IONOSPHERIC PHYSICS, S, KEVÄT 2017 REVONTULIALIMYRSKY

Koko: px
Aloita esitys sivulta:

Download "IONOSPHERIC PHYSICS, S, KEVÄT 2017 REVONTULIALIMYRSKY"

Transkriptio

1 IONOSPHERIC PHYSICS, S, KEVÄT 2017 REVONTULIALIMYRSKY Joonas Vatjus & Jakke Niskanen Ionospheric Physics, Projektityö Oulun yliopisto Fysiikan laitos

2 SISÄLLYSLUETTELO 1. Johdanto 3 Ionosfääri. 3 Magnetosfääri.. 3 Revontulien esiintyminen Revontulialimyrskyn päävaiheet 4 Kasvuvaihe.. 5 Laajenemisvaihe.. 5 Palautumisvaihe Revontulialimyrskyn vaiheiden havaitseminen 7 4. Lähteet 8

3 1. Johdanto Tässä osiossa johdatellaan revontulen esiintymisalueeseen ja sen ympärillä olevia osia. Jotta revontulien syntymekanismi ja revontulihiukkasten liikkeitä voidaan ymmärtää, täytyy tarkastella kokonaiskuvaa. Ionosfääri Maan Ionosfääri on noin kilometrin korkeudella maan pinnasta. Ionosfäärissä molekyylit ovat ionisoituneet Auringon säteilyn vaikutuksesta. Ionosfääri jaetaan korkeuksittain eri kerroksiin (D, E, F1 ja F2 kerrokset) sen koostumuksen mukaisesti (ks. kuva1). [Aikio & Nygrén, 2013] Kuva 1: Ionosfäärin eri kerrokset, kerroksien dominoivat ionit sekä elektronitiheys (päivä ja yö) korkeuden funktiona. Magnetosfääri Magnetosfääri on se maapalloa ympäröivä alue, jossa Maan magneettikenttä vaikuttaa hallitsevasti varattujen hiukkasten liikkeisiinä aurinkotuuleen nähden. Magnetosfäärin alueessa, joka on lähellä maata (etäisyys n. 3-4 RE) magneettikenttää voidaan approksimoida magneettisella dipolilla. Kauempana approksimaatio ei enään toimi,

4 sillä aurinkotuulen vaikutuksesta päiväpuolella Maata magnetosfääri puristuu kasaan (noin 10 RE) ja vastaavasti yöpuolella magnetosfääri venyy pitkäksi pyrstöksi (jopa 200 RE) (Ks. kuva2). [Kaaretkoski, 2011] Magnetosfäärin sisäosat jakautuvat eri energeettisiin plasma-alueisiin (plasma-alueet koostuvat pääosin protoneista ja elektroneista). Pyrstölohkojen ( Magnetic tail ) välissä on nk. plasmalevy ( plasma sheet ), jonka plasma on tiheämpää. Plasmalevyn ympärillä on plasmalevyn reunakerros ( plasma sheet boundary layer ), jossa plasma on hieman jähtyneempää ja harvempaa. Plasmalevyn plasma kytkeytyy magneettikenttäviivoja pitkin ionosfäärin revontuliovaalin päiväntasaajanpuoleiseen osaan. Sen sijaan plasmalevyn reunakerroksen plasma kytkeytyy revontuliovaalin navanpuoleisiin osiin. Näistä plasma-alueista tulevat ne hiukkaset, jotka aiheuttavat revontulia. [Kaaretkoski, 2011] Kuva 2: Magnetosfääri, [Aikio, 2015]. Revontulien esiintyminen Revontulet näkyvät pääasissa revontuliovaalien alueella, ionosfäärissä. Revontuliovaalit sijaitsevat pohjois- ja etelänavan ympärillä nimensä mukaisesti ovaalina tavallisesti n.100km päässä navoilta. Vaikka maapallo pyörii, pysyvät ovaalit paikallaan. Näin maapallo tavallaan pyörii kahden revontuliovaalin välissä. [Kaila, 1998]

5 2. Revontulialimyrskyn päävaiheet Kun auringon aktiivisuus on normaalissa tilassa, eli aurinkotuuli puhaltaa hiukkasia tasaisesti avaruuteen, myös maapallon magneettikentässä vallitsee rauhallinen aika. Tällöin voidaan havaita rauhallisia ja himmeitä revontulia, kun muutamia matalaenergisiä elektroneja pääsee tunkeutumaan ilmakehään. Myös protoneja pääsee ilmakehään suunnilleen yhtä paljon kuin elektroneja, mutta protonit leviävät paljon laajemmalle alueelle, eikä niiden aiheuttamia revontulia juurikaan voi nähdä paljain silmin. [Kaila, 1998] Auringon koronassa tapahtuu ajoittain hetkellisiä massapurkauksia, joista sinkoutuu avaruuteen aurinkotuulen mukana paljon hiukkasia. Kun massapurkauksesta peräisin oleva hiukkaspilvi osuu Maahan, alkaa Maan magneettikentässä magneettinen myrsky. Magneettisen myrskyn voimakkuus riippuu hikkaspilven voimakkuudesta ja suunnasta. Hiukkaspilven osuessa Maahan aurinkotuulen hiukkastiheys on tällöin moninkertainen, joten hiukkasia pääsee paljon magnetosfääriin. Tästä seuraa magnetosfääriin alimyrskyjä, joille on määritelty kolme vaihetta: kasvuvaihe, laajenemisvaihe ja palautumisvaihe. [Kaila, 1998] Alimyrskyjä voi olla magneettisen myrskyn aikana useampia, jonka vuoksi se on nimitettykin alimyrskyksi. Tosin alimyrsky voi tapahtua ilman suurempaa magneettista myrskyä. [Kaila, 1998] Kasvuvaihe Alimyrskyt huomataan, kun maanpinnan suuntainen magneettikenttä heikkenee nopeasti. Tämä johtuu rengasvirran nopeasta voimistumisesta, kun magneettikehän aktiivisuus pumppaa siihen lisää energiaa. Kasvuvaihe alkaa, kun IMF eli planeettojen välinen magneettikenttä kääntyy eteläänpäin. Tällöin IMF ja Maan magneettikenttä kytkeytyvät yhteen ja aurinkotuulen hiukkasia pääsee magnetosfääriin sisälle. Hiukkaset tulevat päiväpuolelta, eli auringon puolelta ja päätyvät sieltä iltapuolelle magnetosfäärin pyrstöön. Ionosfäärissä tämä näkyy revontuliovaalin kasvamisena, eli revontulet siirtyvät päiväntasaajalle päin. Kun hiukkasten virtaus jatkuu magnetosfäärin pyrstöön, sen läpimitta alkaa kasvaa ja plasmalevy alkaa ohentua ja se liikkuu hieman maata kohti. Kasvuvaiheen kesto on noin min. [Kaila, 1998] Laajenemisvaihe Jossain vaiheessa magnetosfääri ei enää pysty vastaanottamaan energiaa IMF:stä. Kun IMF etelään osoittava komponentti kääntyy takaisin pohjoiseen, IMF ja virittynyt magnetosfääri eivät enää ole kytköksissä, alkaa laajenemisvaihe. Samalla kun IMF kääntyy pohjoiseen rengasvirran kasvaminen loppuu ja siitä aiheutuvat häirinnät vähenevät. Nyt magnetosfääri on viritystilassa ja voi purkautua pienestäkin häiriöstä. Plasmalevyn oheneminen jatkuu edelleen (ks. kuva3; 3.kohta) ja jossakin vaiheessa se katkeaa yhdestä tai useammasta kohdasta.

6 Kuvan 3 viimeisessä vaiheessa näkyy plasmalevyn katkeaminen niin, että katkenneen kohdan molemmille puolille muodostuu pisaramainen muoto. Avaruuden puoleinen pisara alkaa kiihtyä maasta poispäin aurinkotuulen mukaan, kun taas maanpuoleinen pisara lähtee kiihtyvällä liikkeellä maata kohti. Magnetosfääri ohjaa hiukkasten liikettä niin, että lähempänä maata hiukkaset liikkuvat kenttäviivoja pitkin napoja kohti. Kuitenkin vain tietyt hiukkaset, joilla on sopiva nousukulma suhteessa maahan, pääsevät tunkeutumaan ionosfääriin aiheuttaen magneettikentän suuntaisen sähkövirran. Myös ionosfäärista alkaa virrata positiivisia ioneja magnetosfääriin, jolloin magnetosfäärin pyrstön poikki kulkeva sähkövirta pääsee sulkeutumaan ionosfäärin kautta. Kuvassa 4 näkyy, kuinka plasmalevyn katkeamisen myötä sähkövirta kytkeytyy ionosfäärin kautta. Sähkövirta on kiilan muotoinen, jonka vuoksi virtasysteemi nimeltään substorm current wedge. Tämä tapahtuma, kun hiukkaset törmäilevät ilmakehän hiukkasiin, aiheuttaa kauniita revontulia, kun ilmakehän hiukkasten viritystilat purkautuvat. Ne hiukkaset, jotka eivät pääse ionosfääriin, jäävät kiertämään maata magneettikentän vaikutuksesta, josta ne lopulta palautuvat takaisin pyrstöön. Laajenemisvaiheen arvioitu kesto on 10-30min. [Kaila, 1998 &]; [McPherron, 1995] Kuva 3: Laajenemisvaihessa plasmalevyn katkeaminen on verrattavissa hanasta tippuvaan vesipisaraan, [Kaila, 1998].

7 Kuva 4: Plasmalevyn katkeamisen vuoksi sähkövirta kytkeytyy ionosfäärin kautta aiheuttaen current wedgen eli virtakiilan, [McPherron, 1995]. Palautumisvaihe Palautumisvaihe huomataan, kun aktiiviset ja sykkivät revontulikaaret alkavat hiipua ja revontulien määrä alkaa vähentyä. Magnetosfääristä ei siis enää virtaa niin paljoa hiukkasia ionosfääriin, joten magnetosfääri ei enää ole niin virittynyt, mutta on kuitenkin edelleen epävakaassa tilassa. Plasmalevy paksuuntuu vähitellen magnetosfäärin normalisoituessa. Yhteenvetona voidaan ajatella, että kasvuvaiheessa aurinkotuulen energia varastoituu magnetosfääriin, laajenesvaiheessa magnetosfäärin energia purkautuu ja palautumisvaiheessa magnetosfääri palaa perustilaansa. [McPherron, 1995]

8 3. Revontulialimyrskyn vaiheiden havaitseminen Revontulialimyrskyt tapahtuvat revontuliovaalissa, joka koostuu kahdesta ovaalin muotoisesta kaistaleesta magneettisilla etelä- ja pohjoisnavoilla. Revontulialimyrsky alkuvaihe on tavallisesti rauhallinen. Alkutila koostuu useista revontulikaarista, jotka ovat ikään kuin ajelehtimassa kohti päiväntasaajaa (Kuva 5a), jonka seurauksena päiväntasaajaa lähinää olevan revontulikaaren osio aktivoituu, joka voidaan havaita ko. osion kirkastumisesna (Kuva 5b). Aktiivinen revontulialue laajenee nopeasti länteen ja kohti napa-alueita (Kuva 5c), jolloin alkaa muodostua kirkas luoteeseen ja napa-alueelle suuntautunut pullistuma bulge. Pullistuman sisällä revontulet ovat todella dynaamisia; revontulikaaret ilmaantuvat ja katoavat, revontulet elehtivät ja sykkivät. [McPherron, 1995] Ajanjakso, jonka aikana aktiivinen revontulialue laajenee, kutsutaan laajenemisvaiheeksi expansion phase of the substorm. Laajenemisen loputtua revontulipullistuma kehittyy pienemmäksi sykkyräksi a sharp kink aktiivisen revontulialueen länsipuolisella rajalla, missä se liittyy kirkkaaseen revontulikaareen ulottuen kauemaksi länteen. (Kuva 5d) Tämä sykkyrä näyttää usein liikkuvan länteen ja tulevan ajan kuluessa selkeämmin erottuvaksi. Noin minuutin jälkeen revontulialimyrskyn alkamisesta revontulien aktiivisuus lakkaa laajenemasta ja laajenemisvaihe on päättynyt. Laajenemisvaiheen päätyttyä revontulien aktiivisuus alkaa heiketä revontuliovaalin päiväntasaajan puoleisilla revontulikaarilla ja tilanne muistuttaa osaltaan aktiivisuudeltaan rauhallista revontulialimyrskyn alkuvaihetta (Kuva 5e ja 5f). [McPherron, 1995] Kuva 5: Revontulialimyrskyn kehittyminen kuudessa eri vaiheessa, [McPherron, 1995].

9 4. Lähteet Aikio, A., & T. Nygren, Ionospheric physics course material, course: S Ionospheric Physics, Aikio, A., Auroral physics course material, course: S Auroral Physics, Book by Kivelson, M. & Russel, T., Article by McPherron, Magnetospheric dynamics, Kaila, K., Revontulet, Helsinki: Tähtitieteellinen yhdistys Ursa, Kaaretkoski H., Nopean aurinkotuulen vaikutukset ionosfäärissä, Oulun yliopisto, 2011

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Revontulet matkailumaisemassa

Revontulet matkailumaisemassa Revontulet matkailumaisemassa Kuva: Vladimir Scheglov Noora Partamies noora.partamies@fmi.fi ILMATIETEEN LAITOS Päivän menu Miten revontulet syntyvät: tapahtumaketju Auringosta Maan ilmakehään Revontulet

Lisätiedot

Avaruussää. Tekijä: Kai Kaltiola

Avaruussää. Tekijä: Kai Kaltiola Avaruussää Kohderyhmä: yläasteen suorittaneet / 9-luokkalaiset Työskentelymenetelmä: ryhmätyöt Kuvaa yleistajuisesti avaruussään syntymisen ja siihen liittyvät ilmiöt Tekijä: Kai Kaltiola kai.kaltiola@gmail.com

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Nopean aurinkotuulen vaikutukset ionosfäärissä. Hannu Kaaretkoski

Nopean aurinkotuulen vaikutukset ionosfäärissä. Hannu Kaaretkoski Nopean aurinkotuulen vaikutukset ionosfäärissä Hannu Kaaretkoski 3. joulukuuta 2011 Oulun yliopisto Luonnontieteellinen tiedekunta Laitos:Fysiikan laitos Tekijä (Sukunimi ja etunimet) Kaaretkoski Hannu

Lisätiedot

Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee

Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee Reko Hynönen Teoreettisen fysiikan syventävien opintojen seminaari / Kevät 2012 26.4.2012 1 Ekskursio avaruussäähän 1. Auringonpilkkusykli 2.

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon

Lisätiedot

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2 Luku 3 Ilmakehä suojaa ja suodattaa Sisällys Ilmakehä eli atmosfääri Ilmakehän kerrokset Ilmakehä kaasukoostumuksen mukaan Ilmakehä lämpötilan mukaan Säteilytase ja säteilyn absorboituminen Kasvihuoneilmiö

Lisätiedot

Ulottuva Aurinko Auringon hallitsema avaruus

Ulottuva Aurinko Auringon hallitsema avaruus Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Magneettisten myrskyjen ajajista

Magneettisten myrskyjen ajajista Pro gradu -tutkielma Teoreettinen fysiikka Magneettisten myrskyjen ajajista Mikko Marsch 2012 Ohjaaja: Tarkastajat: Emilia Kilpua Emilia Kilpua Hannu Koskinen HELSINGIN YLIOPISTO FYSIIKAN LAITOS PL 64

Lisätiedot

Tiera Laitinen Aurinko Maa-kytkennän tutkijaseminaarissa Helsingin yliopistossa

Tiera Laitinen Aurinko Maa-kytkennän tutkijaseminaarissa Helsingin yliopistossa Rekonnektio magnetosfäärissä Tiera Laitinen Aurinko Maa-kytkennän tutkijaseminaarissa Helsingin yliopistossa 3.2.2006 1. Miten ideaali-mhd rikotaan ja säilytetään yhtä aikaa Magneettisen rekonnektion käsite

Lisätiedot

Magnetosfäärin pyrstön rekonnektioalue MHD-simulaatiossa

Magnetosfäärin pyrstön rekonnektioalue MHD-simulaatiossa Magnetosfäärin pyrstön rekonnektioalue MHD-simulaatiossa T. V. Laitinen 1, T. I. Pulkkinen 2, M. Palmroth 2, P. Janhunen 2 ja H. E. J. Koskinen 1,2 1 Helsingin yliopiston fysikaalisten tieteiden laitos,

Lisätiedot

Kaamoksen valot Juha Ojanperä Kuusamo, Kuusamo-Opisto

Kaamoksen valot Juha Ojanperä Kuusamo, Kuusamo-Opisto Kaamoksen valot Juha Ojanperä Kuusamo, Kuusamo-Opisto 24.2.2016 Illan ohjelma Johdanto Revontulet Revontulten synty mitä revontulet ovat? Revontulten värit Erilaiset revontulimuodot Revontulten esiintyminen

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET

MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET Heikki Nevanlinna, Geofysiikan dos. (Ilmatieteen laitos, eläk.) URSA 9.4.2013 ESITELMÄKALVOT: Tämän esitelmän PowerPoint-kalvot on saatavilla ja

Lisätiedot

Avaruussääriskit Brent Walker yhteenveto. Prof. Eija Tanskanen Ilmatieteen laitos, Avaruussääryhmä

Avaruussääriskit Brent Walker yhteenveto. Prof. Eija Tanskanen Ilmatieteen laitos, Avaruussääryhmä Avaruussääriskit Brent Walker yhteenveto Prof. Eija Tanskanen Ilmatieteen laitos, Avaruussääryhmä Sisältö Mitä on avaruussää? Entä avaruusilmasto? Muuttuuko avaruussää ja -ilmasto? Mitä riskejä siihen

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Aurinkotuulen dynaamisen paineen muutosten vaikutus ionosfäärin dynamiikkaan

Aurinkotuulen dynaamisen paineen muutosten vaikutus ionosfäärin dynamiikkaan Pro gradu -tutkielma Teoreettinen fysiikka Aurinkotuulen dynaamisen paineen muutosten vaikutus ionosfäärin dynamiikkaan Jussi Polvi 2007 Ohjaaja: FT Minna Palmroth Tarkastajat: Prof. Hannu Koskinen ja

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Lataa Johdatus plasmafysiikkaan ja sen avaruussovellutuksiin - Hannu Koskinen. Lataa

Lataa Johdatus plasmafysiikkaan ja sen avaruussovellutuksiin - Hannu Koskinen. Lataa Lataa Johdatus plasmafysiikkaan ja sen avaruussovellutuksiin - Hannu Koskinen Lataa Kirjailija: Hannu Koskinen ISBN: 9789517451918 Sivumäärä: 256 Formaatti: PDF Tiedoston koko: 26.94 Mb Tämä teos on vuonna

Lisätiedot

Kyösti Ryynänen Luento

Kyösti Ryynänen Luento 1. Aurinkokunta 2. Aurinko Kyösti Ryynänen Luento 15.2.2012 3. Maa-planeetan riippuvuus Auringosta 4. Auringon säteilytehon ja aktiivisuuden muutokset 5. Auringon tuleva kehitys 1 Kaasupalloja Tähdet pyrkivät

Lisätiedot

Sähkö ja magnetismi 2

Sähkö ja magnetismi 2 Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Sähkö ja magnetismi 2 Sähkövirran magneettinen vaikutus, sähkövirran suunta Tanskalainen H.C. Ørsted teki v. 1820 fysiikan luennolla seuraavanlaisen

Lisätiedot

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi 8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Jupiter-järjestelmä ja Galileo-luotain II

Jupiter-järjestelmä ja Galileo-luotain II Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jani Vitikka p87434 Hannu Tiitinen p87432 Dynaaminen kenttäteoria SATE2010 KESTOMAGNEETTI Sivumäärä: 10 Jätetty tarkastettavaksi: 16.1.2008 Työn tarkastaja

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen Kannuksen lukio Maastossa ja mediahuoneessa hanke Fysiikan tutkimus Muuttuvan magneettikentän tutkiminen Menetelmäohjeet Muuttuvan magneettikentän tutkiminen Työn tarkoitus Opiskelijoille magneettikenttä

Lisätiedot

(2)* Joskus vihreä revontuli näyttää keltaiselta sekä paljain silmin että kameralla. Kyseessä on kuitenkin sama vihreä.

(2)* Joskus vihreä revontuli näyttää keltaiselta sekä paljain silmin että kameralla. Kyseessä on kuitenkin sama vihreä. Bongaushaaste Tausta: Citizen Science kirjaprojekti, jonka tavoitteena on kirjoittaa "Revontulibongarin opas" - niminen kirja. Kirjaprojekti on saanut Suomen Kulttuurirahaston apurahan. Tässä alla on bongaushaaste

Lisätiedot

Lataa Avaruussää - Heikki Nevanlinna. Lataa

Lataa Avaruussää - Heikki Nevanlinna. Lataa Lataa Avaruussää - Heikki Nevanlinna Lataa Kirjailija: Heikki Nevanlinna ISBN: 9789525329520 Sivumäärä: 133 Formaatti: PDF Tiedoston koko: 39.00 Mb Avaruussää on uusi käsite, joka laajentaa tuttua sään

Lisätiedot

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine Termiikin ennustaminen radioluotauksista Heikki Pohjola ja Kristian Roine Maanpintahavainnot havaintokojusta: lämpötila, kostea lämpötila (kosteus), vrk minimi ja maksimi. Lisäksi tuulen nopeus ja suunta,

Lisätiedot

Globaali virtapiiri. Reko Hynönen

Globaali virtapiiri. Reko Hynönen Globaali virtapiiri Reko Hynönen 23.2.2009 Globaali virtapiiri Globaali virtapiiri Galaktiset kosmiset säteet (GCR, Galactical Cosmic Rays) vuorovaikuttavat ilmakehän hiukkasten kanssa ionisoimalla niitä

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Sisällys. Esipuhe... 7 Johdanto... 8

Sisällys. Esipuhe... 7 Johdanto... 8 Sisällys Esipuhe... 7 Johdanto... 8 1 Aurinko avaruussääilmiöiden käynnistäjä... 11 1.1 Aurinko energialähteenä...11 1.2 Auringonpilkut...15 1.3 Auringonpilkkujen esiintymisten jaksollisuudet... 20 1.4

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.

Lisätiedot

AURINKOENERGIAA AVARUUDESTA

AURINKOENERGIAA AVARUUDESTA RISS 16. 9. 2009 AURINKOENERGIAA AVARUUDESTA Pentti O A Haikonen Adjunct Professor University of Illinois at Springfield Aurinkoenergiasatelliitin tekninen perusta Auringon säteilyn tehotiheys maapallon

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Ilmastonmuutos ja ilmastomallit

Ilmastonmuutos ja ilmastomallit Ilmastonmuutos ja ilmastomallit Jouni Räisänen, Helsingin yliopiston Fysikaalisten tieteiden laitos FORS-iltapäiväseminaari 2.6.2005 Esityksen sisältö Peruskäsitteitä: luonnollinen kasvihuoneilmiö kasvihuoneilmiön

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Koronan massapurkauksen synnyttämät aallot

Koronan massapurkauksen synnyttämät aallot Koronan massapurkauksen synnyttämät aallot Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 29.3.2012 1 / 21 Sisällys Koronan massapurkaus Purkauksen aiheuttamat häiriöt Auringon kaasukehässä

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Susanna Viljanen

Susanna Viljanen Susanna Viljanen 10. 4. 2012 Päivän pasko Hyvä usko Aiheuttaessaan ruskon aurinko nousee ja laskee pilvikerroksen - altostratuksen - läpi, ja pilven mikrokokoiset vesipisarat sirovat valoa. Koska säärintamat

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 4.11.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue huolellisesti artikkeli "Saako salama potkua avaruudesta?". Lukuaikaa on 20

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

MAGNEETTINEN MAAPALLOMME OPETUSMATERIAALI

MAGNEETTINEN MAAPALLOMME OPETUSMATERIAALI MAGNEETTINEN MAAPALLOMME OPETUSMATERIAALI 1 Tämä opetusmateriaalipaketti (opetusmateriaali & teoriapaketti) on tarkoitettu yläkoulun ja lukion opetussisältöihin. Materiaalit sopivat hyödynnettäväksi esimerkiksi

Lisätiedot

Radioaaltojen eteneminen. Marjo Yli-Paavola, OH3HOC

Radioaaltojen eteneminen. Marjo Yli-Paavola, OH3HOC Radioaaltojen eteneminen Marjo Yli-Paavola, OH3HOC 26.10.2010 Radioaaltojen etenemistavat Eteneminen ionosfäärissä Eteneminen troposfäärissä Pinta-aalto Erikoisemmat etenemismuodot Yleisesti eteneminen

Lisätiedot

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa Synkrotronisäteily ja elektronispektroskopia Tutkimus Oulun yliopistossa Ryhmätyö Keskustelkaa n. 4 hengen ryhmissä, mitä on synkrotronisäteily ja miten sitä tuotetaan. Kirjoittakaa ylös ajatuksianne.

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

Koronan massapurkaukset ja niiden synty. Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011

Koronan massapurkaukset ja niiden synty. Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011 Koronan massapurkaukset ja niiden synty Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011 1 Sisältö Auringon magnetismi Korona Koronan massapurkaukset (CME) CME:n synty ja

Lisätiedot

Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä. Poikkeuksena kurssit 10-14, joista tarkemmin alla.

Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä. Poikkeuksena kurssit 10-14, joista tarkemmin alla. Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä Poikkeuksena kurssit 10-14, joista tarkemmin alla Jos et ole varma, voitko valita jonkin fysiikan kurssin, ota yhteyttä lehtori Antti

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä ATE112 taattinen kenttäteoria kevät 217 1 / 5 Tehtävä 1. Alla esitetyn kuvan mukaisesti y-akselin suuntainen sauvajohdin yhdistää -akselin suuntaiset johteet (y = ja y =,5 m). a) Määritä indusoitunut jännite,

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Heijastuminen ionosfääristä

Heijastuminen ionosfääristä Aaltojen eteneminen Etenemistavat Pinta-aalto troposfäärissä Aallon heijastuminen ionosfääristä Lisäksi joitakin erikoisempia heijastumistapoja Eteneminen riippuu väliaineen ominaisuuksista, eri ilmiöt

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Lataa Revontulet - Kari Kaila. Lataa

Lataa Revontulet - Kari Kaila. Lataa Lataa Revontulet - Kari Kaila Lataa Kirjailija: Kari Kaila ISBN: 9789519269900 Sivumäärä: 298 Formaatti: PDF Tiedoston koko: 18.65 Mb Kustantajan kuvausteksti kirjasta puuttuu. Saatat kuitenkin löytää

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Luento Kyösti Ryynänen

Luento Kyösti Ryynänen 1. Aerosolit Luento 21.8.2012 Kyösti Ryynänen 2. Aerosolien lähteet 3. Aerosolit ja kasvihuoneilmiö 4. Pilvien tiivistymisytimet 5. Kosmoklimatologia 1 AEROSOLIT Aerosolit ovat kiinteitä tai nestemäisiä

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

761352A JOHDATUS AVARUUSFYSIIKKAAN

761352A JOHDATUS AVARUUSFYSIIKKAAN Johdatus avaruusfysiikkaan 0 761352A JOHDATUS AVARUUSFYSIIKKAAN Luentomoniste Kalevi Mursula Oulun Yliopisto, Fysikaalisten tieteiden laitos sl. 2002 Perustuu pääosin kirjoihin A. Brekke: Physics of the

Lisätiedot