BL40A1711 Johdanto digitaalielektroniikkaan - Johdanto integroituihin digitaalipiireihin
|
|
- Simo Leppänen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 BL40A1711 Johdanto digitaalielektroniikkaan - Johdanto integroituihin digitaalipiireihin
2 Digitaalielektroniikka perustuu ohjattaviin kytkimiin Ohjattava kytkin, digitaalielektroniikan peruskomponentti Keskeisiä parametrejä: koko, tehonkulutus, hinta, luotettavuus ja kytkentänopeus Releet: 1930-luku Tyhjiöputket: 1940-luku Transistorit: 1950-luku Integroidut piirit: 1960-luku control input OFF input output ON Kuvat. Rele (ylä, vasen), tyhjiöputkia (ylä, oikea), erillisiä transistoreja (ala, vasen), IC-piiri (ala, oikea) [Lähde Wikipedia]
3 Debuggaus Vuonna 1945 yöperhonen jumittui yhteen Mark IItietokoneen releistä Harvardissa Tietokone saatiin toimimaan vasta kun yöperhonen poistettiin Tästä syntyi tietokonetermi debuggaus Kuvat. Kuva ensimmäisestä ötökästä, joka debugattiin v [Lähde, Wikipedia]
4 Mikä on integroitu piiri? Integroitu piiri on minityarisoity elektroniikkakytkentä, sisältää: Puolijohteita: (transistorit, diodit, triacit, etc.) Passiivisia komponentteja Vamistettu puolijohteen pinnalle, eriste- ja johdekerrosten avulla Historiaa: Jack Kilby (Texas Instruments) toteutti ensimmäisen IC-piirin vuonna 1958 Sisälsi transistorin ja passiivisia komponentteja germanium-alustalla Kuva. Integroitu piiri, Intel 8742, 8-bittinen mikrokontrolleri (2048 B EPROM, 128 B ram, f = 12 MHz) [Lähde Wikipedia]
5 Integroitujen digitaalipiirien luokittelu (1) Luokittelu voidaan toteuttaa monilla perusteilla, esimerkkejä: Digitaalipiirin sisältämien loogisten porttien lukumäärä Digitaalipiirin piitoteutuksessa käytetyn teknologian perusteella Logiikkapiiriperheen perusteella Piirin toteuttamien loogisten operaatioiden perusteella Loogisten porttien lukumäärään perustuva luokittelu Kategoria Porttien lkm Esimerkkipiiri SSI (small-scale integration) < 20 yksittäinen porttipiiri MSI (medium-scale integration) < 200 multiplekseri, laskuri LSI (large-scale integration) < pieni mikrokontrolleri VLSI (very large-scale integration) > muistit, mikroprosessorit, FPGA
6 Integroitujen digitaalipiirien luokittelu (2) Digitaalipiirit voidaan luokitella loogisia operaatioita toteuttavien elementtien toteutustekniikan perusteella (kytkimet) RTL (resistor-transistor logic,ei käytössä enää) DTL (diode-transistor logic, ei käytössä enää) TTL (bipolaaritransistoritekniikka, NPN- ja PNP-transistorit) Schottky-TTL (schottky-diodien avulla parannettu TTL) CMOS (Complementary Metal-Oxide Semiconductor) BiCMOS (Bipolaari- ja CMOS-tekniikoiden yhdistelmä) ECL (emitter coupled logic) Jokaisessa perheessä perusportti/portit, joiden pohjalta kompleksisemmat piirit on toteutettu, usein (NAND/NOR) Jatkossa kenties hyödynnetään: Optisia kytkinelementtejä Nanoputkista tehtyjä kytkinelementtejä Yksittäisiä atomeja ja molekyylejä (kvanttitietokoneet)
7 Gordon Moore ja transistoritiheys piillä Minimihintaisten puolijohdekomponenttien transistoritiheys kaksinkertaistuu 24 kk:ssa *Gordon. Moore, 1965 Tiheyden kasvu == Laskentatehon kasvu Toimii teknologian ja tieteen kehitystä eteenpäin vievänä voimana Kuva: Wikipedia Moore, Gordon E. (1965). Cramming more components onto integrated circuits, Electronics Magazine.
8 Mitä Mooren laki merkitsee 20 vuoden aikajänteellä? Nokia E90 v. 2007, kuva Wikipedia Cray II supertietokone, v (Art s Metiers, Pariisi), kuva Wikipedia Vuonna 2007 modernin matkapuhelimen omistajalla on taskussaan 1980-luvun puolivälin supertietokoneen laskentateho. Matkapuhelimen tehonkulutus on arviolta 1/ supertietokoneen tehonkulutuksesta, koko 1/1000 ja hinta 1/ supertietokoneen hinnasta. Muistikapasiteetit ovat molemmissa laitteissa suurin piirtein toisiaan vastaavat
9 Muita esimerkkejä digitaalielektroniikan kytkinten kehityksen ymmärtämiseen Integroiduissa piireissä voi olla nykyisin jopa miljardi transistoria, pinta-alalla 1 cm 2 Yksittäinen transistori piirillä on luokkaa ~100 nm pitkä 1940 luvulla käytetty tyhjiöputken pituus on ~ 100 mm Jos kuvataan transistorin pituutta luottokortin paksuudella (0.5 mm) vastaa samassa skaalassa tyhjiöputken pituus 500 m pituista pilvenpiirtäjää Jos kuvataan transistoreja 5 snt kolikoilla, ja tyypillisen ison makuuhuoneen tilavuus on 40 m 3 (15 m 2 * 2.66 m) Miljardi 5 snt kolikkoa vaatii 400 m 3 tilavuuden, eli 10 makuuhuonetta
10 Integroitujen digitaalipiirien luokittelu Jännite Loogiset jännitetasot Lähtövirta Staattinen virta Etenemisviive Tulo Lähtö I OL I IL I CC t PD,MAX Perhe (V) Tekniikka V IL /V IH V OL /V OH (ma) (ma) (ma) (ns) AUC 1.8 CMOS CMOS CMOS AVC 2.5 CMOS CMOS CMOS ALVT 3.3 BiCMOS CMOS LVTTL LVT 3.3 BiCMOS LVTTL LVTTL ALVC 3.3 CMOS LVTTL LVTTL LVC 3.3 CMOS LVTTL LVTTL ALB 3.3 BiCMOS LVTTL LVTTL AC 3.3 CMOS CMOS CMOS AHC 3.3 CMOS CMOS CMOS LV 3.3 CMOS LVTTL LVTTL FCT 5 BiCMOS TTL TTL ABT 5 BiCMOS TTL TTL AHC 5 CMOS CMOS CMOS AHCT 5 CMOS TTL CMOS AC 5 CMOS TTL TTL ACT 5 CMOS TTL TTL F 5 Bipolaari TTL TTL BCT 5 BiCMOS TTL TTL HC 5 CMOS CMOS CMOS HCT 5 CMOS TTL CMOS AS 5 Bipolaari TTL TTL ALS 5 Bipolaari TTL TTL LS 5 Bipolaari TTL TTL S 5 Bipolaari TTL TTL TTL 5 Bipolaari TTL TTL
11 Integroitujen logiikkapiirien ominaisuudet Loogisten funktioiden toteutus elektroniikalla: materiaalien epäideaalisuudet ja fysiikan lait tuottavat rajoituksia toimintaan Riippuvaisia perusportin myös piitoteutuksessa käytetystä tekniikasta (kytkimen tyyppi / viivanleveys, etc.) Tyypillisimpiä parametreja: Käyttöjännite Jännitteet loogisille tiloille Fan-out Tehonkulutus (power dissipation) Etenemisviive (propagation delay) Kohinamarginaali/häiriömarginaali (noise margin) Nousunopeus (rise time) Laskunopeus (fall time) Suurin piirille sallittu tehonkulutus
12 Loogisten tilojen esittäminen jännitteellä Miksi jännitteellä esitetään binäärisiä tiloja? Helposti generoitavissa Liittyy runsaasti olemassa olevaa insinööritietoa Pieni tai olematon tehonkulutus stationaaritilassa Ongelmia, jotka liittyvät jännitteen hyödyntämiseen Herkkä ympäristön häiriöille Piiri tarvitsee DC-syöttöä Kytkennän RC-vakiot asettavat rajoja laitteiston suorituskyvylle
13 Loogisten tilojen esittäminen jännitteellä (2) Digitaalipiireille on määritelty (positiivinen, logiikka): Käyttöjännite (V cc ) Alin 1-tilan lähtöjännite (V oh ) Ylin 0-tilan lähtöjännite (V ol ) V CC Alin 1-tilan tulojännite (V ih ) Ylin 0-tilan tulojännite (V il ) V OH Tilan 1 tila 1 häiriömarginaali tila 1 V CC Nykyiset ratkaisut boolen algebran toteuttamiseen perustuvat bittin tilan kuvaamiseen kahdella jännitetasolla! V OL Määrittämätön tila Määrittämätön tila tila 0 tila 0 Tilan 0 häiriömarginaali 0 0 V IH V IL
14 Etenemisviive Etenemisviive: Keskimääräinen viive, joka signaalilta kestää edetä portin tulosta lähtöön silloin kun portin lähdön tila muuttuu Kokonaisviive on etenemisviiveiden summa, saadaan summaamalla peräkkäisten porttien ja johdotuksen aiheuttamat etenemisviiveet t p t phl 2 t plh Esimerkki: (SN7400, TTL), kuormitus: R L 400, CL 15pF Normaali t PLH 11ns t PHL 7 ns Worst-case t PLH 22 ns t PHL 15ns
15 Tehonkulutus Tarkoitetaan logiikkaportin sisäistä tehonkulutusta, ei tehoa jonka portti syöttää ulos tai joka porttiin syötetään Jaettavissa: Staattinen tehonkulutus Dynaaminen tehonkulutus Portin keskimääräinen staattinen virrankulutus I CC avg I CCH I 2 CCL Riippuu voimakkaasti piirin piitoteutustekniikasta TTL: tehonkulutus pääosin staattista CMOS: tehonkulutus pääosin dynaamista (~f) Piirin suorituskyvyn mitta: tehonkulutus-nopeus-tulo Keskimääräinen tehonkulutus P D I V avg CCavg CC Tehonkulutus-nopeus-tulo SPP t p PD
16 Dynaaminen tehonkulutus: CMOS Kulutettu energia/portti/tilanmutos: Vdd E 0.5* CV 2 DD Piirin tehonkulutus: Missä: P 0.5* fncv 2 DD f = tilanmuutokset/s Vin: tila muuttuu L- >H->L n = tilaa muuttavien porttien lkm C = kapasitanssi V dd = käyttöjännite Vout: tila muuttuu H- >L->H C: ladataan ja puretaan
17 Dynaaminen tehonkulutus Mitä tarkoittaa nykyisissä prosessoreissa? Prosessorin (esim. Pentium 4, Ultra Sparc III, Itanium 2) tehonkulutus on luokkaa W käyttöjännitteellä V dd = 1.2 V: Prosessorin virrankulutus (I = P/U) ~ 100 A Miten tämä teho poistetaan pinta-alalta: ~ 2-4 cm 2? Muita huonoja uutisia: a) käyttöjännitettä ei voida merkittävästi alentaa b) kellotaajuuksia pyritään nostamaan
18 Fan-out Fan-out: Maksimi standardikuormien lukumäärä, joka voidaan kytkeä logiikkaportin lähtöön vaarantamatta kytkennän toimintaa fanout I min I OH, IH I I OL IL Käytännössä oleellinen suure vain TTL-tekniikalla toteutettavissa kytkennöissä Myös muut kuormat huomioitava CMOS-tekniikassa kuorman lisääntyminen == kapasitanssin lisääntyminen -> portin toiminta hidastuu
19 Yhteenveto piiritekniikoiden ominaisuuksista CMOS + Suuri kohinamarginaali + Pieni staattinen tehonkulutus + Tulot eivät kuormita lähtöjä -> Fan-out suuri + Pieni transistorin koko -> suuri integrointitiheys - Tehonkulutus verrannollinen kellotaajuuteen - Virransyöttökyky joillain piiriperheillä - Tulo herkkiä ympäristön häiriöille --> suuri tuloimpedanssi TTL + Suuri virransyöttökyky + Käyttämättömiä tuloja ei tarvitse välttämättä sitoa - Tulot kuormittavat lähtöjä (fan-out) - Suurehko staattinen tehonkulutus - Pieni integrointitiheys ECL + Nopea - Suuri virrankulutus - pieni integrointitiheys BiCMOS + Voidaan toteuttaa edellä mainituilla piiritekniikoilla toteutetut logiikkapiiriperheet
20 Integroitujen digitaalipiirien rakenne bibolaaritransistori (BJT) Kaikki ensimmäiset logiikkapiiriperheet toteutettiin BJT-tekniikalla: RTL, DTL, TTL ja osin myös BiCMOS Transistoreissa varauksen kuljettajina toimivat sekä aukot että elektronit, tyypit: NPN, PNP Digitaalielektroniikan piireissä transistoria hyödynnetään kytkimenä (kyllästysmoodi, cut-off-moodi) Tyypillisen npn-piensignaalitransistorin ominaisuudet Toimintatila V BE (V) V CE (V) Virtojen suhde Cut-off < 0.6 Avoin piiri I B = I C = 0 Aktiivi > 0.8 I C = h FE I B Kyllästys I B I CS / h FE BJT-transistorien piirrossymbolit
BL40A1711 Johdanto digitaalielektroniikkaan: CMOS-tekniikka ja siihen perustuvat logiikkapiiriperheet
BL40A1711 Johdanto digitaalielektroniikkaan: CMOS-tekniikka ja siihen perustuvat logiikkapiiriperheet Bittioperaatioiden toteuttamisesta Tarvitaan kolmea asiaa: 1. Menetelmät esittää ja siirtää bittejä
Käytännön logiikkapiirit ja piirrosmerkit
Digitaalitekniikan matematiikka Luku 7 Sivu (27) EN 2 EN X/Y X/Y 0 2 3 2 EN X/Y X/Y 0 2 3 Digitaalitekniikan matematiikka Luku 7 Sivu 2 (27) Johdanto Tässä luvussa esitellään käsitteet logiikkaperhe ja
ELEKTRONIIKAN PERUSTEET T700504
ELEKTRONIIKAN PERUSTEET T700504 syksyllä 2014 OSA 2 Veijo Korhonen 4. Bipolaaritransistorit Toiminta Pienellä kantavirralla voidaan ohjata suurempaa kollektorivirtaa (kerroin β), toimii vahvistimena -
amiedu DIGITAALITEKNIIKAN PERUSPORTIT 2 Sivu 1 (7)
amiedu DIGITLITEKNIIKN PEUSPOTIT 2 Sivu (7) ND -gate J - portti NND -gate EI-J - portti O -gate TI - portti NO -gate EI-TI - portti & & > > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = * =, eli = on vain, jos = ja
Ongelma(t): Mihin perustuu tietokoneiden suorituskyky ja sen jatkuva kasvu? Mitkä tekijät rajoittavat suorituskyvyn parantamista ja mitkä niistä ovat
Ongelma(t): Mihin perustuu tietokoneiden suorituskyky ja sen jatkuva kasvu? Mitkä tekijät rajoittavat suorituskyvyn parantamista ja mitkä niistä ovat ehdottomia? 2013-2014 Lasse Lensu 2 Nykyiset tietokoneet
Ongelma(t): Mihin perustuu tietokoneiden suorituskyky ja sen jatkuva kasvu? Mitkä tekijät rajoittavat suorituskyvyn parantamista ja mitkä niistä ovat
Ongelma(t): Mihin perustuu tietokoneiden suorituskyky ja sen jatkuva kasvu? Mitkä tekijät rajoittavat suorituskyvyn parantamista ja mitkä niistä ovat ehdottomia? 2012-2013 Lasse Lensu 2 Nykyiset tietokoneet
TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen
TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op FT Ari Viinikainen Tietokoneen rakenne Keskusyksikkö, CPU Keskusmuisti Aritmeettislooginen yksikkö I/O-laitteet Kontrolliyksikkö Tyypillinen Von Neumann
Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena
Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen
ELEKTRONIIKAN PERUSTEET
ELEKTRONIIKAN PERUSTEET Juha Aaltonen Seppo Kousa Jyrki Stor-Pellinen A.T.S.S.: J.B.-B. 4 DRW: Spi CHK: JPA Elektroniikan Perusteet SHEET 193 OF 390 DRAWING NO:5.19 Sisällys 1 Johdanto.............................................
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Bipolaaritransistori BJT Versio Bipolar Junction Transistor, liekkö turhakin keksintö? BJT 23.12.1947 Nobel 1956 (Bell Labs, nykyisin Alcatel-Lucent)
Ongelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
A/D-muuntimia. Flash ADC
A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (
sylinteri- ja rasiamalliset magneettikytkimet
Anturi Magneettikytkimet sylinteri- ja rasiamalliset magneettikytkimet Reed tai Hall -tekniikalla Pitkät tunnistusetäisyydet Tunteeton lialle, pölylle ja kosteudelle Tunnistaa myös levyn läpi Toiminta
ELEKTRONIIKAN PERUSTEET T320003
ELEKTRONIIKAN PERUSTEET T320003 syksyllä 2013 OSA 2 Veijo Korhonen 4. Bipolaaritransistorit Toiminta Pienellä kantavirralla voidaan ohjata suurempaa kollektorivirtaa (kerroin β), toimii vahvistimena -
DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ
1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X), versio 2 Kanavatransistori eli FET Luento Field Effect Transistor Mikropiirit ja Mooren laki Mosfet on mikroelektroniikan tärkein pelinappula Kuka kertoisi
Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen
Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2012-2013 Lasse Lensu 2 Transistori yhdessä
Infokortti. Kapasitiiviset anturit
Infokortti Kapasitiiviset anturit i Tämä infokortti täydentää paikannusantureiden pääluetteloa ja erillisiä datalehtiä. Lisätietoja ja yhteystiedot löytyvät kotisivuiltamme osoitteesta www.ifm.com. Kapasitiivisen
Sähköpajan elektroniikkaa
Sähköpajan elektroniikkaa Kimmo Silvonen (X) "Virtalähde", teholähde, verkkolaite (wall-wart) Elektroniikkapiirit vaativat toimiakseen käyttöjännitteen. Paristot noin 1,5 V tai 3 V / kenno Ladattavat NiMH-akut
MUISTIPIIRIT H. Honkanen
MUISTIPIIRIT H. Honkanen Puolijohdemuistit voidaan jaotella käyttötarkoituksensa mukaisesti: Puolijohdemuistit Luku- ja kirjoitusmuistit RAM, Random Access Memory - Käytetään ohjelman suorituksen aikaisen
Analogiapiirit III. Tentti 15.1.1999
Oulun yliopisto Elektroniikan laboratorio nalogiapiirit III Tentti 15.1.1999 1. Piirrä MOS-differentiaalipari ja johda lauseke differentiaaliselle lähtövirralle käyttäen MOS-transistorin virtayhtälöä (huom.
Transistoriteknologian kehitys
hyväksymispäivä arvosana arvostelija Transistoriteknologian kehitys Ilpo Järvinen Helsinki 20. maaliskuuta 2003 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö i 1 Johdanto 1 2 Transistori
EMC. Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät
EMC Johdanto EMC Mitä tarkoittaa EMC? ElectroMagnetic Compatibility Sähköisen laitteen kyky toimia laboratorion ulkopuolella laite ei aiheuta häiriöitä muille lähietäisyydellä oleville laitteille laitteen
EMC Mittajohtimien maadoitus
EMC Mittajohtimien maadoitus Anssi Ikonen EMC - Mittajohtimien maadoitus Mittajohtimet ja maadoitus maapotentiaalit harvoin samassa jännitteessä => maadoitus molemmissa päissä => maavirta => häiriöjännite
Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen
Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2013-2014 Lasse Lensu 2 Transistori yhdessä
OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.
Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme
Signaalien datamuunnokset. Näytteenotto ja pito -piirit
Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 26/02/2008 Signaalien datamuunnokset 1 Näytteenotto ja
Digitaalitekniikan matematiikka Luku 3 Sivu 1 (19) Kytkentäfunktiot ja perusporttipiirit
Digitaalitekniikan matematiikka Luku 3 Sivu (9) && Digitaalitekniikan matematiikka Luku 3 Sivu 2 (9) Johdanto Tässä luvussa esitetään digitaalilaitteen signaalit ja digitaalipiirien perustyypit esitellään
PUOLIJOHTEET + + - - - + + + - - tyhjennysalue
PUOLIJOHTEET n-tyypin- ja p-tyypin puolijohteet - puolijohteet ovat aineita, jotka johtavat sähköä huonommin kuin johteet, mutta paremmin kuin eristeet (= eristeen ja johteen välimuotoja) - resistiivisyydet
Elektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
A / D - MUUNTIMET. 2 Bittimäärä 1. tai. A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter )
A / D - MUUNTIMET A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter ) H. Honkanen Muuntaa analogisen tiedon ( yleensä jännite ) digitaalimuotoon. Lähtevä data voi olla sarja- tai rinnakkaismuotoista.
Digitaalitekniikan matematiikka Harjoitustehtäviä
arjoitustehtäviä Sivu 6 6.3.2 e arjoitustehtäviä uku 3 ytkentäfunktiot ja perusporttipiirit 3. äytäväkytkin on järjestelmä jossa käytävän kummassakin päässä on kytkin ja käytävän keskellä lamppu. amppu
OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään
Kytkentäkentät, luento 2 - Kolmiportaiset kentät
Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet ƒ Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull
Aineopintojen laboratoriotyöt I. Ominaiskäyrät
Aineopintojen laboratoriotyöt I Ominaiskäyrät Aki Kutvonen Op.nmr 013185860 assistentti: Tommi Järvi työ tehty 31.10.2008 palautettu 28.11.2008 Tiivistelmä Tutkittiin elektroniikan peruskomponenttien jännite-virtaominaiskäyriä
Elektroniikka. Mitä sähkö on. Käsitteistöä
Elektroniikka Mitä sähkö on Sähkö on elektronien liikettä atomista toiseen. Negatiivisesti varautuneet elektronit siirtyvät atomista toiseen. Tätä kutsutaan sähkövirraksi Sähkövirrasta puhuttaessa on sovittu,
Ohjelmistoradio. Mikä se on:
1 Mikä se on: SDR = Software Defined Radio radio, jossa ohjelmisto määrittelee toiminnot ja ominaisuudet: otaajuusalue olähetelajit (modulaatio) olähetysteho etuna joustavuus, jota tarvitaan sovelluksissa,
Näytteen liikkeen kontrollointi
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Sähkötekniikan osasto Fysiikan laitos Kandidaatintyö Näytteen liikkeen kontrollointi Työn ohjaajana ja tarkastajana toimi diplomi-insinööri Hanna-Leena Varis. Lappeenrannassa
Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen
Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan
Logiikan rakenteen lisäksi kaikilla ohjelmoitavilla logiikoilla on myös muita yhteisiä piirteitä.
Automaatio KYTKENTÄ INFORMAATIOTA 1 KOHTA1: KERRATTAVA MATERIAALISSA OLEVA SIEMENS SIMATIC S7CPU212 TUNNISSA TUTUKSI MONISTE ERITYISESTI LOGIIGAN TULO JA LÄHTÖ LIITTIMIEN JA LIITÄNTÖJEN OSALTA TÄSSÄ TULEE
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Diodi ja puolijohteet Luento Ideaalidiodi = kytkin Puolijohdediodi = epälineaarinen vastus Sovelluksia, mm. ilmaisin ja LED, tasasuuntaus viimeis. viikolla
Elektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
Energian hallinta Energiamittari Tyyppi EM110
Energian hallinta Energiamittari Tyyppi EM110 Yksivaihe energiamittari Luokka 1 (kwh) EN62053-21 mukaan Luokka B (kwh) EN50470-3 mukaan Sähkömekaaninen näyttö Energialukema näytössä: 6+1 numeroa Mittaukset
BL40A17x0 Digitaalielektroniikka A/B: Ohjelmoitavat logiikkapiirit
BL4A17x Digitaalielektroniikka A/B: Ohjelmoitavat logiikkapiirit Ohjelmoitavat logiikkapiirit (PLD, Programmable Logic Device) PLD (Programmable Logic Device) on yleinen nimitys integroidulle piirille,
Sähköpaja. Kimmo Silvonen (X) 5.10.2015
Sähköpaja Kimmo Silvonen (X) Elektroniikan komponentit Erilliskomponentit ja IC:t Passiivit: R C L Aktiiviset diskreetit ja IC:t Bipolaaritransistori BJT Kanavatransistorit FET Jänniteregulaattorit (pajan)
Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä
1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 2) Kahdesta rinnankytketystä sähkölähteestä a) kuormittuu enemmän se, kummalla on
MultiPlus-II 48/3000/ V (aiempi tuotenimi: MultiGrid-II)
MultiPlus-II 48/3000/35-32 230V (aiempi tuotenimi: MultiGrid-II) Vertailu MultiGrid 48/3000/35-50 230V -malliin ja asennusohjeita 28-05-2018 1. Tekniset tiedot MultiPlus-II 48/3000/35 230V MultiGrid 48/3000/35-50
SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013
SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen
Radioamatöörikurssi 2017
Radioamatöörikurssi 2017 Elektroniikan kytkentöjä 7.11.2017 Tatu Peltola, OH2EAT 1 / 20 Suodattimet Suodattaa signaalia: päästää läpi halutut taajuudet, vaimentaa ei-haluttuja taajuuksia Alipäästösuodin
ELEC-C3240 Elektroniikka 2 Digitaalielektroniikka Karnaugh n kartat ja esimerkkejä digitaalipiireistä
ELE-324 Elektroniikka 2 Digitaalielektroniikka Karnaugh n kartat ja esimerkkejä digitaalipiireistä Materiaalia otettu myös: https://www.allaboutcircuits.com/textbook/digital/chpt-8/introduction-to-karnaughmapping/
CC-ASTE. Kuva 1. Yksinkertainen CC-vahvistin, jossa virtavahvistus B + 1. Kuva 2. Yksinkertaisen CC-vahvistimen simulaatio
CC-ASTE Yhteiskollektorivahvistin eli emitteriseuraaja on vahvistinkytkentä, jota käytetään jännitepuskurina. Sisääntulo on kannassa ja ulostulo emitterissä. Koska transistorin kannan ja emitterin välinen
CLPD ja FPGA piirien arkkitehtuuri ja ominaisuudet
Pasi Vähämartti ITSEOPISKELU 1(10) CLPD ja FPGA piirien arkkitehtuuri ja ominaisuudet Tutki data-kirjasta XC9500-sarjan CPLD piirin: 1. Arkkitehtuuri 2. Suurimman ja pienimmän piirin portti-, pinni- ja
Kontrollerin tehonsäätö
Kontrollerin tehonsäätö Sulautetut järjestelmät ovat monesti akku- tai paristokäyttöisiä ja tällöin myös mikro-ohjaimen virrankulutuksella on suuri merkitys laitteen käytettävyydelle. Virrankulutuksella
Moduloivat toimilaitteet AME 10, AME 20, AME 30 AME 13, AME 23, AME 33 standardin EN mukaisella turvatoiminnolla (jousi alas)
Tekninen esite Moduloivat toimilaitteet AME 10, AME 20, AME 30 AME 13, AME 23, AME 33 standardin EN 14597 mukaisella turvatoiminnolla (jousi alas) Kuvaus AME 10 AME 13 AME 20, AME 30 AME 23, AME 33 Turvatoiminnolla
TeleWell GPRS-modeemin ohjekirja
TeleWell GPRS-modeemin ohjekirja Hyväksyntä CE 0682 Sisältö Tekniset vaatimukset GPRS-toiminnolle...2 Tuetut käyttöjärjestelmät Windows 98SE, Me, 2000, Xp...2 Myyntipakkauksen sisältö...2 Vaatimukset tietokoneelle,
Signaalien datamuunnokset
Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 17/02/2005 Luento 4b: Signaalien datamuunnokset 1 Näytteenotto
SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
ELEC-C3240 Elektroniikka 2
ELEC-C324 Elektroniikka 2 Marko Kosunen Marko.kosunen@aalto.fi Digitaalielektroniikka Tilakoneet Materiaali perustuu kurssiins-88. Digitaalitekniikan perusteet, laatinut Antti Ojapelto Luennon oppimistavoite
DR-3528FX30-12W COOL WHITE 3528(1210) 30 LED/m 8mm 2.4W 6000-7000K DC 12V IP20 3M Teippi
SAFETY HOUSE ELECTRONICS www.safetyelectronics.net myynti@safetyhouse.net 040-7017600 Nauhan Teho/ Värin Malli nro. Väri LED:in tyyppi LED:iä / metri Jännite leveys metri lämpö SMD 3528 LED nauha, 5M/Rulla
Digitaalilaitteen signaalit
Digitaalitekniikan matematiikka Luku 3 Sivu 3 (9) Digitaalilaitteen signaalit Digitaalilaitteeseen tai -piiriin tulee ja siitä lähtee digitaalisia signaaleita yksittäisen signaalin arvo on kunakin hetkenä
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKK J KTONIIKK Kimmo Silvonen alto-yliopisto, sähkötekniikan korkeakoulu C Välikoe on kääntöpuolella! Tentti 7.4.04. Tehtävät,, 4, 6, 7. Saat vastata vain neljään tehtävään! Sallitut:
Sähköautoprojekti Pienoissähköauto Elektroniikan kokoonpano Moottoriohjain. http://www.elwis.fi
Sähköautoprojekti Pienoissähköauto Elektroniikan kokoonpano Moottoriohjain http://www.elwis.fi Sisällys Elektroniikan osalista... 3 Tarvittavat työkalut... 3 Elektroniikan rakentaminen... 4 1. Piirilevyn
EMC Johdanto EMC. Miksi? Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät
EMC Johdanto EMC Mitä tarkoittaa EMC? ElectroMagnetic Compatibility Sähköisen laitteen kyky toimia laboratorion ulkopuolella laite ei aiheuta häiriöitä muille lähietäisyydellä oleville laitteille laitteen
Analogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 2. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet 1. Analysoi kuvan 1 operaatiotranskonduktanssivahvistimen
Successive approximation AD-muunnin
AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register
KÄYTTÖOHJE. M2M Point - to - Point
KÄYTTÖOHJE M2M Point - to - Point M2M Paketti SISÄLLYSLUETTELO YLEISTÄ 1 KÄYTTÖÖNOTTO 1.1 LAITTEISTON ASENNUS 2 TULOJEN JA LÄHTÖJEN KYTKENTÄ 2.1 TILATIETOKYTKENNÄT 2.2 ANALOGIAKYTKENNÄT 3 KANAVANVAIHTO
BL40A1711 Johdanto digitaaleketroniikkaan: Sekvenssilogiikka, pitopiirit ja kiikut
BL40A1711 Johdanto digitaaleketroniikkaan: Sekvenssilogiikka, pitopiirit ja kiikut Sekvenssilogiikka Kombinatooristen logiikkapiirien lähtömuuttujien nykyiset tilat y i (n) ovat pelkästään riippuvaisia
MICRO-CAP: in lisäominaisuuksia
MICRO-CAP: in lisäominaisuuksia Jännitteellä ohjattava kytkin Pulssigeneraattori AC/DC jännitelähde ja vakiovirtageneraattori Muuntaja Tuloimpedanssin mittaus Makrot mm. VCO, Potentiometri, PWM ohjain,
PM10OUT2A-kortti. Ohje
PM10OUT2A-kortti Ohje Dokumentin ID 6903 V3 13.4.2015 Sisällysluettelo Sisällysluettelo... 2 Esittely... 3 Kortti ja rekisterit... 3 Lähtöviestit... 4 Signaalien kytkeminen... 4 Käyttö... 4 Asetusten tekeminen...
ELEC-C5070 Elektroniikkapaja (5 op)
(5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea
FYSE301 Elektroniikka I osa A Loppukoe (Vastaa kaikkiin viiteen tehtävään)
FYSE301 Elektroniikka I osa A Loppukoe 16.3.2012 (Vastaa kaikkiin viiteen tehtävään) 1. Selitä lyhyesti (6 pistettä) a) pn-liitoksen virta-jännite-käyttäytyminen b) varauksenkuljettajien lukumäärä itseispuolijohteissa
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian
SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite
d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?
-08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin
C-Lynx pinnanvalvontareleet HNM ja HNE
Keskus Releet Valvontareleet Pinnanvalvontareleet C-Lynx pinnanvalvontareleet HNM ja HNE Automaattinen säätö yhdelle tai kahdelle pinnalle Tyhjennys tai täyttö HNM - mittaus johtavilla elektrodeilla HNE
Pitkien etäisyyksien induktiivinen suorakulmainen lähestymiskytkin. Lähtö NO + NC 20 mm suojattu
Pitkien etäisyyksien induktiivinen suorakulmainen lähestymiskytkin Kytkentäkotelo Aktiivisen puolen suunta vaihdettavissa Helppo asentaa, samat asennusmitat kuin tavallisella sähkömekaanisella rajakytkimellä
Transistoreiden merkinnät
Transistoreiden merkinnät Yleisesti: Eurooppalaisten valmistajien tunnukset muodostuvat yleisesti kirjain ja numeroyhdistelmistä Ensimmäinen kirjain ilmaisee puolijohdemateriaalin ja toinen kirjain ilmaisee
Diodit. I = Is * (e U/n*Ut - 1) Ihanteellinen diodi
Diodit Puolijohdediodilla on tasasuuntaava ominaisuus, se päästää virran lävitseen vain yhdessä suunnassa. Puolijohdediodissa on samassa puolijohdepalassa sekä p-tyyppistä että n-tyyppistä puolijohdetta.
PR 3100 -SARJA ASENNUS JA KYTKENTÄ
PR 3100 SARJA ASENNUS JA KYTKENTÄ 3100V105 3114V101 FIN Yksiköitä voi syöttää 24 VDC ± 30 % jännitteellä suoraan johdottamalla tai johdottamalla maks. 130 yksikköä rinnakkain toisiinsa. 3405tehonliitäntäyksikkö
Tieteen popularisointi Kvanttipiirit
Tieteen popularisointi Kvanttipiirit Esa Kivirinta esakiv (at) gmail.com Materiaali on tarkoitettu yläasteen fysiikan oppitunneille lisämateriaaliksi sekä yleisesti peruskoulun suorittaneille. Materiaalissa
Sähköiset toimilaitteet AME 10, AME 20, AME 30 AME 13, AME 23, AME 33 standardin EN mukaisella turvatoiminnolla (jousi alas)
Sähköiset toimilaitteet AME 10, AME 20, AME 30 AME 13, AME 23, AME 33 standardin EN 14597 mukaisella turvatoiminnolla (jousi alas) Kuvaus AME 10 AME 13 AME 20, AME 30 AME 23, AME 33 Toimilaitteita voidaan
Tietokoneen muisti nyt ja tulevaisuudessa. Ryhmä: Mikko Haavisto Ilari Pihlajisto Marko Vesala Joona Hasu
Tietokoneen muisti nyt ja tulevaisuudessa Ryhmä: Mikko Haavisto Ilari Pihlajisto Marko Vesala Joona Hasu Yleisesti Muisti on yksi keskeisimmistä tietokoneen komponenteista Random Access Memory on yleistynyt
Vahvistimet ja lineaaripiirit. Operaatiovahvistin
Vahvistimet ja lineaaripiirit Kotitentti 3 (2007) Petri Kärhä 20/01/2008 Vahvistimet ja lineaaripiirit 1 Operaatiovahvistin (Operational Amplifier, OpAmp) Perusvahvistin, toiminta oletetaan suunnittelussa
R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
Sähköpaja. Kimmo Silvonen (X)
Sähköpaja Kimmo Silvonen (X) Loppusyksyn 2016 ohjelma Ma 28.11. Viimeinen luento Pyydä tarvittaessa pääsyä Pajalle normiaikojen ulkopuolella! Ma 5.12. Paja on auki ainakin klo 12-18 Ti 6.12. Koulu on kiinni
LP4PF /LP4PT Kulkusuojavaloverhot Peiliheijastus 0 6m Mykistys tai ilman mykistystä
LP4PF /LP4PT Kulkusuojavaloverhot Peiliheijastus 0 6m Mykistys tai ilman mykistystä Tekniset tiedot Tehonsyöttö Vdc 19,2 28.8 Tehonkulutus, Vastaanotin 6W Tehonkulutus, Lähetin 3W Turvalähdöt 2 x PNP OSSD,
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus
Sähköpajan elektroniikkaa
Sähköpajan elektroniikkaa Kimmo Silvonen (X) Tämä viikko 25.-29.1.2016 Pajalla Ma klo 10.15-11.30 luento S1 Ma klo 11.30 alk. tutustuminen Sähköpajaan L215 (kahvi, tee) Ti klo 14.15 alk. tutust., lähtö
PR SARJA ASENNUS JA KYTKENTÄ
PR 3100 SARJA ASENNUS JA KYTKENTÄ FI1 (3100V10131 311V101119 318V100118 318V100118 311V1001 3118V1001) Yksiköitä voi syöttää VDC ± 30 % jännitteellä suoraan johdottamalla tai johdottamalla maks. 130 yksikköä
Taitaja semifinaali 2010, Iisalmi Jääkaapin ovihälytin
Taitaja semifinaali 2010, Iisalmi Jääkaapin ovihälytin Ohjelmointitehtävänä on laatia ohjelma jääkaapin ovihälyttimelle. Hälytin toimii 3 V litium paristolla ja se sijoitetaan jääkaapin sisälle. Hälyttimen
Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa
Kohinan ominaisuuksia Kohinamekanismit Terminen kohina Raekohina 1/f kohina (Kvantisointikohina) Kohinan käsittely Kohinakaistanleveys Kohinalähteiden yhteisvaikutus Signaali-kohina suhde Kohinaluku Kohinalämpötila
Verkkodatalehti. FX3-XTIO84002 Flexi Soft / Safe EFI-pro System TURVAOHJAIMET / TURVAJÄRJESTELMÄT
Verkkodatalehti FX3-XTIO84002 Flexi Soft / Safe EFI-pro System A B C D E F H I J K L M N O P Q R S T Yksityiskohtaiset tekniset tiedot Ominaisuudet Moduuli Konfiguraatiotapa Turvatekniset ominaisuudet
Nopea tiedonkeruulaitteisto radiokanavamittauksiin
19.10.1998 Nopea tiedonkeruulaitteisto radiokanavamittauksiin Matti Leppänen (TKK/IRC/Sovellettu elektroniikka) Kimmo Kalliola (TKK/IRC/Radiolaboratorio) 1 Johdanto Tämän raportin tavoitteena on esitellä
811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto
811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien
Multivibraattorit. Bistabiili multivibraattori:
Multivibraattorit Elektroniikan piiri jota käytetään erilaisissa kahden tason systeemeissä kuten oskillaattorit, ajastimet tai kiikkut. Multivibraattorissa on vahvistava elementtti ja ristiinkytketyt rvastukset
Elektroniikan laboratorio Lisätehtävät 17.9.2003. Mallivastauksia
OULUN YLIOPISTO IGITLITEKNIIKK I Elektroniikan laboratorio Lisätehtävät 7.9. Mallivastauksia. Mitkä loogiset operaatiot oheiset kytkennät toteuttavat? Vihje: kytkin johtaa, kun ohjaava signaali =. Käytä
DATAFLEX. Vääntömomentin mittausakselit DATAFLEX. Jatkuvan päivityksen alaiset tiedot löytyvät online-tuoteluettelostamme, web-sivustosta www.ktr.
307 Sisällysluettelo 307 Yleiskatsaus 309 Tyypit 16/10, 16/30 ja 16/50 310 Lisävarusteet: servokäyttöjen lamellikytkimet RADEX -NC 310 Tyypit 22/20, 22/50, 22/100 311 Lisävarusteet: servokäyttöjen lamellikytkimet
Sähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Kokeet, harjoitustehtävät, palaute 2. välikoe ja tentti ma 7.12. klo 10.15-13, S1 Valitset kokeen aikana, suoritatko tentin Ilmoittaudu joka tapauksessa
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =