Big datan laatu ja analytiikka

Koko: px
Aloita esitys sivulta:

Download "Big datan laatu ja analytiikka"

Transkriptio

1 hyväksymispäivä arvosana arvostelija Big datan laatu ja analytiikka Mirva Toivonen Seminaarityö Helsinki HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

2 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta Fakultet Faculty Laitos Institution Department Matemaattis-luonnontieteellinen tiedekunta Tekijä Författare Author Tietojenkäsittelytieteen laitos Mirva Toivonen Työn nimi Arbetets titel Title Big datan laatu ja analytiikka Oppiaine Läroämne Subject Tietojenkäsittelytiede Työn laji Arbetets art Level Seminaarityö Tiivistelmä Referat Abstract Aika Datum Month and year Sivumäärä Sidoantal Number of pages 12 sivua Big datan suuri määrä, käytettävien lähteiden moninaisuus ja nopeus jolla dataa tulee käsiteltäväksi tuovat haasteita analytiikan laadunhallintaan. Työssä tarkastellaan big datan luokittelun, tutkittavan ilmiön ymmärtämisen ja analyyseissä käytettävien moninaisten lähteiden yhteenvedon haasteita. Datan luokittelu arvokkaaseen dataan parantaa suurten tietomassojen käsittelyä, mutta oleellisen tiedon löytäminen on haasteellista, eikä suuri tietomassa aina johda tarkempaan analyysiin. Tutkittavan ilmiön ymmärtäminen big datan avulla on vaikeaa, koska näyte voi olla vinounut, mahdollisuus vääriin korrelaatioihin ja syy-seuraussuhteisiin kasvaa datan moninaisuuden ja määrän vuoksi. Datan ymmärtämistä voidaan helpottaa rakentamalla malli tutkittavasta ilmiöstä. Datan yhdistäminen auttaa suodattamaan oleellisen tiedon esimerkiksi suurista dokumenteista, mutta ongelmana on datan puuttuminen lähteiden eri rakeisuustasojen, yksityisyydensuojan ja näytteenottotiheyden takia. ACM Computing Classification System (CCS): Avainsanat Nyckelord Keywords big data, laatu, analytiikka Säilytyspaikka Förvaringställe Where deposited Muita tietoja Övriga uppgifter Additional information

3 ii Sisältö 1 Johdanto 1 2 Big Data 1 3 Big data -analytiikka 3 4 Big data haasteita analytiikalle Datan identifiointi ja luokittelu Datan ymmärtäminen Datan yhteenveto Yhteenveto 9 Lähteet 11

4 1 1 Johdanto Big data tuo perinteisen tietokantadatan rinnalla syvyyttä ja strategista liiketoimintaetua yrityksille. Perinteisellä tietovarastoratkaisuihin perustuvalla raportoinnilla voidaan tarkastella menneitä tapahtumia. Uudenlaiset datalähteet, kuten sensori-, teksti-, videoja äänidata mahdollistavat tapahtumien ennustamisen ja vastaamisen kysymykseen mitä tapahtuu juuri nyt. Big data -termi kuvaa datan ominaisuuksia, joissa dataa saadaan monenlaisista lähteistä, dataa virtaa käsiteltäväksi nopeasti ja paljon. Kaikkea big dataa ei voida esikäsitellä samaan tapaan kuin tietovarastodataa, vaan big dataa analysoidaan sellaisenaan usein ilman puhdistustoimenpiteitä. Huonoa dataa voidaan heittää pois, sillä tilalle on tarjolla paljon korvaavaa dataa. Big datan laadunhallinnassa ongelmana on hyvän, merkityksellisen datan löytäminen massasta joka on luonteeltaan sotkuista. Datan sotkuisuus vaikuttaa myös tutkittavan ilmiön ymmärtämiseen ja oleellisen tiedon tiivistämiseen moninaisista lähteistä. Tässä työssä esitellään ongelmia, joita big data aiheuttaa mielenkiintoisen ja arvokkaan datan eristämisessä, tutkittavan ilmiön ymmärtämisessä ja moninaisten lähteiden yhdistämisessä. Luvussa 2 tarkastellaan big data -termiä kolmen muuttujan, määrä, moninaisuus ja vauhti avulla, sekä esitellään minkälaista dataa liiketoiminnassa käytetään big data -analytiikan pohjana. Luvussa 3 esitellään big data -analytiikan piirteitä ja mitä yritysjohtajat toivovat analytiikalta big data ratkaisuiden yhteydessä. Luvussa 4 tarkastellaan kolmea analytiikan haastetta big datan laadun näkökulmasta: datan identifiointia ja luokittelua, datan ymmärtämisen vaikeutta sekä datalähteiden yhdistämistä. 2 Big Data Termi big data niputtaa saman termin alle datan valtavan määrän (volume), datalähteiden moninaisuuden (variety) ja vauhdin (velocity), jolla dataa tuotetaan. Big datan määrä tarkoittaa massaa jota ei perinteisin laskentakeinoin voida käsitellä. Moninaisuus tarkoittaa dataa tuottavien lähteiden ja datan rakenteen kirjoa. Dataa voidaan perinteisen operationaalisten tietolähteiden kuten tietokantadatan ja tietovarastodatan lisäksi kerätä sensoreista (esimerkiksi mobiililaitteiden GPS data),

5 2 web-sovelluksista (likkauskäyttäytymistä (clkickstream behavior) ja dataa sosiaalisesta mediasta), blogeista, uutisista ja mikroblogeista (twiitit), videoista ja äänitiedostoista. Data voi olla ihmisen tai koneen tuottamaa, rakenteeltaan strukturoitua, strukturoimatonta tai puolistruktuurista tiedostoihin pakattua dataa. Datan vauhti tarkoittaa että dataa tulee jatkuvana virtana, jota halutaan hyödyntää tosiaikaisesti sitä mukaan kuin dataa virtaa systeemiin [Laney01]. Tosiaikaista big dataa saadaan muun muassa liike- ja kuvasensoreista ja paikannusdatasta kuten GPS -datasta (Global Positioning System) [Tien 13]. Big data -analytiikkaprojekteihin valitut tai tulevaisuudessa käytettävät dataähteet ovat jakautuneet EMA:n (Enterprise Management Associates) ja IBM:n tutkimuksessa [Devlin et al. 12] seuraavasti (Kuva 1). Eniten käytetty datalähde analyyseissä on strukturoitua operationaalitason dataa, joka voi liittyä myyntiin, toimitusketjuun tai asiakkuuden hallintaan (50% vastaajista käytti operationaalitason dataa big data projekteissa). Toiseksi yleisin analytiikkadatan lähde oli ihmisten tuottamat dokumentit kuten sähköpostit ja lomakkeet (40% vastaajista). Muita datalähteitä kuten kuvia, koneen tuottamaa dataa ja sosiaalista mediaa käytti noin 30% vastaajista. Äänitiedostoja käytettiin vähiten, vain 19% vastaajista. Kuva 1: Datalähteiden käytön jakautuminen big data projekteissa. Strukturoitu operationaalinen data, ihmisen luomat dokumentit ja transaktiodata ovat kolme suosituinta datalähdettä big datan analysointiprojekteissa [Devlin et al. 12].

6 3 Kuvassa 2 big data jakautuu strukturoituun dataan, kuten relaatiotietokantadataan, sovelluskohtaiseen dataan ja struktuoimattomaan dataan, kuten video-, kuva-, ääni-, dokumenttidata ja JSON -muotoiseen dataan [Devlin et al. 12] Kuva 2: Big data ympäristössä yhdistetään strukturoitua ja strukturoimatonta dataa. 3 Big data -analytiikka Analytiikan käyttö on liiketoimintaetu. Liiketoiminnassaan erittäin hyvin menestyvät yritykset käyttivät analytiikkaa melkein 50% enemmän kuin heikommin menestyvät kilpailijat erottautuakseen kilpailijoistaan [LaValle et al 11]. LaVallen tutkimukesssa analytiikan käyttö toi liiketoimintaan tehokkuutta, kasvua tai kilpailuetua ja analytiikan ja liiketoimintamenestyksen väliltä löytyi selkeä positiivinen korrelaatio. Analytiikan tarkoituksena on eristää hyödyllistä tietoa valtavista tietosäiliöistä (data repositories) [Cuzzocrea et al 13]. Tietoa voidaan eristää laadullisilla analyyseillä, joissa pyritään ymmärtämään tutkittavaa ilmiötä tekemällä yhteyksiä ja johtopäätelmiä ilmiötä mittaavista muuttujista. Liiketoiminta-analytiikan tavoitteena on tuottaa arvoa nopeammin ja löytää tärkeimpiä muutoskohteita [LaValle et al 11]. Perinteisessä raportoinnissa data on mahdollisimman optimaalista. Tietovarastoissa dataa esikäsitellään yhdenmukaistamalla tietoa ja poistamalla väärää tai virheelistä tietoa. Datasta tehdään mahdollisimman edustava ja tarkka, jonka jälkeen data varastoidaan raportointia ja analyysejä varten. Datamassan kasvaessa yksinkertainenkin operaatio voi aiheuttaa merkittäviä viiveitä ajo- ja vastausaikaan (runtime, responsiveness) [Parker 12]. Big datan kontekstissa datan optimaalisuus on

7 4 epärealistista, erityisesti tosiaikaisissa järjestelmissä. Perinteinen data ensin lähestymistapa, jossa kaikki data kerätään ensiksi ja puhdistetaan ennen analyysien tekoa ei toimi big datan analytiikassa datan valtavan koon ja moninaisuuden takia. Data ensin lähestyminen jättää liian vähän aikaa, energiaa ja resursseja tiedon pontetiaalisen käytön ymmärtämiseen ja sen sijaan keskitytään datan keräämiseen ja puhdistamiseen [LaValle et al 11]. Big data pakottaa luopumaan optimaalisen datan vaatimuksesta ja keksimään luovempia, innovatiivisempia tapoja lähestyä datan analysointia ja käsittelyä. Perinteisten operationaalitason analyysityökalujen, kuten raporttien ja kojelautojen (dashboard) avulla voidaan seurata mitä on tapahtunut ja miksi näin on tapahtunut [Kimball 12]. Perinteisten analyysityökalujen fokus on menneessä ajassa. Rinnakkaista laskentaa käyttävän ohjelmointiparadigman MapReducen ja pilvilaskennan mahdollistamat parannukset datan käsittelynopeudessa ja skaalautuvuudessa mahdollistavat analytiikan näkökulman muuttumisen menneestä siihen mitä tapahtuu juuri nyt, mitä todennäköisesti tapahtuu seuraavaksi ja minkälaisia toimenpiteitä täytyy tehdä, jotta saavutetaan optimaalisia liiketoimintatuloksia [LaValle et al 11]. Analyyseissä dataa voidaan yhdistää strukturoidusta, yleensä yrityksen sisäisestä järjestelmästä, strukturoimattomaan usein yrityksen ulkopuolelta tulevaan dataan. Strukturoimaton data mahdollistaa vastaamisen sellaisiin kysymyksiin joihin aikaisemmin ei ollut mahdollista vastata. Big datalla ei ole tarkoitus korvata perinteistä analytiikkaa, kuten raportointia, vaan täydentää analytiikkaa lisäämällä syvyyttä ja nyansseja olemassaoleviin ratkaisuihin[letouzé 12]. Big data analytiikan omaksumisen suurimmat esteet ovat ennemmin hallinnollisia tai yrityskulttuurisia esteitä kuin datan keräämiseen, laatuun tai teknologiaan liittyviä [Madsen 13], [LaValle et al 11]. Fiksujen, uudenlaisten ja innovatiivisten ratkaisuiden tekeminen oli suurin haaste big data analytiikan käytöönotossa. LaValle et al 2011 tutkimuksessa laatuun liittyvät esteen olivat kolmanneksi yleisin ongelma (20% piti ongelmia datan laadussa päällimmäisenä esteenä). Datan moninaisuuden käsitteleminen koettiin suuremmaksi haasteeksi kuin pelkkä datan määrä big data -analytiikan omaksumisessa [Geopalkrishnan el al 12].

8 5 Yritysjohtajat kaipasivat dataan perustuvia välittömiä ohjeistuksia yllättäviin tilanteisiin, joissa esimerkiksi yllättävä kilpailija ilmaantuu markkinoille, toimitusketjun alueella tapahtuu maanjäristys tai jos asiakas näyttää merkkejä tuottajan vaihtamisesta [LaValle et al 11]. Big data analytiikalta kaivattiin apua optimaalisten ratkaisuiden löytämiseen ja ymmärtämiseen, jotta korjausliikkeitä voidaan tehdä nopeasti. 4 Big data haasteita analytiikalle Big data analytiikalta toivotaan parempaa ymmärrystä liiketoiminnasta. Big datan analysoinnin haasteina on datan heterogeeninen luonne, määrä ja vauhti, jotka vaikeuttavat oleellisen datan löytämistä, datan ja tutkittavan ilmiön ymmärtämistä sekä datan yhteenvetoa. Aliluvussa 4.1 annetaan esimerkkejä huonosta datasta ja esitellään kaksi tapaa identifioida analytiikan kannalta tärkeää, oikeaa tai mielenkiintoista tietoa: lähestymällä big dataa kysymys ensin periaatteella ja luokittelemalla dataa arvokkaaseen ja vähemmän arvokkaaseen dataan. Aliluvussa 4.2 tarkastellaan miten datan moninaisuus ja määrä vaikeuttavat datan ymmärtämistä, sekä esitellään tutkittavan ilmiön mallintamista jota vasten on helpompi ymmärtää ja luokitella dataa. Aliluvussa 4.3 esitellään datalähteiden yhteenvetoa jonka avulla data saadaan pakattua ymmärrettävämpään muotoon. 4.1 Datan identifiointi ja luokittelu Tarkoituksenmukainen tieto pitää jollain tapaa identifioida ja löytää. Jos halutaan löytää poikkeamia (anomaly) pitää ensin määritellä mikä on epänormaalia ja mikä normaalia [Letouzé 12] ja lisäksi mikä on mielenkiintoista ja mikä ei. Epäjohdonmukaisuudet voivat kertoa mielenkiintoisesta ja epätavallisesta ilmiöstä tai rikkinäisestä sensorista, jota kannattaa tutkia tarkemmin. Epätarkkaa tai väärää dataa voidaan kerätä esimerkiksi rikkinäisistä sensoreista tai mittausvirheen takia. Vanhentunutta, tahallaan tai tahattomasti väärä tai harhaanjohtavaa

9 6 dataa voidaan kerätä esimerkiksi blogeista, uutisista tai sosiaalisen median viesteistä [Bizer et al. 12],[Letouzé 12]. Esimerkkinä Letouzé [Letouzé 12] kirjoittaa blogista jossa kirjoitettiin keksittyä tarinaa arabikevään tapahtumista Damaskoksessa vuonna Kirjoittaja oli todellisuudessa Eurooppalainen heteroseksuaalinen mies, mutta esiintyi silti blogissaan homoseksuaalisena naisena. Blogi saavutti kasvavaa suosiota, kunnes huijaus paljastui. Tapaus nosti esille huolen verifioimattomasta ihmisen tuottaman datan laadusta. On haasteellista arvioida dokumenttien laatua ja löytää lähde, jota voidaan pitää uskottavana, sillä tekstit ovat luonteeltaan spontaaneja ja tietojen tarkistus on löysää. Suurten tietomassojen käsittelyä voidaan tehostaa tiivistämällä ja luokittelemalla dataa mahdollisimman aikaisessa vaiheessa. Sensoreiden tuottamaa raakaa dataa voidaan suodattaa tai tiivistää, sillä suurin osa datasta ei ole mielenkiintoista. Tapauksissa joissa datan määrä ylittää varastointikyvyn datan esikäsittely on tärkeää. Esikäsittely pitää tehdä datan käyttötarkoitus mielessä pitäen, koska muuten tärkeää tietoa voi kadota. Esimerkiksi CERNin suuri LHC hiukkaskiihdytin (Large Hadron Collide, LHC) tuottaa 15 petatavua dataa vuodessa. LHC kokeessa tuotetaan 10 9 interaktioita per sekunti ja dataa esikäsitellään niin että jäljellä on enää 10 7 interaktiota per sekunti [CERN, 08]. On haasteellista luokitella suodattimet niin, etteivät ne heitä pois hyödyllistä informaatiota. Riittääkö esimerkiksi uutisten analysoinnissa, jos tutkitaan vain uutisia joissa mainitaan tietyn yrityksen nimi? Analysoidaanko vain pientä osaa tekstiä yrityksen nimen ympäriltä vai analysoidaanko koko uutinen? Dataa kuvaileva ja määrittävä metatieto on tärkeässä roolissa kun halutaan varmistua validiudesta, datan elinkelpoisuudesta ja laajuudesta [Tien 13]. Esimerkiksi metadataa analysoimalla tiedetään mistä lähteestä uutinen on peräisin, jotta mahdolliset duplikaatit voidaan ottaa huomioon ja tutkia. Tosin on haasteellista kerätä automaattisesti metadataa, joka kuvailee datan joka on tallennettu, miten data on tallennettu ja miten data on mitattu [Labrinidis et al. 12]. Parempi luokittelu hyödyttää enemmän kuin algoritmien parantaminen [Geopalkrishnan el al 12]. Esimerkiksi pankkitoiminnan riskejä arvioiva algoritmi käytti lähteenään noin 2600 puhelinraporttia. Jotta algoritmi toimi, täytyi lähdemateriaalia suodattaa reiluun 70 oleelliseen muuttujaan ja lisäksi tarvittiin pankkialan osaajia jäljellä olevien muttujien

10 7 suodattamiseen. Joissain tapauksissa numeeriset muuttujat piti muuttaa kategorisiksi ja toisin päin. Luokittelussa datan formaatilla ei ole väliä, sillä datasta on aina löydettävissä entiteettejä kuten asiakas, tuote, palvelu, sijainti ja aika [Kimball 12]. Esimerkiksi twiitistä Wov, That is awesome! voidaan saada mittoja asiakkaasta, sijainnista, tuotteesta, tuottajasta, demografisesta klusterista, sessiosta tai twiittiä edeltävästä tapahtumasta. Dimensaliointi olisi hyvä tehdä mahdollisimman aikaisessa vaiheessa ja kaikki dimensiot pitää liittää pysyviin sijaisavaimiin (durable surrogate key) [Kimball 12]. LaValle et al esittää lähestymistavan, jossa kysymykset esitetään ensin ja data kerätään tutkittavaa ilmiötä varten. Jos kysymykset muotoillaan etukäteen, voidaan helpommin paikallistaa data jota tarvitaan analyyseissä, eikä datan välttämättä tarvitse olla täydellistä. Dataa saattaa olla jo valmiina. Kysymyslähtöinen käsittelytapa auttaa löytämään dataa, jota kannattaa puhdistaa. Se auttaa myös tunnistamaan onko näyte edustava, mikä on normaalia dataa ja mitataanko oikeaa asiaa. Zikopoulos et al identifioi artikkelissaan datan matalan ja korkean arvon dataan. Esimerkiksi datan käsittelytoimenpiteet nostavat datan arvoa per tallennettu tavu. Se onko datalla korkea vai matala arvo vaikuttaa datan käsittelyyn ja siihen kuinka paljon puhdistustoimenpiteitä tarvitaan. 4.2 Datan ymmärtäminen Datan määrä mahdollistaa tarkemmat analyysit, sillä mitä enemmän datapisteitä on, sen lähemmäs päästään näytteen odotusarvoa. Tosin tarkkuus ei välttämättä johda parempaan ymmärrykseen ratkaistavasta ongelmasta. Usein dataa käsitellään huolimattomasti ja pinnallisella tasolla, koska big data on luontaisesti sotkuista ja se saattaa hämärtää alla olevia syy-seuraus suhteita [Tien 13]. Big datassa dimensioiden määrä voi räjähtää datan strukturoimattoman luonteen vuoksi [Cuzzocrea et al 13]. Muuttujien määrä kasvattaa mahdollisten korrelaatioiden määrää, myös väärien korrelaatioiden määrää. Big datassa on siksi riski, että nähdään toistuvia malleja siellä missä niitä ei oikeasti ole [Boyd et al. 12]. Lisäksi big datan korrelaatiot voivat johtaa tarkoituksettomiin syy-seuraus suhteisiin [Tien 13]. Datan massiivinen määärän takia on riski, että keskitytään vain toistuvien mallien (pattern) tai

11 8 korrelaatioiden etsimiseen ja tehdään johtopäätöksiä ilman että syvästi ymmärretään dataa ja datan dynamiikkaa. Datan mukana ei tule tietoa näytteen tarkkuudesta, joten analyyseistä ei voida sanoa ovatko ne tarkkoja vai eivät. Näytteen suuri koko on merkityksetön, jos otos ei ole edustava [Boyd et al. 12]. Epäedustavia näytteitä ei voida yleistää näytekontekstin ulkopuolelle [Letouzé 12]. Jos datanäyte ei ole edustava, analyysi ei kerro totuutta mitattavasta ilmiöstä. Esimerkiksi digitaalisia palveluita analysoitaessa ei voida tehdä yleistyksiä koko populaatioon, sillä näytedata on vinoutunutta eikä digitaalisten palveluiden käyttäjät edusta koko populaatiota [Letouzé 12]. Myös tekaistu tai väärin tulkittavissa oleva käyttäjien tuottama sisältö voi muuttaa kokonaiskuvaa analysoitavasta ilmiöstä [Letouzé 12]. Visualisointi- ja datan yhdistämistekniikoilla data saadaan pakattua helpommin ymmärrettävään muotoon [Myllymäki et al. 11]. Yhdistetystä datasta voidaan tehdä malli, jota vasten raakaa dataa on helpompi ymmärtää ja luokitella. Esimerkiksi monen vuoden ajalta kerätystä liikennedatasta voidaan tehdä malli yhdistämällä ja tiivistämällä liikennetietoja jaettuna esimerkiksi arkipäiviin ja viikonloppuun. Näin saadusta mallista voidaan arvioida liikenteen sujuvuutta. Jos dataa puuttuu, voidaan puuttuva data korvata arvioilla. Puuttuvan datan korvaamiseen löytyy tilastotieteellisiä imputointimenetelmiä, joissa puuttuva data korvataan sijaisdatalla. Mallia vasten on helppo myös etsiä epäjohdonmukaisuuksia, kun mitattuja tuloksia voidaan verrataan odotusarvoon [Myllymäki et al. 11]. 4.3 Datan yhteenveto Yhdistämällä erilaisia datalähteitä, esimerkiksi strukturoimatonta ja strukturoitua dataa, saadaan syvempää ymmärrystä liiketoiminnasta. Dokumentteja yhdistelemällä (document summarization) voidaan suodattaa turha tieto pois suurista dokumenteista [Lomotey et Deters 13], eli data saadaan pakattua helpommin ymmärrettävään muotoon. Yhdistetyssä dokumentissa samasta aiheesta kirjoitettujen tekstidokumenttien pääpointit pakataan samaan dokumenttiin. Etuna on yhden aiheen kuvailu monesta eri näkökulmasta yhdellä silmäyksellä, ilman että luetaan alkuperäisiä tiedostoja. Dokumenttien yhdistäminen toteutetaan dokumenttien struktuuria analysoimalla ja

12 9 dokumenttien luokittelulla. Käsittelyn tuloksena tuotetaan yhteenvetoraportti ja tuloksia voidaan visualisoida. Videoita voidaan yhdistellä kuvailutiedon (metadata) perusteella, esimerkiksi videotiedostoon liitettyjen hakusanojen perusteella [Myllymäki et al. 11]. Dokumenttien yhdistämisessä strukturoimattomasta datasta tehdyt yhdisteet (aggregaatit) voivat helposti osoittautua huonoiksi [Cuzzocrea et al 13]. Ongelmana on että transaktionaalisen strukturoidun datan ja strukturoimattoman web peräisen datan yhdistäminen on häviöllistä, yli puolet (40-50% success rate) lähdedatasta puuttuu yhdistetyissä tuloksissa [Geopalkrishnan el al 12]. Datan rakeisuus voi johtaa hyvin harvaan ja hajaantuneeseen yhdisteeseen. Datan rakeisuus vaihtelee eri lähteissä saatavuudesta, näytteenoton toistumisesta, yksityisyyssuojasta ja erilaista luottamustasoista johtuen: Osa datasta on saatavilla yksilöllisellä tasolla, osa voi olla saatavilla vain yhdistetasolla. Eri lähteiden näytteenoton toistuminen voi vaihdella. Yksityisyyssyistä henkilöt voivat päättää olla jakamatta tietojaan. Eri analytiikkatulosten osissa voi olla eritasoisia luottamustasoja (confidence level) yhdistettynä niihin [Geopalkrishnan el al 12]. Oleellisten tapahtumien poimiminen ja niiden yhdistäminen muihin tietoihin ajavasta yksilöstä on vaikeaa kustakin mittauskohteesta tulevan suuren datamäärän ja nopeuden takia. Esimerkiksi autosta voidaan kerätä dataa ajonopeudesta, kiihtyvyydestä ja jarrutusmalleista, jotta ymmärrettäisiin ajavan yksilön riskiprofiilia. Ajonopeudesta, kiihtyvyydestä ja jarrutusmalleista syntyy dataa nopeasti ja suuria määriä [Geopalkrishnan el al 12]. Miten löytää oleellinen data? Tässäkin on ongelmana datan identifiointi ja ymmärtäminen. 5 Yhteenveto Työssä tarkasteltiin big datan luokittelun, tutkittavan ilmiön ymmärtämisen ja analyyseissä käytettävien moninaisten lähteiden yhteenvedon haasteita. Big data pakottaa luopumaan optimaalisen datan vaatimuksesta, jossa data esikäsitellään ja varastoidaan tietovarastoihin ja keksimään luovempia, innovatiivisempia tapoja datan analysointiin ja käsittelyyn. Analytiikan sulauttaminen liiketoimintaan parantaa yrityksen kasvua, tehokkuutta ja kilpailuetua, mutta ongelmana on että ei tiedetä miten big dataa voidaan käyttää hyväksi liiketoiminnassa.

13 10 Big data on sotkuista, joten oleellisen tiedon löytäminen, datan tiivistäminen yhteenvedoilla ja tutkittavien ilmiöiden ymmärtäminen big data -analytiikassa on vaikeaa. Datan suuri määrä ei välttämättä johda datan parempaan ymmärrykseen, koska datan määrä hämärtää monimutkaisten syy-seuraussuhteiden ymmärtämistä, lisää mahdollisuutta vääriin korrelaatioihin, näytedatan mahdollista vinoumaa voi olla vaikeampi hahmottaa ja koska datan tarkkuudesta ei ole tietoa. Datan ymmärtämistä voidaan helpottaa visualisointi- ja yhdistämistekniikoilla, joiden avulla voidaan suodattaa oleellinen tieto esimerkiksi suurista dokumenteista. Yhdisteissä ongelmana on datan puuttuminen lähteiden eri rakeisuustasojen, yksityisyydensuojan ja näytteenottotiheyden takia. Jotta ilmiötä voidaan ymmärtää ja tiivistää, täytyy ensin määritellä mikä on normaalia ja epänormaalia dataa. Luokittelu tehostaa big datan käsittelyä enemmän kuin algoritmien parantaminen, mutta ongelmana on luokitella suodattimet niin että arvokasta tietoa ei heitetä pois. Dataa identifioimalla ja luokitelemalla mahdollisimman aikaisessa vaiheessa voidaan löytää massasta mielenkiintoinen tieto. Mielenkiintoinen ja arvokas data löytyy lähestymällä dataa esimerkiksi kysymys ensin periaatteella.

14 11 Lähteet Laney01 D. Laney. 3-D Data Management: Controlling Data Volume, Velocity and Variety. META Group Research Note, February 6, Tien 13 J. M.Tien, Big data: unleashing information, Journal of Systems Science and Systems Engineering, vol 22, issue 2, p , June Kimball 12 R. Kimball, Newly Emerging Best Practices for Big Data, Kimball Consulting Group White Paper, Devlin et al. 12 B. Devlin, S. Rogers, and J. Myers, Big data comes of age, Tech. Rep. November Cuzzocrea et al 13 A. Cuzzocrea, D. Saccà, J. D. Ullman Big data: a research agenda. In Proceedings of the 17th International Database Engineering & Applications Symposium (IDEAS '13). ACM, New York, NY, USA, , LaValle et al 11 S. LaValle, E. Lesser,R. Shockley, M. S. Hopkins, N. Kruschwitz, Big data, analytics and the path from insights to value. MIT Sloan Management Review, vol. 52, no. 2, p , Winter Parker 12 C. Parker, Unexpected challenges in large scale machine learning, In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (BigMine '12). ACM, New York, NY, USA, 1-6, Letouzé 12 E. Letouzé, Big Data for Development: Opportunities & Challenges, Global Pulse May Madsen 13 M. Madsen, The Challenges of Big Data & Approaches to Data Quality: Using big data to examine and discover the value in data for accurate analytics, Technology White paper, Third Nature Inc. and SAP AG, 2013.

15 12 Geopalkrishnan el al 12 V. Gopalkrishnan, D. Steier, H. Lewis, and J. Guszcza, Big data, big business: bridging the gap, In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, Big- Mine 12, pages 7 11, New York, NY, USA, ACM, Bizer et al. 12 C. Bizer, P. Boncz, M. L. Brodie, O. Erling, The meaningful use of big data: four perspectives -- four challenges. SIGMOD Rec. 40, 4, January, 56-60, Fan et Bifet 13 W. Fan, A. Bifet, Mining big data: current status, and forecast to the future, SIGKDD Explor. Newsl. Volume 14, Issue 2, April, 1-5, Boyd et al. 12 D. Boyd and K. Crawford. Critical Questions for Big Data. Information, Communication and Society, 15(5): , Myllymäki et al. 11 P. Myllymäki, J. Ahtikari, K. Puolamäki, C. Carlsson, S. Sahala, R. Saarnio,P. Kurki, Strategic Research Agenda for Data to Intelligence (D2I), version 1.0 TiVit, June CERN, 08 CERN (2008): Worldwide LHC Computing Grid. Zikopoulos et al 11 P. Zikopoulos, C. Eaton, D. deroos, T. Deutsch, G. Lapis, IBM Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data,McGraw-Hill Companies,Incorporated, Labrinidis et al. 12 A. Labrinidis, H. V. Jagadish, Challenges and opportunities with big data. Proc. VLDB Endow. 5, 12 (August 2012). Lomotey et Deters 13 R.K Lomotey, R. Deters, "Unstructured data extraction in distributed NoSQL," Digital Ecosystems and Technologies (DEST), 7th IEEE International Conference on, vol., no., pp.160,165, July 2013.

Aika/Datum Month and year Kesäkuu 2012

Aika/Datum Month and year Kesäkuu 2012 Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos/Institution Department Filosofian, historian, kulttuurin ja taiteiden tutkimuksen laitos Humanistinen tiedekunta Tekijä/Författare Author Veera Lahtinen

Lisätiedot

Laskennallinen yhteiskuntatiede

Laskennallinen yhteiskuntatiede Laskennallinen yhteiskuntatiede Matti Nelimarkka Helsinki 5.5.2011 LuK tutkielma HELSINGIN YLIOPISTO Tietojenkasittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta

Lisätiedot

Koht dialogia? Organisaation toimintaympäristön teemojen hallinta dynaamisessa julkisuudessa tarkastelussa toiminta sosiaalisessa mediassa

Koht dialogia? Organisaation toimintaympäristön teemojen hallinta dynaamisessa julkisuudessa tarkastelussa toiminta sosiaalisessa mediassa Kohtdialogia? Organisaationtoimintaympäristönteemojenhallinta dynaamisessajulkisuudessatarkastelussatoiminta sosiaalisessamediassa SatuMariaPusa Helsinginyliopisto Valtiotieteellinentiedekunta Sosiaalitieteidenlaitos

Lisätiedot

Asuntojen neliöhinnan vaihtelu Helsingissä (1997-2010)

Asuntojen neliöhinnan vaihtelu Helsingissä (1997-2010) hyväksymispäivä arvosana arvostelija Asuntojen neliöhinnan vaihtelu Helsingissä (1997-2010) Tuomas Puikkonen Helsinki 8.1.2010 Geoinformatiikan menetelmät ja kirjallisuus -kurssin harjoitustyö HELSINGIN

Lisätiedot

LAS- ja ilmakuva-aineistojen käsittely ArcGIS:ssä

LAS- ja ilmakuva-aineistojen käsittely ArcGIS:ssä Esri Finland LAS- ja ilmakuva-aineistojen käsittely ArcGIS:ssä November 2012 Janne Saarikko Agenda Lidar-aineistot ja ArcGIS 10.1 - Miten LAS-aineistoa voidaan hyödyntää? - Aineistojen hallinta LAS Dataset

Lisätiedot

Oppimateriaalin kokoaminen ja paketointi

Oppimateriaalin kokoaminen ja paketointi Oppimateriaalin kokoaminen ja paketointi Pekka Simola Helsinki 14.4.2004 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto

Lisätiedot

Visuaaliset työpöydät - lisää voimaa liiketoimintaan suurten datamassojen ketterästä analysoinnista

Visuaaliset työpöydät - lisää voimaa liiketoimintaan suurten datamassojen ketterästä analysoinnista Visuaaliset työpöydät - lisää voimaa liiketoimintaan suurten datamassojen ketterästä analysoinnista Tomas Rytkölä Presales Leader Business Analytics 2013 IBM Corporation Agenda 1 Miten saadaan lisää voimaa

Lisätiedot

Opetuksen ja opiskelun tehokas ja laadukas havainnointi verkkooppimisympäristössä

Opetuksen ja opiskelun tehokas ja laadukas havainnointi verkkooppimisympäristössä Opetuksen ja opiskelun tehokas ja laadukas havainnointi verkkooppimisympäristössä Jukka Paukkeri (projektitutkija) Tampereen Teknillinen Yliopisto Matematiikan laitos Intelligent Information Systems Laboratory

Lisätiedot

XML-tutkimus Jyväskylän yliopistossa

XML-tutkimus Jyväskylän yliopistossa XML-tutkimus Jyväskylän yliopistossa Airi Salminen Jyväskylän yliopisto Tietojenkäsittelytieteiden laitos airi.salminen@jyu.fi http://www.cs.jyu.fi/~airi/ Airi Salminen, XML-tutkimus Jyväskylän yliopistossa

Lisätiedot

Customer Intelligence ja Big Data. Digile D2I Kimmo Valtonen

Customer Intelligence ja Big Data. Digile D2I Kimmo Valtonen Customer Intelligence ja Big Data Digile D2I Kimmo Valtonen Sisältö 1. Data2Intelligence-ohjelman kuvaus 2. Customer Intelligence: mitä sillä tässä tarkoitetaan? 3. Customer Intelligence Big Data ongelmana

Lisätiedot

Ontologiakirjasto ONKI-Paikka

Ontologiakirjasto ONKI-Paikka Ontologiakirjasto ONKI-Paikka Tomi Kauppinen, Robin Lindroos, Riikka Henriksson, Eero Hyvönen Semantic Computing Research Group (SeCo) and University of Helsinki and Helsinki University of Technology (TKK)

Lisätiedot

Teollisuuden digitalisaatio ja johdon ymmärrys kyvykkyyksistä

Teollisuuden digitalisaatio ja johdon ymmärrys kyvykkyyksistä Teollisuuden digitalisaatio ja johdon ymmärrys kyvykkyyksistä Markus Kajanto Teollisuuden digitalisaation myötä johdon käsitykset organisaation resursseista, osaamisesta ja prosesseista ovat avainasemassa

Lisätiedot

Uusia tuulia mediaseurannassa:! PR-palveluiden integraatio ja digitalisoituva maailma. Copyright @ Koodiviidakko Oy

Uusia tuulia mediaseurannassa:! PR-palveluiden integraatio ja digitalisoituva maailma. Copyright @ Koodiviidakko Oy Uusia tuulia mediaseurannassa:! PR-palveluiden integraatio ja digitalisoituva maailma. Webnewsmonitor verkkomedian seuranta Maailma muuttuu! Muste sormenpäissä on vaihtunut sormenjälkiin ipadin näytöllä.

Lisätiedot

Hand-out kooste26.3.2009

Hand-out kooste26.3.2009 Hand-out kooste26.3.2009 Human Capital Management IT Viikko-seminaari 26.3.2009 Sanomatalo Arc Technology Oracle - Xenetic Aamupäivän agenda 09.10-10.10 Arc Technology 10.10-10.25 Kahvitauko ja verkottuminen

Lisätiedot

Avoin data ja sen hyödyntäminen tähtitieteessä. Juhani Huovelin Fysiikan laitos Helsingin yliopisto

Avoin data ja sen hyödyntäminen tähtitieteessä. Juhani Huovelin Fysiikan laitos Helsingin yliopisto Avoin data ja sen hyödyntäminen tähtitieteessä Juhani Huovelin Fysiikan laitos Helsingin yliopisto Avoin data avain uuteen, 1.11.2011 Tiedesatelliittien datat tallennettu julkisiin arkistoihin jo kymmeniä

Lisätiedot

Käyttökokemuksen evaluoinnista käyttökokemuksen ohjaamaan suunnitteluun. ecommunication & UX SUMMIT 18.9.2013 Eija Kaasinen, VTT

Käyttökokemuksen evaluoinnista käyttökokemuksen ohjaamaan suunnitteluun. ecommunication & UX SUMMIT 18.9.2013 Eija Kaasinen, VTT Käyttökokemuksen evaluoinnista käyttökokemuksen ohjaamaan suunnitteluun ecommunication & UX SUMMIT 18.9.2013 Eija Kaasinen, VTT 2 Hyvä käyttökokemus Laadukas käyttökokemus Ylivoimainen käyttäjäkokemus

Lisätiedot

Prognos Julkaisusuunnitelmat

Prognos Julkaisusuunnitelmat Prognos Julkaisusuunnitelmat Työsuunnitelmiin liittyvien raporttien ja vuosiseminaarien lisäksi suunnitellut julkaisut Casejoryt 09/2005 & JR4 25.1.2005 päivitetty tilanne Casejoryt 04/2006 päivitetty

Lisätiedot

Sulautettu tietotekniikka 2007 2013 Kimmo Ahola

Sulautettu tietotekniikka 2007 2013 Kimmo Ahola M2M - uutta liiketoimintaa ja rahoitusta - työpaja 19.2.2013, Tampere Sulautettu tietotekniikka 2007 2013 Kimmo Ahola Ubicom ohjelman päällikkö, Twitter: @KimmoAhola Helmikuu 2013 Ubicom Embedded ICT Finland

Lisätiedot

Aalto University School of Engineering Ongelmaperusteisen oppimisen innovatiivinen soveltaminen yliopisto-opetuksessa

Aalto University School of Engineering Ongelmaperusteisen oppimisen innovatiivinen soveltaminen yliopisto-opetuksessa Aalto University School of Engineering Ongelmaperusteisen oppimisen innovatiivinen soveltaminen yliopisto-opetuksessa Cleantech gaalan iltapäiväseminaari 20.11.2013 Helena Mälkki & Petri Peltonen Aalto-yliopisto,

Lisätiedot

punainen lanka - Kehitysjohtaja Mcompetence Oy 20.3.2012 markokesti.com Työhyvinvoinnin kohtaamispaikka Sykettätyöhön.

punainen lanka - Kehitysjohtaja Mcompetence Oy 20.3.2012 markokesti.com Työhyvinvoinnin kohtaamispaikka Sykettätyöhön. Henkilöstötuottavuuden punainen lanka - työhyvinvoinnilla tuottavuutta Marko Kesti Kehitysjohtaja Mcompetence Oy 20.3.2012 Ota yhteyttä ja seuraa blogiani: markokesti.com Työhyvinvoinnin kohtaamispaikka

Lisätiedot

WEBINAARI 24.11.2015

WEBINAARI 24.11.2015 WEBINAARI 24.11.2015 Analytiikan hyödyntäminen markkinoinnissa Petri Mertanen, Super Analytics - @mertanen Jarno Wuorisalo, Cuutio - @jarnowu Tomi Grönfors, Brandfors - @groenforsmethod WEBINAARIN ISÄNNÄT

Lisätiedot

Poweria analytiikkaan

Poweria analytiikkaan IBM 18.3.2014 Poweria analytiikkaan Informaatiotalous: mikä on muuttunut Keskiajalta jälkiteolliseen yhteiskuntaan Maatalous: maan omistus Teollinen: tuotantokapasiteetin omistus Jälkiteollinen: kyky hyödyntää

Lisätiedot

Autamme asiakkaitamme menestymään parantamalla tekemisen luottamustasoa ja läpinäkyvyyttä uusilla innovatiivisilla konsepteilla ja ratkaisuilla.

Autamme asiakkaitamme menestymään parantamalla tekemisen luottamustasoa ja läpinäkyvyyttä uusilla innovatiivisilla konsepteilla ja ratkaisuilla. Celkee Oy:n Missio Autamme asiakkaitamme menestymään parantamalla tekemisen luottamustasoa ja läpinäkyvyyttä uusilla innovatiivisilla konsepteilla ja ratkaisuilla. Tuomme organisaatioiden piilossa olevan

Lisätiedot

Sisällönanalyysi. Sisältö

Sisällönanalyysi. Sisältö Sisällönanalyysi Kirsi Silius 14.4.2005 Sisältö Sisällönanalyysin kohde Aineistolähtöinen sisällönanalyysi Teoriaohjaava ja teorialähtöinen sisällönanalyysi Sisällönanalyysi kirjallisuuskatsauksessa 1

Lisätiedot

Technopolis Business Breakfast Technopolis, Kuopio

Technopolis Business Breakfast Technopolis, Kuopio Technopolis Business Breakfast Technopolis, Kuopio 27.9.2012 Oskari Uotinen Intosome Oy on yhteisöllisen bisneskehityksen asiantuntijayritys. Autamme asiakkaitamme ymmärtämään ja hyödyntämään yhteisöllisiä

Lisätiedot

Webropol-kyselyt. Tarja Heikkilä

Webropol-kyselyt. Tarja Heikkilä Webropol-kyselyt Tarja Heikkilä Internet-kyselyt Soveltuvat kyselyihin, joissa kaikilla perusjoukon jäsenillä on mahdollisuus internetin käyttöön, toisin sanoen on mahdollisuus edustavan aineiston saamiseen.

Lisätiedot

Tableaun hyödyntäminen Toyota Rahoituksessa

Tableaun hyödyntäminen Toyota Rahoituksessa Tableaun hyödyntäminen Toyota Rahoituksessa Lauri Varonen Toyota Finance Finland Oy Myynti & markkinointi 12.6.2015 Toyota Finance Finland Oy Tehtaan omistama rahoitusyhtiö 3 Toyota Finance Finland Oy

Lisätiedot

!"#$%&'$("#)*+,!!,"*--.$*#,&--#"*/".,,%0 1&'23456789::94752;&27455<:4;2;&,9:=>23?277<&8=@74;9&ABBCDABBE

!#$%&'$(#)*+,!!,*--.$*#,&--#*/.,,%0 1&'23456789::94752;&27455<:4;2;&,9:=>23?277<&8=@74;9&ABBCDABBE !"#$%&'$("#)*+,!!,"*--.$*#,&--#"*/".,,%0 1&'23456789::94752;&2745523?27747544H9;&IG@&JG9?=&15=5H42>:9 '28

Lisätiedot

Nopeutta ja Sulavuutta Analytiikkaan

Nopeutta ja Sulavuutta Analytiikkaan Nopeutta ja Sulavuutta Analytiikkaan Jukka Ruponen Business Analytics Architect!+358-40-725-6086 jukka.ruponen@fi.ibm.com DEMO 1 Result Set Cache Expression Cache Query Data Cache Member Cache Cognos Query

Lisätiedot

Kuinka onnellisia suomalaiset ovat työssään? Human@Work 30/09/2014 1

Kuinka onnellisia suomalaiset ovat työssään? Human@Work 30/09/2014 1 Kuinka onnellisia suomalaiset ovat työssään? Human@Work 30/09/2014 1 Human@Work Human@Work auttaa asiakkaitaan rakentamaan innostavasta yrityskulttuurista kestävää kilpailuetua palveluliiketoimintaan.

Lisätiedot

WEBINAARIN ISÄNNÄT. Jarno Wuorisalo Cuutio.fi. Petri Mertanen Superanalytics.fi. Tomi Grönfors Brandfors.com

WEBINAARIN ISÄNNÄT. Jarno Wuorisalo Cuutio.fi. Petri Mertanen Superanalytics.fi. Tomi Grönfors Brandfors.com WEBINAARI 3.11.2015 Mitä Tag Management on käytännössä ja miten se vaikuttaa analytiikkaan? Petri Mertanen, Super Analytics - @mertanen Jarno Wuorisalo, Cuutio - @jarnowu Tomi Grönfors, Brandfors - @groenforsmethod

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Datan jalostamisesta uutta liiketoimintaa yhteistyo lla. Vesa Sorasahi Miktech Oy 20.11.2014

Datan jalostamisesta uutta liiketoimintaa yhteistyo lla. Vesa Sorasahi Miktech Oy 20.11.2014 Datan jalostamisesta uutta liiketoimintaa yhteistyo lla Vesa Sorasahi Miktech Oy 20.11.2014 Käsitteitä Avointa tietoa ovat ne digitaaliset sisällöt ja datat, joita kuka tahansa voi vapaasti ja maksutta

Lisätiedot

Mistä 'etojohtamisessa oikeas' on kyse? Tieken Bisnestreffit 11.10.2013

Mistä 'etojohtamisessa oikeas' on kyse? Tieken Bisnestreffit 11.10.2013 Mistä 'etojohtamisessa oikeas' on kyse? Tieken Bisnestreffit 11.10.2013 Terminologiasta Tietojohtaminen = -edon johtamista -edon rikastamisprosessi - omaisuuden ylläpito + -edolla johtamista -edon hyödyntäminen

Lisätiedot

TIEDONHAKU INTERNETISTÄ

TIEDONHAKU INTERNETISTÄ TIEDONHAKU INTERNETISTÄ Internetistä löytyy hyvin paljon tietoa. Tietoa ei ole mitenkään järjestetty, joten tiedonhaku voi olla hankalaa. Tieto myös muuttuu jatkuvasti. Tänään tehty tiedonhaku ei anna

Lisätiedot

II Voitto-seminaari Konseptointivaihe 01.04.04

II Voitto-seminaari Konseptointivaihe 01.04.04 II Voitto-seminaari Konseptointivaihe 01.04.04 08.45-09.00 Kahvi Voitto II seminaariohjelma 01.04.04 09.00-09.15 Tuotekonseptoinnin haasteet/ VTT Tiina Apilo 09.15-09.30 Konseptoinnin eri tasot/ TKK Matti

Lisätiedot

TIETOVARASTOJEN SUUNNITTELU

TIETOVARASTOJEN SUUNNITTELU IIO30120 DATABASE DESIGN / TIETOKANTOJEN SUUNNITTELU TIETOVARASTOJEN SUUNNITTELU KIRJAN HOVI, HUOTARI, LAHDENMÄKI: TIETOKANTOJEN SUUNNITTELU & INDEKSOINTI, DOCENDO (2003, 2005) LUKU 8 JOUNI HUOTARI & ARI

Lisätiedot

Hakkereita uutishuoneeseen!

Hakkereita uutishuoneeseen! Hakkereita uutishuoneeseen! Datajournalismi on tutkivan journalismin Suuri Trendi 1.12.2011 Esko Varho Esko Varho, Ylen A-studion toimittaja Kouluttanut toimittajia mm. tehokkaampaan nettihakuun, tietokantojen

Lisätiedot

Palvelutasosopimukset ja niiden asema IT-ulkoistuksissa

Palvelutasosopimukset ja niiden asema IT-ulkoistuksissa Hyväksymispäivä Arvosana Arvostelija Palvelutasosopimukset ja niiden asema IT-ulkoistuksissa Marko Lehtimäki Helsinki 12.5. 2009 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos i HELSINGIN YLIOPISTO

Lisätiedot

Yhteisöllisen toimintatavan jalkauttaminen!

Yhteisöllisen toimintatavan jalkauttaminen! Yhteisöllisen toimintatavan jalkauttaminen! Käyttöönoton vaiheet Yrityksen liiketoimintatavoitteet Yhteisöllisen toimintatavan käyttöalueet Työkalut Hyödyt yritykselle Hyödyt ryhmälle Hyödyt itselle Miten

Lisätiedot

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.

Lisätiedot

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely)

Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Kasvuyrityksen tuotekehitysportfolion optimointi (valmiin työn esittely) Santtu Saijets 16.6.2014 Ohjaaja: Juuso Liesiö Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Riskiperusteisen Vaikuttamisen Prosessi. Maaliskuu 2015

Riskiperusteisen Vaikuttamisen Prosessi. Maaliskuu 2015 Riskiperusteisen Vaikuttamisen Prosessi Maaliskuu 2015 Riskiperusteisuus Käytettävissä olevilla resursseilla saadaan aikaan maksimaalinen positiivinen vaikutus liikennejärjestelmän riskeihin. Riskiperusteisen

Lisätiedot

Yhteisöllisyys osana liiketoiminnan strategisia. Ville Laurinen

Yhteisöllisyys osana liiketoiminnan strategisia. Ville Laurinen Yhteisöllisyys osana liiketoiminnan strategisia tavoitteita Ville Laurinen Taustaa Ville Laurinen, toimitusjohtaja Perustanut Ambientian vuonna 1996 Verkkoliiketoiminnan ja erilaisten konseptien asiantuntija

Lisätiedot

Tietojärjestelmän osat

Tietojärjestelmän osat Analyysi Yleistä analyysistä Mitä ohjelmiston on tehtävä? Analyysin ja suunnittelun raja on usein hämärä Ei-tekninen näkökulma asiakkaalle näkyvien pääkomponenttien tasolla Tietojärjestelmän osat Laitteisto

Lisätiedot

Työhyvinvointi ja tuottavuus

Työhyvinvointi ja tuottavuus Työhyvinvointi ja tuottavuus DI HTT Marko Kesti marko.kesti@mcompetence.com EVP HRM-Performance, Mcompetence Oy Researcher, Lapin Yliopisto Tietokirjailija, Suomen tietokirjailijat ry Henkilöstö on yrityksen

Lisätiedot

Hyvin määritelty on puoliksi tehty kuinka vältetään turha tekeminen jo alussa

Hyvin määritelty on puoliksi tehty kuinka vältetään turha tekeminen jo alussa 1 Hyvin määritelty on puoliksi tehty kuinka vältetään turha tekeminen jo alussa Passion leads to design, design leads to performance, performance leads to SUCCESS! OLLI NIEMI Yoso Oy Mitä määrittelyltä

Lisätiedot

Esityksen tiivistelmä Elina Hiltunen

Esityksen tiivistelmä Elina Hiltunen Esityksen tiivistelmä Elina Hiltunen Tulevaisuutta ei voi ennustaa. Siksi on tärkeää, että valmistaudumme (ainakin henkisesti) erilaisiin tulevaisuuden mahdollisuuksiin. Tulevaisuusajattelua voi käyttää

Lisätiedot

Mobiili. MULLISTAA MYYNTITYÖN Technopolis Business Breakfast, 12.9.2014

Mobiili. MULLISTAA MYYNTITYÖN Technopolis Business Breakfast, 12.9.2014 Mobiili MULLISTAA MYYNTITYÖN Technopolis Business Breakfast, 12.9.2014 AIHEITA Taustaa Keskeiset muutoksen tekijät Pilvipalvelut ja sovelluskauppa Mahdollisuudet myyntityössä Miksi myyntiaineistot ja asiakastapaamiset?

Lisätiedot

SYSTEEMIJOHTAMINEN! Sami Lilja! itsmf Finland 2014! Oct 2-3 2014! Kalastajatorppa, Helsinki! Reaktor 2014

SYSTEEMIJOHTAMINEN! Sami Lilja! itsmf Finland 2014! Oct 2-3 2014! Kalastajatorppa, Helsinki! Reaktor 2014 SYSTEEMIJOHTAMINEN! Sami Lilja! itsmf Finland 2014! Oct 2-3 2014! Kalastajatorppa, Helsinki! Reaktor Mannerheimintie 2 00100, Helsinki Finland tel: +358 9 4152 0200 www.reaktor.fi info@reaktor.fi 2014

Lisätiedot

Liikkuvien työkoneiden etäseuranta

Liikkuvien työkoneiden etäseuranta Liikkuvien työkoneiden etäseuranta TAMK IoT Seminaari 14.4.2016 2 1) IoT liiketoiminnan tukena 2) Iot ja liikkuvat työkoneet 3) Case esimerkit 4) Yhteenveto, johtopäätökset, tulevaisuuden näkymät Cinia

Lisätiedot

Location Business Forum 2015 Paikkatieto osana uudistuvaa analytiikkaa ja tiedolla johtamista

Location Business Forum 2015 Paikkatieto osana uudistuvaa analytiikkaa ja tiedolla johtamista Location Business Forum 2015 Paikkatieto osana uudistuvaa analytiikkaa ja tiedolla johtamista Timo Helkiö, Senior Advisor Affecto Finland Oy Sisältö TIEDOLLA JOHTAMINEN JA UUDISTUVA ANALYTIIKKA PAIKKATIETO

Lisätiedot

Paikkatietojen käytön tulevaisuus -

Paikkatietojen käytön tulevaisuus - Paikkatietojen käytön tulevaisuus - Näkökulmina teholaskenta ja vuorovaikutteisuus Juha Oksanen, tutkimuspäällikkö Geoinformatiikan ja kartografian osasto, Geodeettinen laitos Geoinformatiikan tutkimuspäivät

Lisätiedot

Osallisuus ja tarinat kehitysyhteistyön arvioinnissa. Laura Lager 5/6/2013

Osallisuus ja tarinat kehitysyhteistyön arvioinnissa. Laura Lager 5/6/2013 Osallisuus ja tarinat kehitysyhteistyön arvioinnissa Laura Lager 5/6/2013 Miksi arvioidaan? Tili- ja vastuuvelvollisuus oppiminen ja toiminnan kehittäminen Rahoittajaan kohdistuvan tili- ja vastuuvelvollisuuden

Lisätiedot

Analytiikan teknologiset trendit ja uudet mahdollisuudet HR:lle. Heikki Penttinen, OlapCon Oy

Analytiikan teknologiset trendit ja uudet mahdollisuudet HR:lle. Heikki Penttinen, OlapCon Oy Analytiikan teknologiset trendit ja uudet mahdollisuudet HR:lle Heikki Penttinen, OlapCon Oy Sisältö 1. Alustus analytiikan kehityksestä 2. Gartnerin ennustukset analytiikan tulevaisuuden trendeistä 3.

Lisätiedot

Esityksen tiivistelmä Elina Hiltunen

Esityksen tiivistelmä Elina Hiltunen Esityksen tiivistelmä Elina Hiltunen 1 Tulevaisuutta ei voi ennustaa. Siksi on tärkeää, että valmistaudumme (ainakin henkisesti) erilaisiin tulevaisuuden mahdollisuuksiin. Tulevaisuusajattelua voi käyttää

Lisätiedot

Amazon Web Services (AWS) on varmaankin maailman suosituin IaaS-tarjoaja. Lisäksi se tarjoaa erilaisia PaaS-kategoriaan kuuluvia palveluita.

Amazon Web Services (AWS) on varmaankin maailman suosituin IaaS-tarjoaja. Lisäksi se tarjoaa erilaisia PaaS-kategoriaan kuuluvia palveluita. 1 2 Amazon Web Services (AWS) on varmaankin maailman suosituin IaaS-tarjoaja. Lisäksi se tarjoaa erilaisia PaaS-kategoriaan kuuluvia palveluita. 3 4 Region vastaa palvelun fyysistä sijaintipaikkaa (AWS

Lisätiedot

Pitkäaikaistallennus. CSC - Tieteen tietotekniikan keskus IT2008 Ari Lukkarinen

Pitkäaikaistallennus. CSC - Tieteen tietotekniikan keskus IT2008 Ari Lukkarinen Pitkäaikaistallennus CSC - Tieteen tietotekniikan keskus IT2008 Ari Lukkarinen Mitä on pitkäaikaistallennus? Tiedon tallennuksen aikajänne ylittää tallennusjärjestelmän sekä laite-että ohjelmistokomponenttien

Lisätiedot

Sähköisen markkinoinnin viisi kultaista sääntöä eurooppalaisten operaattoreiden silmin

Sähköisen markkinoinnin viisi kultaista sääntöä eurooppalaisten operaattoreiden silmin Sähköisen markkinoinnin viisi kultaista sääntöä eurooppalaisten operaattoreiden silmin 26.10.2011 Otto Söderlund Partner Magenta Advisory on suomalainen sähköisen liiketoiminnan asiantuntija jolla on vahva

Lisätiedot

Työelämän laadun merkitys organisaation kilpailukyvylle

Työelämän laadun merkitys organisaation kilpailukyvylle Työelämän laadun merkitys organisaation kilpailukyvylle Marko Kesti marko.kesti@mcompetence.com EVP HRM-Performance, Mcompetence Oy Ph.D. Researcher, Lapin Yliopisto Tietokirjailija, Suomen tietokirjailijat

Lisätiedot

Finpro Foresight. Toimitusjohtaja Kari Häyrinen Finpro ry 9-11-2010

Finpro Foresight. Toimitusjohtaja Kari Häyrinen Finpro ry 9-11-2010 Finpro Foresight Toimitusjohtaja Kari Häyrinen Finpro ry 9-11-2010 Finpron Missio Rakentamassa kansainvälisesti menestyvää Suomea Strategy 2010-2012 / Finpro ry 2 Finpron toiminnan perusta Kilpailukykyä

Lisätiedot

Miten työhyvinvointi muutetaan euroiksi?

Miten työhyvinvointi muutetaan euroiksi? Miten työhyvinvointi muutetaan euroiksi? Marko Kesti marko.kesti@mcompetence.com EVP HRM-Performance, Mcompetence Oy HTT, Lapin Yliopisto Tietokirjailija, Suomen tietokirjailijat ry Henkilöstö on yrityksen

Lisätiedot

Toiminnanohjaukseen liittyvän liiketoimintatiedon hyödyntäminen Helsinki Business College Oy:ssä

Toiminnanohjaukseen liittyvän liiketoimintatiedon hyödyntäminen Helsinki Business College Oy:ssä Toiminnanohjaukseen liittyvän liiketoimintatiedon hyödyntäminen Helsinki Business College Oy:ssä 30.10.2012 LARK-hanke Laatupäällikkö, Jaakko Tuomi Laadunhallinnan tukiprosessin (16) yleiset tavoitteet

Lisätiedot

Verkostojen tehokas tiedonhallinta

Verkostojen tehokas tiedonhallinta Tieto Corporation Verkostojen tehokas tiedonhallinta Value Networks 3.9.2014 Risto Raunio Head of Lean System Tieto, Manufacturing risto.raunio@tieto.com Sisältö Mihin verkostoitumisella pyritään Verkoston

Lisätiedot

Data ja analytiikka sisältöansainnan vahvistajana. Kirsi Hakaniemi Digitaalisen liiketoiminnan johtaja Keskisuomalainen Oyj

Data ja analytiikka sisältöansainnan vahvistajana. Kirsi Hakaniemi Digitaalisen liiketoiminnan johtaja Keskisuomalainen Oyj Data ja analytiikka sisältöansainnan vahvistajana Kirsi Hakaniemi Digitaalisen liiketoiminnan johtaja Keskisuomalainen Oyj OSA-ALUEET 1. Teknologiat ja verkkopalveluiden kehitys 2. Analytiikka, hakukoneoptimointi

Lisätiedot

TARKASTUSMENETTELYT JA NIIDEN APUVÄLINETUKI

TARKASTUSMENETTELYT JA NIIDEN APUVÄLINETUKI TARKASTUSMENETTELYT JA NIIDEN APUVÄLINETUKI Vesa Tenhunen Tarkastusmenettelyt Keino etsiä puutteita ohjelmakoodeista, dokumenteista ym. ohjelmistoprosessissa syntyvästä materiaalista Voidaan käyttää kaikissa

Lisätiedot

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse

Lisätiedot

Tietojenkäsittelytieteiden koulutusohjelma. Tietojenkäsittelytieteiden laitos Department of Information Processing Science

Tietojenkäsittelytieteiden koulutusohjelma. Tietojenkäsittelytieteiden laitos Department of Information Processing Science Tietojenkäsittelytieteiden koulutusohjelma Tietojenkäsittelytieteet Laskennallinen data-analyysi Ohjelmistotekniikka, käyttöjärjestelmät, ihminen-kone -vuorovaikutus Teoreettinen tietojenkäsittelytiede

Lisätiedot

Paula Eerola 17.1.2012

Paula Eerola 17.1.2012 Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitostki it 17.1.2012 Mikä on LHC? LHC Large Hadron Collider Suuri Hiukkastörmäytin on CERN:ssä sijaitseva it kiihdytin, toiminnassa

Lisätiedot

Kartta-design monikanavajulkaisemisessa: Tapaustutkimus MenoMaps Nuuksion kansallispuistossa

Kartta-design monikanavajulkaisemisessa: Tapaustutkimus MenoMaps Nuuksion kansallispuistossa Kartta-design monikanavajulkaisemisessa: Tapaustutkimus MenoMaps Nuuksion kansallispuistossa Juha Oksanen FT Geoinformatiikan ja kartografian osasto Mitä on kartta-design? 1. Kartan sisällön suunnittelu

Lisätiedot

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen AV-muotojen migraatiotyöpaja - ääni KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Äänimuodot Ääneen vaikuttavia asioita Taajuudet Äänen voimakkuus Kanavien määrä Näytteistys Bittisyvyys

Lisätiedot

UUDET BUSINESS-MALLIT JA ASIAKKUUDEN ELINIKÄINEN ARVO

UUDET BUSINESS-MALLIT JA ASIAKKUUDEN ELINIKÄINEN ARVO UUDET BUSINESS-MALLIT JA ASIAKKUUDEN ELINIKÄINEN ARVO Linnoitustie 4 Violin-talo 5 krs., FI-02600 Espoo www.triplewin.fi Miksi asiakaskokemus? Uskomme, että tulevaisuudessa parhaiten menestyvät organisaatiot

Lisätiedot

Miten digimarkkinoinnilla tehdään tulosta?

Miten digimarkkinoinnilla tehdään tulosta? Miten digimarkkinoinnilla tehdään tulosta? OSA 1 /2 idealmainos.fi Miten verkkosivut toimivat myynnin käynnistäjänä? Miten mittaamme Digitaalisen markkinoinnin tuloksia? Voiko digitaalinen markkinointi

Lisätiedot

Tervetuloa Näin tehostat asiakastyöskentelyä digitaalisesti -aamiaistilaisuuteen. Inspiratio JM emotion Element - Wellnator

Tervetuloa Näin tehostat asiakastyöskentelyä digitaalisesti -aamiaistilaisuuteen. Inspiratio JM emotion Element - Wellnator Tervetuloa Näin tehostat asiakastyöskentelyä digitaalisesti -aamiaistilaisuuteen Inspiratio JM emotion Element - Wellnator Ohjelma 8.00 Aamukahvi 8.15 Tervetuloa, Annele Bergman, Inspiratio 8.30 estrategia,

Lisätiedot

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Satu Kuukankorpi, Markku Pentikäinen ja Harri Toivonen STUK - Säteilyturvakeskus Testbed workshop, 6.4.2006, Ilmatieteen

Lisätiedot

Kohti teollisuuden älykästä palveluliiketoimintaa

Kohti teollisuuden älykästä palveluliiketoimintaa Kohti teollisuuden älykästä palveluliiketoimintaa Miia Martinsuo Tampereen teknillinen yliopisto, Teollisuustalouden laitos 1.9.2015 Puh. 040-8490895 e-mail miia.martinsuo@tut.fi Sisältö Alykäs teollinen

Lisätiedot

Olisiko vihdoin aika teollistaa taloushallinnon prosessit? 2.4.2008 Taloussanomat seminaari Jari Annala, varatoimitusjohtaja, Itella Information Oy

Olisiko vihdoin aika teollistaa taloushallinnon prosessit? 2.4.2008 Taloussanomat seminaari Jari Annala, varatoimitusjohtaja, Itella Information Oy Olisiko vihdoin aika teollistaa taloushallinnon prosessit? 2.4.2008 Taloussanomat seminaari Jari Annala, varatoimitusjohtaja, Itella Information Oy Itella Information luotettava ja kansainvälinen kumppani

Lisätiedot

Havainto uudesta 125 GeV painavasta hiukkasesta

Havainto uudesta 125 GeV painavasta hiukkasesta Havainto uudesta 125 GeV painavasta hiukkasesta CMS-koe CERN 4. heinäkuuta 2012 Yhteenveto CERNin Large Hadron Collider (LHC) -törmäyttimen Compact Muon Solenoid (CMS) -kokeen tutkijat ovat tänään julkistaneet

Lisätiedot

Kyselytutkimus. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 1. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 2

Kyselytutkimus. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 1. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 2 Kyselytutkimus Graduryhmä kevät 2008 Leena Hiltunen 29.4.2008 Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 1 Kysymysten tekemisessä kannattaa olla huolellinen, sillä ne luovat perustan tutkimuksen

Lisätiedot

Relaatiomalli ja -tietokanta

Relaatiomalli ja -tietokanta Relaatiomalli ja -tietokanta > Edgar. F. (Ted) Codd, IBM, 1969 < A Relational Model of Data for Large Shared Data Banks Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387. > 70-luvun lopulla

Lisätiedot

Teollinen internet ja arvon tuotto. Juha Pankakoski, Konecranes Plc Chief Digital Officer and CIO

Teollinen internet ja arvon tuotto. Juha Pankakoski, Konecranes Plc Chief Digital Officer and CIO Teollinen internet ja arvon tuotto Juha Pankakoski, Konecranes Plc Chief Digital Officer and CIO II - TÄNÄÄN JA HUOMENNA ARVONTUOTON HAASTEITA II JA KONECRANES OPPEJA ii 1.0:STA DATASTA TIEDOKSI II JA

Lisätiedot

Indoor Environment 2011-2015

Indoor Environment 2011-2015 Indoor Environment 2011-2015 18.4.2013 Risto Kosonen Ohjelma on investointinäkökulmasta edennyt pääosin suunnitelman mukaisesti Työpaketti Kumulatiiviset kustannukset 1.5.2011 31.8.2012 Kumulatiiviset

Lisätiedot

Eihän yksittäinen opettaja voi vaikuttaa yliopiston tuloksiin ja opiskelijan valmistumiseen! Tarve skaalautuville sähköisille seurantatyövälineille?

Eihän yksittäinen opettaja voi vaikuttaa yliopiston tuloksiin ja opiskelijan valmistumiseen! Tarve skaalautuville sähköisille seurantatyövälineille? Eihän yksittäinen opettaja voi vaikuttaa yliopiston tuloksiin ja opiskelijan valmistumiseen! Tarve skaalautuville sähköisille seurantatyövälineille? OpeVeivit Mikael Seppälä YTM, KTM, KM Tietojärjestelmäsuunnittelija

Lisätiedot

PALVELUT KATA/AVAA/IDA. Tuija Raaska, CSC, 2.12.2013 Tuija.Raaska@csc.fi

PALVELUT KATA/AVAA/IDA. Tuija Raaska, CSC, 2.12.2013 Tuija.Raaska@csc.fi PALVELUT KATA/AVAA/IDA Tuija Raaska, CSC, 2.12.2013 Tuija.Raaska@csc.fi Tutkimuksen tietoaineistot TTA Opetus- ja kulttuuriministeriön TTA-hanke edistää tietoaineistojen kuvausten yhtenäistämistä, säilytystä

Lisätiedot

Mediaseuranta & tiedotejakelu:! PR kolikon kääntöpuolet? Copyright @ Koodiviidakko Oy

Mediaseuranta & tiedotejakelu:! PR kolikon kääntöpuolet? Copyright @ Koodiviidakko Oy Mediaseuranta & tiedotejakelu:! PR kolikon kääntöpuolet? Webnewsmonitor verkkomedian seuranta Keitä me olemme? Kotimainen, pitkä 10+v historia Konsernissa yli 100 työntekijää ja kaikki toiminnot saman

Lisätiedot

Toiminnanohjaus ja tiedolla johtaminen tänään ja tulevaisuudessa

Toiminnanohjaus ja tiedolla johtaminen tänään ja tulevaisuudessa Toiminnanohjaus ja tiedolla johtaminen tänään ja tulevaisuudessa Tietohallintojohtaja Riku Moisio Hämeenlinnan kaupunki 27.3.2015 Ennuste 2000-luvun vaihde Asiat, joita ei osattu kuvitella: * Mobiili *

Lisätiedot

Teknologian ennakointi

Teknologian ennakointi Teknologian ennakointi 7307050 Hypermedian jatko-opintoseminaari Outi Laitinen Automaatio- ja säätötekniikan laitos Puh: 3115 3555 Email: outi.laitinen@tut.fi Esityksen sisältö: Teknologian ennakointi

Lisätiedot

Luku 2. Datasta tietoon: mitä dataa? mitä tietoa?

Luku 2. Datasta tietoon: mitä dataa? mitä tietoa? 1 / 14 Luku 2. Datasta tietoon: mitä dataa? mitä tietoa? T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 31.10.2011 2 / 14 Tämän luennon sisältö

Lisätiedot

Hyvän työelämän eväät - Johtamisella vaikutetaan jaksamiseen

Hyvän työelämän eväät - Johtamisella vaikutetaan jaksamiseen Hyvän työelämän eväät - Johtamisella vaikutetaan jaksamiseen Juha Sipilä Hyvinvointia työelämään -seminaari 12.10.2013 Kaikki alkaa ajatuksesta Luomisen prosessi koostuu kolmesta osatekijästä: 1) Kaikki

Lisätiedot

MEMS-muisti relaatiotietokannoissa

MEMS-muisti relaatiotietokannoissa MEMS-muisti relaatiotietokannoissa Antti Tikka Espoo 28.2.2009 Seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto

Lisätiedot

Tekes the Finnish Funding Agency for Technology and Innovation. Copyright Tekes

Tekes the Finnish Funding Agency for Technology and Innovation. Copyright Tekes Tekes the Finnish Funding Agency for Technology and Innovation DM 607668 03-2011 Expertise and networks for innovations Tekes services Funding for innovative R&D and business Networking Finnish and global

Lisätiedot

Kuinka rakentaa globaaleja verkostoja - kommenttipuheenvuoro

Kuinka rakentaa globaaleja verkostoja - kommenttipuheenvuoro Suomalaiset pk-yritykset kasvavat globaalissa taloudessa 25.11.2008 Kuinka rakentaa globaaleja verkostoja - kommenttipuheenvuoro Tuija Mainela, professori, KTT Oulun yliopisto, Markkinoinnin laitos Kansainvälistyminen

Lisätiedot

Datanhallinnan oppaan esittely mitä ovat IDA, AVAA, KATA, PAS, REMS? Johanna Blomqvist, CSC - Tieteen tietotekniikan keskus

Datanhallinnan oppaan esittely mitä ovat IDA, AVAA, KATA, PAS, REMS? Johanna Blomqvist, CSC - Tieteen tietotekniikan keskus Datanhallinnan oppaan esittely mitä ovat IDA, AVAA, KATA, PAS, REMS? Johanna Blomqvist, CSC - Tieteen tietotekniikan keskus avointiede.fi www.avointiede.fi -> Datanhallinnan opas Tutkimusdatan hallinnan

Lisätiedot

Portaaliteknologiat mahdollistavat ajattelutavan muutoksen

Portaaliteknologiat mahdollistavat ajattelutavan muutoksen - 1 - Portaaliteknologiat mahdollistavat ajattelutavan muutoksen Petri Kanerva Fusion Middleware Architect, Oracle Finland Oy 29.04.2010 The following is intended to outline our general

Lisätiedot

IP-pohjaisen puheratkaisun käyttöönotto vaihdeverkossa

IP-pohjaisen puheratkaisun käyttöönotto vaihdeverkossa S-38.310 Tietoverkkotekniikan diplomityöseminaari IP-pohjaisen puheratkaisun käyttöönotto vaihdeverkossa Diplomityön tekijä: Valvoja: Professori Raimo Kantola Ohjaaja: DI Sari Lehtonen Suorituspaikka:

Lisätiedot

Ostamisen muutos muutti myynnin. Technopolis Business Breakfast 21.8.2014

Ostamisen muutos muutti myynnin. Technopolis Business Breakfast 21.8.2014 Ostamisen muutos muutti myynnin Technopolis Business Breakfast 21.8.2014 Taking Sales to a Higher Level Mercuri International on maailman suurin myynnin konsultointiyritys. Autamme asiakkaitamme parantamaan

Lisätiedot

Tutkiva Oppiminen Lasse Lipponen

Tutkiva Oppiminen Lasse Lipponen Tutkiva Oppiminen Lasse Lipponen Miksi Tutkivaa oppimista? Kasvatuspsykologian Dosentti Soveltavan kasvatustieteenlaitos Helsingin yliopisto Tarjolla olevan tietomäärän valtava kasvu Muutoksen nopeutuminen

Lisätiedot

Mitä Uutta - SURFCAM V5.1 Sisällysluettelo

Mitä Uutta - SURFCAM V5.1 Sisällysluettelo VER CAD/CAM Software with world class precision and control... Mitä uutta Mitä Uutta - SURFCAM V5.1 Sisällysluettelo 1) Parannettu muistinhallinta 32 ja 64 bitin järjestelmissä 3 2) Konesimulointi Optio

Lisätiedot