16. Tähtijoukot Tähtiassosiaatiot. Avoimet tähtijoukot tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)

Koko: px
Aloita esitys sivulta:

Download "16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)"

Transkriptio

1 16. Tähtijoukot Avoimet tähtijoukot tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947: laajalla taivaan alueellla näkyvissä nuorten tähtien ryhmiä: yhteiset liiketilat olleet lähellä toisiaan n v. sitten OB-assosiaatiot T Tauri assosiaatiot Nopeasti hajoavia (itsegravitaatio merkityksetön verrattuna differrentiaalisen rotaation hajottavaan vaikutukseen) sisältävät runsaasti pölyä ja kaasua keskittyneet Linnunradan tasoon + spiraalihaaroihin Tähtitieteen perusteet, Luento 17,

2 16.2 Avoimet tähtijoukot Assosiaatioita stabiilimpia: esim Seulaset n v Erittäin tärkeitä etäisyyden määrityksessä: a) Kinemaattinen parallaksi Joukon tähdillä yhteinen avaruusliike näyttävät perspektiivin takia liikkuvan kohti tiettyä taivaanpallon pistettä (= kasautumispiste K) v r = v cos θ v t = v sin θ jossa θ = tähden kulmaetäisyys pisteestä K Doppler-siirtymä spektrissä v r Ominaisliike µ v t = µ r Etäisyys: r = v t /µ = v sin {z θ} /µ v cos θ tan θ r = v r tan θ µ Joukon etäisyys = eri tähdille saatujen etäisyyksien keskiarvo. Vertaa trigonometrinen parallaksi: r 30 pc esim. Hyadit r = 40 pc Tähtitieteen perusteet, Luento 17,

3 b) Pääsarja-sovitus Tähtijoukon tähdet samanikäisiä, sama kemiallinen koostumus selkeä ja kapea pääsarja HR-diagrammassa (T eff ja L) samoin väri vs. näennäinen magnitudi diagrammassa Voidaan käyttää hyväksi iän-määrityksessä: mitä nuorempi joukko, sitä massiivisemmat tähdet ovat yhä pääsarjassa Etäisyyden määritys: Asetetaan tutkittavan joukon (B V ), m V -diagramma standardijoukon (Hyadit) (B V ), M V diagrammin päälle vertikaalisesta siirroksesta saadaan joukon etäisyysmoduli: m V M v = 5 log 01 (r/10pc) etäisyys (värit ja magnitudit korjattu ekstinktiosta monivärifotometriaa käyttäen) Menetelmällä saadaan tarkat etäisyydet useiden kpc päähän. Tähtitieteen perusteet, Luento 17,

4 Joukon HR-diagramman kehitys iän mukana Tähtitieteen perusteet, Luento 17,

5 16.3 Pallomaiset tähtijoukot tähteä, pallosymmetrinen jakauma tähtitiheys 10-kertainen verrattuna avoimiin joukkoihin Linnunradan vanhimpia tähtipopulaatioita, jopa v. yht. n. 200 Tyypillinen väri-magnitudi diagramma: Pääsarjassa vain pienimassaisia punaisia tähtiä (alhainen metallipitoisuus alempana kuin kiekkotähtien pääsarja) Jättiläishaara + horisontaalihaara: sisältää RR Lyrae muuttujia (L 100L ) etäisyysmittaus mahdollinen suurin osa tähdistä pc kokoisella alueella kertainen vaippa ulkosäde määräytyy Linnunradan gravitaatiokentän vuorovesivoimista Suuri tähtitiheys lähekkäisiä kaksoistähtiä (millisekunti-poulsareita), tähtien törmäyksiä ( blue stranglers ) Kaksi populaatiota: kiekkojoukot (Z 0.3Z ): keskittynyt Linnunradan tasoon, osallistuu pyörimiseen halojoukot (Z 0.01z ): pallomainen jakauma n. 35 kpc alueessa, ratatasojen suunnat satunnaiset (ei pyörimistä) Tarkka syntymekanismi huonosti tunnettu Tähtitieteen perusteet, Luento 17,

6 17 Linnunrata Linnunrata = 1) taivaalla havaittava sumumainen vyö 2) oman galaksimme nimi ( Galaxy vs galaxy ) Linnunradan vyö: Linnunrata on litistynyt kiekkomainen tähtisysteemi, Aurinko likimain keskitasossa Historiaa: Galilei: Linnunrata-vyö koostuu tähdistä 1600:lla Herschel: tähtilaskennat yritys muodon määrittämiseen 1700:lla Kapteyn: arvio Linnunradan koolle n Shapley 1920: pallomaisten joukkojen jakauma Auringon sijainti Linnunradassa Tähtitieteen perusteet, Luento 17,

7 Tähtitieteen perusteet, Luento 17,

8 Tähtitieteen perusteet, Luento 17,

9 17.1 Linnunradan tutkimuksen menetelmiä Nähdään ainoastaan silmänräpäyskuva : T hav 100 yr vs. T periodi yr Vertaa Aurinkokunta: T hav 500 yr vs. T periodi 1 yr radat Tähtilaskennat Kiinnostaa tähtitiheys D(r), mitataan N(m)? Mahdollista johtaa N(m) D(r), mikäli tähtien kirkkausfunktio tunnetaan (eli suhteellinen osuus abs. kirkkauden funktiona) (Kapteyn, Seeliger...) Kirkkaiden kohteiden jakauma pallomaiset joukot avoimet joukot Kefeidit, RR-Lyrae tähdet O,B tähdet Tähtien liiketilat: vain tämänhetkinen nopeus (ei ratoja kuten Aurinkokunnassa) v r Doppler-siirtymä µ ominaisliike Interstellarisen kaasun jakauma ja liiketilat: neutraali vety HI, 21 cm viiva vertaaminen muihin galakseihin: runsaasti havaintoja eri galaksityypeistä, eri suunnista, eri ikäisiä (punasiirtymän kasvaessa) Menetelmiä: Stellaari-statistiikka: N(m) D(r) Stellaari-dynamikka: gravitoivien systeemien ominaisuudet, tietokonesimulaatiot Kaasudynamiikka: interstellaarinen materia Tähtien kehitysteoria Usealla aallonpituuskaistalla tehtävät havainnot Tähtitieteen perusteet, Luento 17,

10 Etäisyydenmittaus-menetelmiä ( kosminen tikapuu ) a) Trigonometriset parallaksit Maan pinnalta: α > 0.03 Hipparcos 300 pc, Gaia 3kpc r < 30pc b) Statistiset parallaksit ( sekulaariset ) Edellä Hyadien etäisyyden määritys-menetelmä Sama voidaan tehdä myös Auringon liikkeen avulla: valitaan kohteita joilla tuntematon, mutta tn. sama etäisyys Esim. sama näennäinen magnitudi + spektriluokka r selville ominaisliikkeiden keskiarvosta c) Pääsarja-sovitus joukoille d) Fotometriset parallaksit Abs. magnitudi spektrin perusteella Kefeidit: Abs. magnitudi periodin perusteella Abs. + naennainen magnitudi etäisyys Tähtitieteen perusteet, Luento 17,

11 kosmiset tikapuut Statistiset parallaksit tärkeä askelma! Linnunrata 30 kpc Andromeda 700 kpc Virgon joukko 16 Mpc Tähtitieteen perusteet, Luento 17,

12 16.2 Linnunradan kohteiden havaitut jakaumat Galaktiset koordinaatit: Mikäli Aurinko olisi ympyräradalla, liikkeen suunta olisi l = 90, b = 0 Tähtitieteen perusteet, Luento 17,

13 Mitä voidaan havaita? Auringon lähiympäristö: eri spektriluokan tähtien vertikaalinen jakauma: Mitä vanhempi populaatio sitä suurempi vertikaalinen paksuus Nuoret kohteet: keskittyneet voimakkaasti Linnunradan tasoon Muodostavat spiraalihaaroja (nähdään vain lähimmät segmentit) Pyörimissuunta: l = 90 haarat laahaavia (OK) Tähtitieteen perusteet, Luento 17,

14

15 PAKSU KIEKKO OHUT KIEKKO Tähtitieteen perusteet, Luento 17,

16

17 c) LSR:n suhteen laskettujen satunnaisnopeuksien jakauma (satunnaisnopeudet= pekuliaarinopeudet) Nopeat tähdet ( v > 100km/s) suhteessa LSR) näyttävät liikkuvan vain toiseen suuntaan!? Syy nopeuksien epäsymmetriaan (Lindblad 1926) Pakonopeus Linnunradasta Auringon etäisyydellä n. 310 km/s Tähtitieteen perusteet, Luento 17,

18 16.3 Linnunradan pyöriminen Linnunradan litistyneisyys pyörivä kiekko Mikä on pyörimisnopuden riippuvuus etäisyydestä Linnunradan keskuksesta? Jos massa on jakaantunut pallosymmetrisesti: voima suunnattu kohti keskipistettä, voiman suuruus riippuu ainoastaan säteen R sisäpuolisesta massasta M(R) F R = GM(R)/R 2 Ympyrärata: V c 2 /R = FR V c = (Planeettaliike M(R) = M ja Vc a 1/2 ) r GM(R) R ja M(R) = V c 2 R G Linnunradan massa aksiaalisymmetrisesti jakaantunut (kun unohdetaan spiraalihaarat ja pilvirakenne yms = hyvä approksimaatio) Nyt radiaalinen voima F R riippuu massajakauman muodosta (erityisesti sekä sisä- että ulkopuolisesta massasta: silti M(R) = V c 2 R G Merkitään V c (R) = Ω(R)R jossa Ω(R) kulmanopueus etäisyydellä R Jos tunnetaan tiheysjakauma ρ(r, Z)r rotaatiokäyrä V c (R) = ympyräratanopeus etäisyydellä R (ja vastaava kulmanopeuskäyrä ) on yleensä hyvä suuruusluokka-arvio Tähtitieteen perusteet, Luento 17,

19 Oortin kaavat Mittamalla tähtien nopeuksia on mahdollista määrittää Auringon lähiympäristössä kulmanopus Ω ja kulmanopeusgradientti dω/dr Yhdistetään v LSR arvoon (=V c ) R Saadaan myös V c (R) ja dv c /dr Differentiaalinen rotaatio: Ω(R) ei vakio etäisyyden suhteen Oortin kaavat (1927): v r = Ar sin 2l v t = Ar cos 2l + Br r = tähden etäisyys Auringosta Oortin vakiot: A = 15 km/s kpc B = 10 km/s kpc Tähtitieteen perusteet, Luento 17,

20 v r = Ar sin 2l v t = Ar cos 2l + Br µ = A cos 2l + B Johdettu approksimoimalla Ω(R) = Ω(R ) + dω/dr R=R (R R ) A = 1 2 B = 1 2 Ω d(ωr) «dr Ω + d(ωr) dr R «R Saadaan A B = Ω(R ) = V /R = 25 km/s kpc = /v Auringon kiertoliikkeen periodi 2π/Ω = v V = LSR:n nopeus = 220 km/sec Auringon etäisyys R = Ω /V = 8.8 kpc Tähtitieteen perusteet, Luento 17,

21 Linnunradan rotaatiokäyrä 21 cm viivan mittauksista Atomäärisen vedyn (HI) 21 cm viiva: ei pölyn absorbtiota nähdään Linnunradan läpi Viivaprofiili pilven radiaalinopeus Pilven etäisyys? - Saadaan mikäli olemassa malli Linnunradan rotaatiokäyrälle - Malli voidaan muodostaa (osittain) samoista 21 cm mittauksista! MALLIN MÄÄRITTÄMINEN: Oletetaan, että pilvet ympyräradoilla: Kulmanopus kasvaa sisäänpäin Suurin mitattu radiaalinopeus pilvellä 4, etäisyydellä R k = R sin l v r = R k (Ω(R k ) Ω ) saadaan Ω k ja V k = Ω k R k Toistetaan eri l arvoilla: Linnunradan rotaatiokäyrä (vain Auringon sisäpuolisessa alueessa) (Ulkopuolinen alue vaatii eri menetelmät) Tähtitieteen perusteet, Luento 17,

22 Oletetaan nyt Ω(R) tunnettu Voidaan konstruoida nopeuskenttä v r = R (Ω Ω ) sin l Pilven l, v r paikka Linnunradassa Huom: ei yksikäsitteinen Esim. a) Mitataan suunnassa l = 30 olevalle pilvelle v r =60 km/s Nopeuskenttäkuvasta: r=4.5 tai 12.5 kpc Oortin kaava vr = Ar sin 2l r = 60/(15 sin 60 ) 4.6 kpc b) Entä jos l = 60, v r =- 80 km/s Nopeuskenttäkuvasta: r =16 kpc Oortin kaava r = 80/(15 sin 120 ) 6 kpc Ei sovellu! Tähtitieteen perusteet, Luento 17,

23

24 Linnunradan rotaatiokäyrä Esim.: Arvioi Auringon sisäpuolinen massa, kun approksimoidaan Linnunradan massaa pallosymmetrisellä jakaumalla: M(R) = V c 2 R G Sijoitetaan R = 8.5 kpc = m Vc= 220 km/s = m/s G= m 3 /(Kg s 2 ) M(R ) = ( ) kg = kg = M oikeaa suuruusluokkaa! Kokonaismassa? Vanha rotaatiokäyrä R=20 Kpc V=170 km/s M(20) M Uusi rotaatiokäyrä R=20 Kpc V=300 km/s M(20) M Ulko-osien rotaatiokäyrän tunteminen erittäin tärkeää kokonaismassan arvioinnissa! Nouseva rotaatiokäyrä Linnunradassa pimeää ainetta Kokonaismassa-arvio M (n. 10 kertainen vrt v. 1975) Tähtitieteen perusteet, Luento 17,

25 17.4 Linnunradan rakenne Pimeää ainetta Vanhojen tähtien pallomainen halo Nuorten & keski-ikäisten tähtien + tähtienvälisen aineen kiekko Paksu + ohut kiekko (syntyneet eri aikaan?) Kierteisrakenne Keskuspullistuma + sauva.. Spiraalirakenne Miten spiraalirakenne syntyy, säilyy? Umpeenkiertymisongelma: differentiaalinen rotaatio jos koostuu samoista tähdistä niin haarat kiertyvät nopeasti umpeen Mahdollisia ratkaisuja: statistiset tiheysvaihtelut tähtienmuodostusaalto: venyvät spiraalinpätkiksi ja korvautuvat uusilla massiivisia tähtiä SN-räjähdys ympäröivän kaasun kokoonpuristuminen massivisia tähtiä ok epäsäännölliselle spiraalirakenteelle? Mutta miten tehdä vahvoja 2-haaraisia spiraaleja? Spiraalit ovat tiheysaaltoja (Lin + Shu 1964, Toomre) Galaksin gravitaatiopotentiaalissa vakiokulmanopeudella pyörivä spiraalikomponentti (aksiaalisymmetrisen lisäksi) spiraalihaara = pyörivä tihentymä, jonka läpi yksittäiset tähdet ja kaasupilvet virtaavat Mahdollista konstruoida malleja, joissa spiraalitihentymän garvitaatiokenttä luo sopivan spiraalipotentiaalin ( self consistent ) Läheisten galaksien aiheuttama vuorovesihäiriö: 2-haarainen spiraali luonnollinen vaste ulkoiseen häiriöön Galaksin sauvan aiheuttamat häiriöt (sauva itsessään = tiheysaalto) Tähtitieteen perusteet, Luento 17,

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 6: Linnunradan yleisrakenne II, halo, pallomaiset tähtijoukot ja galaksin keskusta 17/10/2016 Peter Johansson/ Linnunradan rakenne Luento

Lisätiedot

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 4: Stellaaristatistiikka, 03/10/2016 Peter Johansson/ Linnunradan rakenne Luento 4 03/10/16 1 Tällä luennolla käsitellään 1. Tähtien jakauma

Lisätiedot

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 2: Tähtien etäisyyksien ja nopeuksien määrääminen, 19/09/2016 Peter Johansson/ Linnunradan rakenne Luento 2 19/09/16 1 Tällä luennolla käsitellään

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum

Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum Galaksit ja kosmologia 53926, 5 op, syksy 2015 D114 Physicum Luento 10: Paikallinen galaksiryhmä, 10/11/2015 Peter Johansson/ Galaksit ja Kosmologia Luento 10 www.helsinki.fi/yliopisto 10/11/15 1 Tällä

Lisätiedot

11. Astrometria, ultravioletti, lähiinfrapuna

11. Astrometria, ultravioletti, lähiinfrapuna 11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan

Lisätiedot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit

Lisätiedot

15. Tähtienvälinen aine

15. Tähtienvälinen aine 15. Tähtienvälinen aine Interstellaarinen materia: galaksien sisällä Intergalaktinen materia: galaksien välillä Yleisiä ominaisuuksia: 1) Interstellaarisen aineen määrä: tähtienvälinen kaasu n. 10% Linnunradan

Lisätiedot

Tähtitaivaan alkeet Juha Ojanperä Harjavalta

Tähtitaivaan alkeet Juha Ojanperä Harjavalta Tähtitaivaan alkeet Juha Ojanperä Harjavalta 14.1.-10.3.2016 Kurssin sisältö 1. Kerta Taivaanpallo ja tähtitaivaan liike opitaan lukemaan ja ymmärtämään tähtikarttoja 2. kerta Tärkeimmät tähdet ja tähdistöt

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 7, Astrometria, ultravioletti ja lähi-infrapuna Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 7. Astrometria, ultravioletti, lähi-infrapuna 1. 2. 3. 4.

Lisätiedot

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero Messier 51 Whirpool- eli pyörregalaksiksi kutsuttu spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero 51. Pyörregalaksi

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

7.4 Fotometria CCD kameralla

7.4 Fotometria CCD kameralla 7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Supernova. Joona ja Camilla

Supernova. Joona ja Camilla Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

kertausta Esimerkki I

kertausta Esimerkki I tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Mustien aukkojen astrofysiikka

Mustien aukkojen astrofysiikka Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Edellä pallokolmioiden yleiset ratkaisukaavat: sin B sin a = sin A sin b cos B sin a = cos A sin b cos c + cos b sin c cos a = cos A sin b sin

Lisätiedot

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ 56 VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ Hyvällä havaitsijalla keskimääräinen virhe tähdenlennon kirkkauden arvioimisessa on noin 0.4 magnitudia silloin, kun meteori näkyy havaitsijan näkökentän keskellä.

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Laajeneva maailmankaikkeus

Laajeneva maailmankaikkeus Laajeneva maailmankaikkeus Clear@coord, metric, inversemetric, affine, Riemann, Ricci, Rscalar, Einstein, Tmatter, Tmattermix, DcovTmatter, r, q, f, t,

Lisätiedot

Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 B119 Exactum

Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 B119 Exactum Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 B119 Exactum Luento 7: Ellipsigalaksit, 16/10/2017 Peter Johansson/ Galaksit ja Kosmologia Luento 7 www.helsinki.fi/yliopisto 25/10/17 1 Tällä luennolla

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä

Lisätiedot

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50"

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50 7.16 Jupiter Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50" Pilvimuodostelmat: vaaleat vyöhykkeet (zone) kaasun virtaus ulospäin tummat

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

Pimeän energian metsästys satelliittihavainnoin

Pimeän energian metsästys satelliittihavainnoin Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Etäisyyden yksiköt tähtitieteessä:

Etäisyyden yksiköt tähtitieteessä: Tähtitiedettä Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on sama kuin

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma

SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

15. Kompaktit tähdet Ei fuusiota kaasun paine ei pysty kumoamaan painovoimaa

15. Kompaktit tähdet Ei fuusiota kaasun paine ei pysty kumoamaan painovoimaa 15. Kompaktit tähdet Ei fuusiota kaasun paine ei pysty kumoamaan painovoimaa valkeat kääpiöt - degeneroituneen elektronikaasun paine neutronitähdet - degeneroituneen neutronikaasun paine mustat aukot -

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

4 Fotometriset käsitteet ja magnitudit

4 Fotometriset käsitteet ja magnitudit 4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan

Lisätiedot

2. MITÄ FOTOMETRIA ON?

2. MITÄ FOTOMETRIA ON? Fotometria Tekijät: Hänninen Essi, Loponen Lasse, Rasinmäki Tommi, Silvonen Timka ja Suuronen Anne Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine: Fysiikka

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

1. GRAVITAATIOVAKIO G JA ABERRAATIO

1. GRAVITAATIOVAKIO G JA ABERRAATIO 1. GRAVITAATIOVAKIO G JA ABERRAATIO Massa imee gravitaatiokenttää ja ϕ-kenttää itseensä, joita tässä yhteydessä kutsutaan yhteisesti gravitaatiokentäksi. Pienissä kappaleissa protonit suorittavat alkeisryhmäsieppauksen

Lisätiedot

Tähtitieteelliset koordinaattijärjestelemät

Tähtitieteelliset koordinaattijärjestelemät Tähtitieteelliset Huom! Tämä materiaali sisältää symbolifontteja, eli mm. kreikkalaisia kirjaimia. Jos selaimesi ei näytä niitä oikein, ole tarkkana! (Tällä sivulla esiintyy esim. sekä "a" että "alpha"-kirjaimia,

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

TÄHTITIETEEN PERUSTEET (8OP)

TÄHTITIETEEN PERUSTEET (8OP) TÄHTITIETEEN PERUSTEET (8OP) HEIKKI SALO, KEVÄT 2013 (heikki.salo@oulu.fi) Kurssin sisältö/alustava aikataulu: (Luennot pe 12-14 salissa FY 1103) PE 18.1 1. Historiaa/pallotähtitiedettä I to 24.1 Kollokvio

Lisätiedot

Kosmologia ja alkuaineiden synty. Tapio Hansson

Kosmologia ja alkuaineiden synty. Tapio Hansson Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

8. Fotometria (jatkuu)

8. Fotometria (jatkuu) 8. Fotometria (jatkuu) 1. Magnitudijärjestelmät 2. Fotometria CCD kameralla 3. Instrumentaalimagnitudit 4. Havaintojen redusointi standardijärjestelmään 5. Kalibrointi käytännössä 6. Absoluuttinen kalibrointi

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

Pimeä energia. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla

Pimeä energia. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla Pimeä energia Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla 27.5.2015 Friedmann- Robertson- Walker - malli homogeeninen ja isotrooppinen approksimaa>o maailmankaikkeudelle Havaintoihin sopii

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe )

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe ) 13.3 Supernovat Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L nähdään suurilta etäisyyksiltä tärkeitä etäisyysmittareita Raskaiden alkuaineiden synteesi (useimmat > Fe ) Kirkkausmaksimi:

Lisätiedot

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden

Lisätiedot

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin

Lisätiedot

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Sisältö Miksi juuri planetaariset sumut Planetaarisen sumun syntymä Planetaariset kuvauskohteena Kalusto Suotimet Valotusajat Kartat HASH planetary

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum

Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum Galaksit ja kosmologia FYS2052, 5 op, syksy 2017 D112 Physicum Luento 9: Aktiiviset galaksit, 06/11/2017 Matemaattis-luonnontieteellinen tiedekunta Peter Johansson/ Galaksit ja Kosmologia Luento 9 www.helsinki.fi/yliopisto

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot