12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

Koko: px
Aloita esitys sivulta:

Download "12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot"

Transkriptio

1 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14,

2 12.1 Auringon sisäinen rakenne: Fuusio muuttaa yhdessä sekunnissa kg vetyä kg heliumia erotus = 4.4 miljoonaa tonnia vastaa W (Aurinko kuluttanut 5% vedystään) Pintaosien koostumus= alkuperäinen koostumus 71% vetyä, 27% heliumia Auringon ytimessä: 40% vetyä, 60% heliumia Radiatiivinen sisäosa (0.7 R saakka) Ulko-osa konvektiivinen: lämpötila riittävän alhainen ionisaatio ei ole täydellinen opasiteetti kasvaa Tähtitieteen perusteet, Luento 14,

3 Auringon pyöriminen Auringonpilkku-havainnot differentiaalinen rotaatio Schneider 1630: navoilla pyörähdysaika 30 päivää, ekvaattorilla 25 Pyörähdysakseli 7 kallellaan ekliptikaan nähden (vai pitäisikö sanoa toisinpäin?) Kulmanopus Ω Ω = A B sin 2 ψ ψ = latitudi A = 14.5 /vrk, B = 2.9 /vrk Entä pinnan alapuolella? helioseismologia: spektriviivojen vaihtelut konvektiokerroksessa eteneviä aaltoja vertaaminen teoreettisiin malleihin tietoa sisärakenteesta konvektiivinen kerros: pyöriminen lähes samanlaista kuin pinnalla, paitsi gradientti ekvaattorin ja napojen välillä suurempi radiatiivinen ydin: kiinteän kappaleen tavoin, P=25 vrk rajakerros = takokliini: Ω(R) muuttuu nopeasti merkitty kuvaan katkoviivalla (taajuudet esim. 300 nhz P = 1/ s = 38.6vrk) Tähtitieteen perusteet, Luento 14,

4 12.2 Auringon atmosfääri: fotosfääri, kromosfääri, korona Fotosfääri ( valokehä ) Atmosfäärin sisin osa = Auringon näkyvä pinta (optinen paksuus kasvaa nopeasti, τ 1 = pinta) paksuus n km lämpötila 8000 K 4500 K (jatkuva spektri + abs. viivat) Konvektio: näkyy pinnalla rakeisena rakenteena = granulaatio granula: koko n km, kirkas keskiosa, kuuma kaasu ylös, tummat välialueet: kylmän kaasun alasvirtaus supergranulaatio: 50 kertaa suuremmassa skaalassa, pinnan suuntaisia nopeuksia Tähtitieteen perusteet, Luento 14,

5 Kromosfääri 500 km paksuinen kerros fotosfäärin yläpuolella: lämpötila nousee 4500 K 6000 K Näkyy suoraan vain auringonpimennysten aikana: spektrissä vedyn Balmer-emissioviivoja H α kapeakaistakuvaus kromosfäärin emissio näkyviin (fotosfäärin säteilyssä syvä abs. viiva) spikulat = liekkimäiset kohoumat, nousevat n km:n korkeudelle. Korona (=kruunu) Kromosfäärin yläpuolinen, hyvin kuuma vyöhyke Näkyviin Aurinkonpimennyksen aikana, ulottuu parin säteen päähän Moninkertaisesti ionisoituneet alkuaineet (T = 10 6 K) Energimekanismi huonosti tunnettu (liittyy magneettikenttään) Aurinkotuuli = koronasta poisvirtaavia hiukkasia Tähtitieteen perusteet, Luento 14,

6 12.3 Auringon aktiivisuus: Auringonpilkut Tyypillinen läpimitta km, suurimmat lähes km (=näkyy paljain silmin) Eliniät muutamasta päivästä useisiin kuukausiin (useita kierroksia, kiertoaika) Pilkun kohdalla T = 4500 K, muualla 6000 K näkyvät tummina Keskellä tumma umbra, ympärillä vaaleampi penumbra Pilkkuja ympäröivässä alueessa ns. kirkkaat fakulat (Aurinko kirkkaimmillaan kun paljon pilkkuja!) Pillkujen määrän vaihtelua seurattu lähes vuotta ( Kiinassa ens. havainnot jo 2000 v sitten) Zurichin auringonpilkkuluku (Wolfin luku) Z = C(s + 10g) s yksittäisten pilkkujen määrä g pilkkuryhmien määrä C olosuhteista riippuva kerroin Schwabe 1843: pilkkujen määrä vaihtelee n. 11 v sykleissä (7-14 v) 1600-lla Maunderin minimi Tähtitieteen perusteet, Luento 14,

7

8 Auringon magneettinen sykli Auringonpilkut: jopa 4500 Gaussin magneettikenttiä pilkut pareittain: napaisuus vastakkainen - magneettiset silmukat Auringonpilkkujakso vastaa magneettikentän vaihtelua: pilkut siirtyvät kohti ekvaattoria jakson kuluessa seuraavalla jaksolla napaisuus vaihtunut (täysi jakso 22v) Perhosdiagramma Tähtitieteen perusteet, Luento 14,

9 Dynamoteoria: H. Babock Magneettiset voimaviivat jäätyneet plasmaan, liikkuvat pöyrimisen mukana Differentiaalinen rotaatio tiukka spiraali, katkeaminen Malli selittää kvalitatiivisesti perhosdiagrammin bipolaariset pilkut, napaisuuden vaihto Tähtitieteen perusteet, Luento 14,

10 Muita aktiivisuuden osoituksia fakulat: fotosfäärin kirkastumia plaget : kromosfäärin kirkastumia (havainnot H α, Kalsium K-viiva) prominenssit: koronassa olevia kuumia kaasupilviä (aiemmin protuberansseja ) flare-purkaukset: nopeita purkauksia, säteilyä laajalla aallonpituusalueella, harattuja hiukkasia Koronan massa-purkaukset: hyvin suuria hiukasnopeuksia, aihettavat Maassa magneettisia myrskyjä muutamaa päivää myöhemmin radiosäteily Aurinko taivaan voimakkain radiosäteilijä Radiosäteilyssä näkyy reunan kirkastuminen Radiomyrskyt: kirkkaus jopa 10 5 kertainen Aurinkotuuli: Massamenetys M Hiukkasnopeus 500 km/s säteily peräisin kromosfääristä/koronasta SOHO: Koronan massapurkaus 2007 Tähtitieteen perusteet, Luento 14,

11 Auringon pinnan ilmiöitä + nimistöä Tähtitieteen perusteet, Luento 14,

12 13. Muuttuvat tähdet Kaikki tähdet jossain määrin muuttuvia, ainakin tietyissä kehitysvaiheissa Ensimmäinen havaittu: Mira (o Ceti) 1596 (Fabricius) Nimeäminen (Argelander 1800 luvulla): tähdistön nimen eteen R,S,... Z, RR,...SS... V335, V Argelanderin menetelmä: harrastajien visuaaliset havainnot 3 pääryhmää: pimennysmuuttujat - kaksoistähtiä, itse tähden ominaisuudet ei muutu sykkivät muuttujat - epävakaa jättiläisvaihe, pinnan laajeneminen/supistuminen purkautuvat muuttujat - esim. lähekkäinen kaksoistähti, kaasun virtaus lisäksi: pyörivät muuttujat (tähdenpilkut) Yli luetteloitua muuttujaa GCVS-luettelo Tähtitieteen perusteet, Luento 14,

13 13.1 Sykkivät muuttujat Kirkkausvaihtelut yhteydessä spektriviivojen Doppler-vaihteluun tähden ulkokerrokset sykkivässä liikkeessä, nopeudet km/s Jakso vastaa tähden ominaistaajuutta Eddington osoitti 1910:lla: P 1 ρ (vertaa dynaamisen aikaskaalan tiheys-riippuvuus q R 3 /M) Läpimitan muutokset jopa kaksinkertaisia, tyypillisesti paljon pienempiä Suurin syy kirkkauden muutoksiin on pintalämpötilan muutos (L R 2 T 4 ) Mikä voisi aiheuttaa sykkimisen? Hydrostaattinen tasapaino paineen ja gravitaation välillä:... ulko-osan laajeneminen, tiheys pienenee lämpötila laskee kaasun paine laskee gravitaatio supistaa ulko-osia tiheys kasvaa lämpötila nousee paine kasvaa ulko-osat laajenee... Normaalisti tämä värähtelysykli vaimenee tehokkaasti (=hydrostaattinen tasapaino), sillä sykkimisen ylläpitäminen vaatisi energiaa ulkopuolelta Sopivissa olosuhteissa tähden sisältä tulevan säteilyenergian absorpoituminen ulko-osien kaasuun voi tarjota energialähteen sykkiminen ( overstability ) ehto: säteily absorboituu paremmin kaasun ollessa tiheää (ja kuumaa) normaalisti: kaasu paremmin läpinäkyvää lämpötilan kasvaessa Poikkeus: pintalämpötila K osittain ionisoitunut H, He absorboi paremmin tiheyden kasvaessa Tähtitieteen perusteet, Luento 14,

14 Kefeidit Nimi δ Cephei -tähden mukaan Henrietta Leavitt 1912: pienen Magellanin pilven muuttujat Likimain sama etäisyys näennäinen ja absoluttiisen magnitudin vastaavauus Kalibrointi: Hertzbrung 1913 tähtien ominaisliikkeiden avulla Shapley: kyseessä sykkivät tähdet = Klassiset kefeidit: F-K ylijättiläisiä, nuoria metallirikkaita Populaatio I -tähtiä M v 4 (Aurinkoa n kertaa kirkkaampia) Jakso 1-50 vrk, amplitudi mag Periodi-luminositeetti-relaatio: Jakso pitenee kirkkauden kasvaessa (Eddingtonin relaatio: P 1 ρ lyhytjaksoiset ovat tiheämpiä kuin pitkäjaksoiset, kuumempia, mutta säteeltään pienempiä pienempi luminositeetti) Tähtitieteen perusteet, Luento 14,

15 Esimerkki Tähtitieteen perusteet kirjasta: Kefeidien periodi-luminositeetti-relaatio Tähtitieteen perusteet, Luento 14,

16

17 Mira-tähdet M, S, C ylijättiläisiä (esim. Mira itse: säde 2 AU) Jakso vrk, visuaalisen magnitudin vaihtelu jopa 10 magnitudia (10000 kertainen!), tyypillisesti 6 mag Mira: maksimi kirkkaus 2-4 mag, minimi 12 mag Miten mahdollista? Kylmiä tähtiä säteily etupäässä IR:ssä Pienikin lämpötilan kasvu siirtää maksimia lyhyemmille aallonpituuksille voimakas visuaalinen kirkastuminen Puolisäännölliset ja epäsäännölliset muuttujat massiivisia nuoria tähtiä, ulkokerrokset epävakaita Tähtitieteen perusteet, Luento 14,

18 13.2 Purkautuvat muuttujat Ei säännöllistä sykkimistä, kirkkausmuutokset aiheutuvat aineen purkautumisesta tähdestä Kaksi pääryhmää: Eruptiiviset muuttujat: kromosfäärin/koronan purkauksia, vaikutus tähteen pieni, ympärillä usein kaasua flare-tähdet, sumumuuttujat, R Coronae Borealis -tähdet Kataklysmiset muuttujat: ydinreaktiot pinnalla tai tähden sisällä, koko tähti voi tuhoutua novat, kääpiönovat, supernovat Flare-tähdet M spektriluokan nuoria kääpiö-tähtiä (yleisiä avonaisisa joukoissa) samankaltaisia flare-purkauksia kuin Auringossa (optinen +radio) tähdet itse himmeämpiä jopa 5 mag kirkastuminen Tähtitieteen perusteet, Luento 14,

19 Sumu-muuttujat Tähtienvälisten pilvien yhteydessä esiintyviä muuttujia T Tauri-tähdet Pääsarjaa kohti tiivistymässä olevia tähtiä epäsäännöllisiä kirkkausvaihteluita spektiviivojen siirtymät voimakas tähtituuli FU Orionis 6 mag kirkastuminen, hidas himmeneminen, voimakas IR säteily läheisestä pölystä V1057 Cygni kirkastui 6 magnitudia, aiemmin T tauri tähti normaali AB spektriluokan tähti η Carinae: Hubble kuva R Coronae Borealis käänteisiä novia, himmenee 10 magnitudia, palaa ennalleen vuosien jälkeen η Carinae v asti taivaan kirkkaimpia tähtiä, 1870 ei enää paljain silmin näkyvä uudelleen kirkastumassa Kirkas sininen 100M tähti, kuumentaa ympärillä olevaa pilveä, säteilee IR-alueella (taivaan kirkkain Aurinkokunnan ulkopuolinen IR-kohde) Kirkkaudenmuutosten alkuperä ei tiedossa, tn. räjähtää supernovana Tähtitieteen perusteet, Luento 14,

20 Novat Novat: nopeita purkauksia, kirkastuu parissa päivässä 7-16 magnitudia hidas himmeneminen Toistuvat novat: vajaat 10 mag, uusiutuu n. 10 vuoden välein Kääpiönovat: 2-6 magnitudia, uusi purkaus 20 vrk -2 v Kirkkausmuutos m likimain verrannollinen log P (novilla P olisi > vuotta, ei havaintoja) Mekanismi: lähekkäisiä kaksoistähtiä normaali tähti + valkoinen kääpiö jonka ympärillä kertymäkiekko massavirtaus fuusio valkoisen kääpiön pinnalla kirkastuminen ja ulkokuoren sinkoutuminen uusiutuu kun tarpeeksi massaa taas kertynyt Kääpiönovat: ei fuusiota, energia putoavan materian potentiaalienergiasta Runsaus: Andromeda novaa/vuosi, kääpiönovia paljon enemmän Tähtitieteen perusteet, Luento 14,

21 Tähtitieteen perusteet, Luento 14,

22 Tähtitieteen perusteet, Luento 14,

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Kyösti Ryynänen Luento

Kyösti Ryynänen Luento 1. Aurinkokunta 2. Aurinko Kyösti Ryynänen Luento 15.2.2012 3. Maa-planeetan riippuvuus Auringosta 4. Auringon säteilytehon ja aktiivisuuden muutokset 5. Auringon tuleva kehitys 1 Kaasupalloja Tähdet pyrkivät

Lisätiedot

Ulottuva Aurinko Auringon hallitsema avaruus

Ulottuva Aurinko Auringon hallitsema avaruus Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä

Lisätiedot

Jupiter-järjestelmä ja Galileo-luotain II

Jupiter-järjestelmä ja Galileo-luotain II Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.

Lisätiedot

Tähtitaivaan alkeet Juha Ojanperä Harjavalta

Tähtitaivaan alkeet Juha Ojanperä Harjavalta Tähtitaivaan alkeet Juha Ojanperä Harjavalta 14.1.-10.3.2016 Kurssin sisältö 1. Kerta Taivaanpallo ja tähtitaivaan liike opitaan lukemaan ja ymmärtämään tähtikarttoja 2. kerta Tärkeimmät tähdet ja tähdistöt

Lisätiedot

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 6: Linnunradan yleisrakenne II, halo, pallomaiset tähtijoukot ja galaksin keskusta 17/10/2016 Peter Johansson/ Linnunradan rakenne Luento

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä

Lisätiedot

Supernova. Joona ja Camilla

Supernova. Joona ja Camilla Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa

Lisätiedot

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)

16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) 16. Tähtijoukot Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot 10 5 10 6 tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947:

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Mustien aukkojen astrofysiikka

Mustien aukkojen astrofysiikka Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Tähtien rakenne ja kehitys

Tähtien rakenne ja kehitys Tähtien rakenne ja kehitys Fysiikan täydennyskoulutuskurssi - Avaruustutkimus 5.6.2007 FT Thomas Hackman Thomas.Hackman@helsinki.fi Thomas Hackman, HY:n observatorio 1 1. Perustietoa ja käsitteitä Magnitudit

Lisätiedot

Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee

Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee Reko Hynönen Teoreettisen fysiikan syventävien opintojen seminaari / Kevät 2012 26.4.2012 1 Ekskursio avaruussäähän 1. Auringonpilkkusykli 2.

Lisätiedot

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

AURINKOKUNNAN RAKENNE

AURINKOKUNNAN RAKENNE AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe )

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe ) 13.3 Supernovat Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L nähdään suurilta etäisyyksiltä tärkeitä etäisyysmittareita Raskaiden alkuaineiden synteesi (useimmat > Fe ) Kirkkausmaksimi:

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero Messier 51 Whirpool- eli pyörregalaksiksi kutsuttu spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero 51. Pyörregalaksi

Lisätiedot

Koronan massapurkaukset ja niiden synty. Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011

Koronan massapurkaukset ja niiden synty. Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011 Koronan massapurkaukset ja niiden synty Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011 1 Sisältö Auringon magnetismi Korona Koronan massapurkaukset (CME) CME:n synty ja

Lisätiedot

Kosmologia ja alkuaineiden synty. Tapio Hansson

Kosmologia ja alkuaineiden synty. Tapio Hansson Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian

Lisätiedot

Tähtien magneettinen aktiivisuus; 1. luento

Tähtien magneettinen aktiivisuus; 1. luento Tähtien magneettinen aktiivisuus; 1. luento Periodi III: teoriaa; luentoja, demonstraatiota ja harjoituksia luentoaikaan ke 10 12 Harjoitukset: laskarityyppisiä kotitehtäviä, jotka palautetaan luennon

Lisätiedot

Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum

Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum Luento 9: Aktiiviset galaksit, 06/11/2017 Matemaattis-luonnontieteellinen tiedekunta Peter Johansson/ Galaksit ja Kosmologia Luento 9 www.helsinki.fi/yliopisto

Lisätiedot

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50"

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50 7.16 Jupiter Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50" Pilvimuodostelmat: vaaleat vyöhykkeet (zone) kaasun virtaus ulospäin tummat

Lisätiedot

761352A JOHDATUS AVARUUSFYSIIKKAAN

761352A JOHDATUS AVARUUSFYSIIKKAAN Johdatus avaruusfysiikkaan 0 761352A JOHDATUS AVARUUSFYSIIKKAAN Luentomoniste Kalevi Mursula Oulun Yliopisto, Fysikaalisten tieteiden laitos sl. 2002 Perustuu pääosin kirjoihin A. Brekke: Physics of the

Lisätiedot

Tähtien magneettinen aktiivisuus; 6. luento SMF mallit: ennustaminen 1

Tähtien magneettinen aktiivisuus; 6. luento SMF mallit: ennustaminen 1 Tähtien magneettinen aktiivisuus; 6. luento SMF mallit: ennustaminen 1 Ennustaminen aktiivisuusindikaattorien mukaan esim. http://solarscience.msfc.nasa.gov/predict.shtml mutta aina kaikki ei ole sitä

Lisätiedot

Albedot ja magnitudit

Albedot ja magnitudit Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen

Lisätiedot

AURINGONPILKKUJAKSO 25? TONI VEIKKOLAINEN

AURINGONPILKKUJAKSO 25? TONI VEIKKOLAINEN AURINGONPILKKUJAKSO 25? TONI VEIKKOLAINEN 25.7.2019 AURINGONPILKKUJEN JAKSOLLISUUS Auringon aktiivisuus vaihtelee karkeasti ottaen 11 vuoden jaksoissa magneettikentän aktiivisuuden mukaisesti Auringonpilkkujaksojen

Lisätiedot

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami 1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum

Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum Luento 10: Paikallinen galaksiryhmä, 10/11/2015 Peter Johansson/ Galaksit ja Kosmologia Luento 10 www.helsinki.fi/yliopisto 10/11/15 1 Tällä

Lisätiedot

Avaruussää. Tekijä: Kai Kaltiola

Avaruussää. Tekijä: Kai Kaltiola Avaruussää Kohderyhmä: yläasteen suorittaneet / 9-luokkalaiset Työskentelymenetelmä: ryhmätyöt Kuvaa yleistajuisesti avaruussään syntymisen ja siihen liittyvät ilmiöt Tekijä: Kai Kaltiola kai.kaltiola@gmail.com

Lisätiedot

Kevään 2017 komeetat odotuksia ja toteutumia. Veikko Mäkelä Cygnus

Kevään 2017 komeetat odotuksia ja toteutumia. Veikko Mäkelä Cygnus Kevään 2017 komeetat odotuksia ja toteutumia Veikko Mäkelä Cygnus 2017 28.7.2017 Kolme komeettaa Keväällä 2017 piti olla näkyvissä kolme kiikaritason komeettaa 41P/Tuttle-Giacobini-Kresak 5,5 mag 45P/Honda-Mrkos-Pajdusakova

Lisätiedot

Kemiallinen mallinnus II: tulokset ja tulkinta. Astrokemia -kurssin luento

Kemiallinen mallinnus II: tulokset ja tulkinta. Astrokemia -kurssin luento Kemiallinen mallinnus II: tulokset ja tulkinta Astrokemia -kurssin luento 4.4.2011 edellisissä luentokalvoissa esiteltiin kemiallisen mallintamisen perusteita, eli mitä malleihin kuuluu (millaisia efektejä

Lisätiedot

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Sisältö Miksi juuri planetaariset sumut Planetaarisen sumun syntymä Planetaariset kuvauskohteena Kalusto Suotimet Valotusajat Kartat HASH planetary

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 Prof. Filip Tuomisto Fuusion perusteet, torstai 10.3.2016 Päivän aiheet Fuusioreaktio(t) Fuusion vaatimat olosuhteet Miten fuusiota voidaan

Lisätiedot

Etäisyyden yksiköt tähtitieteessä:

Etäisyyden yksiköt tähtitieteessä: Tähtitiedettä Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on sama kuin

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

UUDEN AURINGONPILKKUJAKSON ALKU TONI VEIKKOLAINEN AURINKOKUNTATAPAAMINEN,

UUDEN AURINGONPILKKUJAKSON ALKU TONI VEIKKOLAINEN AURINKOKUNTATAPAAMINEN, UUDEN AURINGONPILKKUJAKSON ALKU TONI VEIKKOLAINEN AURINKOKUNTATAPAAMINEN, 9.2.2019 AURINGONPILKKUJEN JAKSOLLISUUS Auringon aktiivisuus vaihtelee karkeasti ottaen 11 vuoden jaksoissa magneettikentän aktiivisuuden

Lisätiedot

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine Termiikin ennustaminen radioluotauksista Heikki Pohjola ja Kristian Roine Maanpintahavainnot havaintokojusta: lämpötila, kostea lämpötila (kosteus), vrk minimi ja maksimi. Lisäksi tuulen nopeus ja suunta,

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa

Lisätiedot

Kassiopeja 1/2006. Tähtiharrastusta Lakeudella: Muuttuvat tähdet ja niiden luokittelu. Lakeuden Ursa ry:n jäsenlehti

Kassiopeja 1/2006. Tähtiharrastusta Lakeudella: Muuttuvat tähdet ja niiden luokittelu. Lakeuden Ursa ry:n jäsenlehti Kassiopeja 1/2006 Lakeuden Ursa ry:n jäsenlehti Tähtiharrastusta Lakeudella: Jäsenillat havaintokaudella Syksyn tähtitaivas Tähtinäytökset Puheenjohtaja haastattelussa Muuttuvat tähdet ja niiden luokittelu

Lisätiedot

Luento 27.2.2013 Kyösti Ryynänen. Tähdet. Tähtien kutistuminen pääsarjaan. Tähtien kehitys. Tähtien kutistuminen pääsarjaan. Energian synty 28.2.

Luento 27.2.2013 Kyösti Ryynänen. Tähdet. Tähtien kutistuminen pääsarjaan. Tähtien kehitys. Tähtien kutistuminen pääsarjaan. Energian synty 28.2. Luento 27.2.2013 Kyösti Ryynänen 1. kunta 2. 3. Maa-planeetan riippuvuus Auringosta 4. Auringon säteilytehon ja aktiivisuuden muutokset 5. Auringon tuleva kehitys 1 Tähdet Kaasupalloja pyrkivät kohti hydrostaatista

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

7.10 Planeettojen magnitudit

7.10 Planeettojen magnitudit 7.10 Planeettojen magnitudit Edellä vuontiheyden kaava (*) F(α) = CA 4π Φ(α) L i 2 Sijoitetaan C = 4/q, A = pq, F = p π Φ(α) 1 2 L R 2 4r 2 L i = L R2 4r 2 Planeetasta heijastunut vuontiheys etäisyydellä

Lisätiedot

Kesäyön kuunpimennys

Kesäyön kuunpimennys Kesäyön kuunpimennys 27-28.7.2018 by Matti Helin - Monday, July 02, 2018 https://www.ursa.fi/blogi/zeniitti/2018/07/02/kuunpimennys-27-28-7-2018/ Matti Helin: Kesäyön kuunpimennys 27-28.7.2018 -Vuosisadan

Lisätiedot

Radioaaltojen eteneminen. Marjo Yli-Paavola, OH3HOC

Radioaaltojen eteneminen. Marjo Yli-Paavola, OH3HOC Radioaaltojen eteneminen Marjo Yli-Paavola, OH3HOC 26.10.2010 Radioaaltojen etenemistavat Eteneminen ionosfäärissä Eteneminen troposfäärissä Pinta-aalto Erikoisemmat etenemismuodot Yleisesti eteneminen

Lisätiedot

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring the Solar System and Beyond in Finnish Kehittämä Nam Nguyen Hubble Ultra Deep Field ampui 2014 Exploring aurinkokunnan ja sen jälkeen tavoitteena

Lisätiedot

15. Tähtienvälinen aine

15. Tähtienvälinen aine 15. Tähtienvälinen aine Interstellaarinen materia: galaksien sisällä Intergalaktinen materia: galaksien välillä Yleisiä ominaisuuksia: 1) Interstellaarisen aineen määrä: tähtienvälinen kaasu n. 10% Linnunradan

Lisätiedot

Radioastronomian perusteita

Radioastronomian perusteita Radioastronomian perusteita Anne Lähteenmäki & Merja Tornikoski Tämä tiivistelmä on koottu valikoiden Aalto-yliopiston Radioastronomian kurssin materiaaleista eikä se näin ollen ole täydellinen, vaan keskittyy

Lisätiedot

Tähtien magneettinen aktiivisuus, 5. luento Differentiaalirotaatio ja Auringon dynamomallit

Tähtien magneettinen aktiivisuus, 5. luento Differentiaalirotaatio ja Auringon dynamomallit Tähtien magneettinen aktiivisuus, 5. luento Differentiaalirotaatio ja Auringon dynamomallit Auringon ja tähtien differentiaalirotaatio Relevantit havainnot Keskimääräisen kentän teoriaa Numeeriset mallit

Lisätiedot

Heijastuminen ionosfääristä

Heijastuminen ionosfääristä Aaltojen eteneminen Etenemistavat Pinta-aalto troposfäärissä Aallon heijastuminen ionosfääristä Lisäksi joitakin erikoisempia heijastumistapoja Eteneminen riippuu väliaineen ominaisuuksista, eri ilmiöt

Lisätiedot

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 4: Stellaaristatistiikka, 03/10/2016 Peter Johansson/ Linnunradan rakenne Luento 4 03/10/16 1 Tällä luennolla käsitellään 1. Tähtien jakauma

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

Koronan massapurkauksen synnyttämät aallot

Koronan massapurkauksen synnyttämät aallot Koronan massapurkauksen synnyttämät aallot Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 29.3.2012 1 / 21 Sisällys Koronan massapurkaus Purkauksen aiheuttamat häiriöt Auringon kaasukehässä

Lisätiedot

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)

Lisätiedot

6. AVARUUSSÄÄ. Johdanto

6. AVARUUSSÄÄ. Johdanto 181 6. AVARUUSSÄÄ Johdanto Sään vaihtelut kuuluvat tuttuihin arkipäivän kokemuksiin. Sade, auringonpaiste, pilvet, tuuli, lumi ja jää liittyvät päivästä toiseen tapahtuviin muutoksiin säätilassa, mutta

Lisätiedot

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Planeetat Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma

SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta

Lisätiedot

2. MITÄ FOTOMETRIA ON?

2. MITÄ FOTOMETRIA ON? Fotometria Tekijät: Hänninen Essi, Loponen Lasse, Rasinmäki Tommi, Silvonen Timka ja Suuronen Anne Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine: Fysiikka

Lisätiedot

GLOBAL WARMING and cooling. Aurinko syytettynä, CO2 marginaali. Timo Niroma Ilmastofoorumi Toukokuu 2009

GLOBAL WARMING and cooling. Aurinko syytettynä, CO2 marginaali. Timo Niroma Ilmastofoorumi Toukokuu 2009 GLOBAL WARMING and cooling. Aurinko syytettynä, CO2 marginaali. Timo Niroma Ilmastofoorumi Toukokuu 2009 Viimeiset 10 vuotta Hadcrut3-aineisto (baseline 1961-1990): Vuosi 2008 oli kylmempi kuin vuosi

Lisätiedot

SEMIREGULAR. Linnunradan reunalta. Kehittyvä harrastus ja harrastuksessa. Sisältö. Numero 4, Vuosi 2005. M. Luostarinen

SEMIREGULAR. Linnunradan reunalta. Kehittyvä harrastus ja harrastuksessa. Sisältö. Numero 4, Vuosi 2005. M. Luostarinen SEMIREGULAR Numero 4, Vuosi 2005 Linnunradan reunalta M. Luostarinen Kehittyvä harrastus ja harrastuksessa kehittyminen Tervetuloa Semiregular-uutislehden neljänteen numeroon. Tämä numero on ollut hieman

Lisätiedot

7.4 Fotometria CCD kameralla

7.4 Fotometria CCD kameralla 7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion

Lisätiedot

Tähtitieteen historiaa

Tähtitieteen historiaa Tähtitiede Sisältö: Tähtitieteen historia Kokeellisen tiedonhankinnan menetelmät Perusteoriat Alkuräjähdysteoria Gravitaatiolaki Suhteellisuusteoria Alkuaineiden syntymekanismit Tähtitieteen käsitteitä

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

IONOSPHERIC PHYSICS, S, KEVÄT 2017 REVONTULIALIMYRSKY

IONOSPHERIC PHYSICS, S, KEVÄT 2017 REVONTULIALIMYRSKY IONOSPHERIC PHYSICS, 761658S, KEVÄT 2017 REVONTULIALIMYRSKY Joonas Vatjus & Jakke Niskanen Ionospheric Physics, Projektityö Oulun yliopisto Fysiikan laitos 12.4.2017 SISÄLLYSLUETTELO 1. Johdanto 3 Ionosfääri.

Lisätiedot

11. Astrometria, ultravioletti, lähiinfrapuna

11. Astrometria, ultravioletti, lähiinfrapuna 11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Cygnus tapahtuma Vihdin Enä-Sepän leirikeskuksessa

Cygnus tapahtuma Vihdin Enä-Sepän leirikeskuksessa Cygnus 2013 -tapahtuma Vihdin Enä-Sepän leirikeskuksessa 24. 28.7.2013 Pikkuplaneetat ja tähdenpeitot -jaosto Esitys perjantaina 25.7.2013 Esityksen diat on muutettu 13.8.2013 tekstitiedostoksi. Siihen

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Malliatmosfäärit: Milloin tietty spektriviiva muodostuu tähden atmosfäärissä?

Malliatmosfäärit: Milloin tietty spektriviiva muodostuu tähden atmosfäärissä? Malliatmosfäärit: Milloin tietty spektriviiva muodostuu tähden atmosfäärissä? Mallilaskut: oletetaan staattinen atmosfääri (pyörimätön), ei magneettikenttää tällöin kemiallinen koostumus, gravitaatiokiihtyvyys

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8.2.6 Échelle-spektroskooppi Harva hila, n. 50 viivaa/mm Suuri blaze-kulma, n. 60 Havaitaan korkeita kertalukuja, m 20 60 suuri dispersio ja

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

Auringonmassaisen tähden kehitys Hayashi-viivalta valkoiseksi kääpiöksi

Auringonmassaisen tähden kehitys Hayashi-viivalta valkoiseksi kääpiöksi Astronomy & Astrophysics manuscript no. raportti c ESO 2015 June 13, 2015 Auringonmassaisen tähden kehitys Hayashi-viivalta valkoiseksi kääpiöksi Anni Järvenpää 1 Alkeishiukkasfysiikan ja astrofysiikan

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.

Lisätiedot

8. Fotometria (jatkuu)

8. Fotometria (jatkuu) 8. Fotometria (jatkuu) 1. Magnitudijärjestelmät 2. Fotometria CCD kameralla 3. Instrumentaalimagnitudit 4. Havaintojen redusointi standardijärjestelmään 5. Kalibrointi käytännössä 6. Absoluuttinen kalibrointi

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz

Lisätiedot

4 Fotometriset käsitteet ja magnitudit

4 Fotometriset käsitteet ja magnitudit 4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan

Lisätiedot