittävä teollisuudenala on neljänneksi suurin teollisuudenala työllistää 37 800 henkeä, teollisuudenaloista kolmanneksi

Lisätiedot

Puhtia kasvuun kalkituksesta, luomuhyväksytyt täydennyslannoitteet. Kaisa Pethman ProAgria Etelä-Suomi Hollola

Puhtia kasvuun kalkituksesta, luomuhyväksytyt täydennyslannoitteet. Kaisa Pethman ProAgria Etelä-Suomi Hollola Puhtia kasvuun kalkituksesta, luomuhyväksytyt täydennyslannoitteet Kaisa Pethman ProAgria Etelä-Suomi Hollola 12.12.2017 LISÄÄ OSAAMISTA, PAREMPI TULOS Elinvoimainen maatilatalous ELINA Liity Facebookissa:

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

EI SISÄLLÄ ZEOLIITTI-AMALSIIMIÄ 50% seos CaCo3 50% LANTA-ANALYYSI. Markku Siljander. Näyte 001 Ei sis. Zeolit-Egoa Sekoitusaika n.

EI SISÄLLÄ ZEOLIITTI-AMALSIIMIÄ 50% seos CaCo3 50% LANTA-ANALYYSI. Markku Siljander. Näyte 001 Ei sis. Zeolit-Egoa Sekoitusaika n. Sammonkatu 8, Oulu p. 08-514 5600 Suomen Ympäristöpalvelu on osa Ahma Insinöörit konsernia EI SISÄLLÄ ZEOLIITTI-AMALSIIMIÄ 50% seos CaCo3 50% Markku Siljander Lautatarhankatu 23 86300 Oulainen Näyte 001

Lisätiedot

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio

Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä

Lisätiedot

Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY

Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY Esityksen sisältö Ekopellettien ja puupellettien vertailua polttotekniikan kannalta Koetuloksia ekopellettien poltosta

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

VILJAVUUSTUTKIMUS s-posti: Päivämäärä Asiakasnro Tutkimusnro

VILJAVUUSTUTKIMUS s-posti: Päivämäärä Asiakasnro Tutkimusnro 1/7 Näytteen numero 1 2 3 4 5 6 7 Peruslohkotunnus 04749-48 04757-56 04765-64 04777-76 04778-77 04779-78 04784-83 Nimi A1 A5 B6 KA KB S BB Pintamaan maalaji a) HHt HHt HHt HHt HHt HHt HHt Multavuus a)

Lisätiedot

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

(Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen)

(Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen) KE2-kurssi: Kemian mikromaalima Osio 1 (Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen) Monivalintatehtäviä 1. Etsi seuraavasta aineryhmästä: ioniyhdiste molekyyliyhdiste

Lisätiedot

Mineraalilaboratorio Mila Oy Versio 2.8 Näytteenotto-ohje MINERAALILABORATORIO MILA OY NÄYTTEENOTTO-OHJE

Mineraalilaboratorio Mila Oy Versio 2.8 Näytteenotto-ohje MINERAALILABORATORIO MILA OY NÄYTTEENOTTO-OHJE MINERAALILABORATORIO MILA OY NÄYTTEENOTTO-OHJE 2017 NÄYTTEIDEN LÄHETYSOHJEITA - Näytteiden lähetys maanantaista torstaihin pikapostina. Taksin tai kuriiripalvelun välityksellä näytteitä voi lähettää myös

Lisätiedot

Mustasotilaskärpäsen toukkien kasvatus Sahalahden sivuvirroissa. BioKierto projekti Sanna Taskila, Oulun yliopisto

Mustasotilaskärpäsen toukkien kasvatus Sahalahden sivuvirroissa. BioKierto projekti Sanna Taskila, Oulun yliopisto Mustasotilaskärpäsen toukkien kasvatus Sahalahden sivuvirroissa BioKierto projekti Sanna Taskila, 21.12.2018 Yleistä Kuva. Mustasotilaskärpäsen toukkia (vasen) ja aikuisia yksilöitä (oikea). (Kuva: Ari

Lisätiedot

Prosessimittaukset. Miksi prosessikierroista tehdään mittauksia

Prosessimittaukset. Miksi prosessikierroista tehdään mittauksia Prosessimittaukset Miksi prosessikierroista tehdään mittauksia Saadaan informaatiota prosessiolosuhteista Tiedetään, että prosessissa tapahtuu oikeita asioita Osataan ohjata prosessia Virtausmittaukset

Lisätiedot

Lannan poltto energiavaihtoehtona broileritilalla

Lannan poltto energiavaihtoehtona broileritilalla Teholanta-hankkeen loppuseminaari 11.12.2018, Tampere Lannan poltto energiavaihtoehtona broileritilalla Reetta Palva, TTS Työtehoseura Lähtökohdat Lannan poltto tilalla olemassa olevassa lämpökattilassa

Lisätiedot