16. Tähtijoukot Tähtiassosiaatiot. Avoimet tähtijoukot tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)

Koko: px
Aloita esitys sivulta:

Download "16. Tähtijoukot. 16.1 Tähtiassosiaatiot. Avoimet tähtijoukot 10-100 tähteä esim Seulaset, Hyadit, Praesape (M44-kuva)"

Transkriptio

1 16. Tähtijoukot Avoimet tähtijoukot tähteä esim Seulaset, Hyadit, Praesape (M44-kuva) Pallomaiset tähtijoukot tähteä esim. Herkuleen M13 (kuva) 16.1 Tähtiassosiaatiot Ambartsumjam 1947: laajalla taivaan alueellla näkyvissä nuorten tähtien ryhmiä: yhteiset liiketilat olleet lähellä toisiaan n v. sitten OB-assosiaatiot T Tauri assosiaatiot Nopeasti hajoavia (itsegravitaatio merkityksetön verrattuna differrentiaalisen rotaation hajottavaan vaikutukseen) sisältävät runsaasti pölyä ja kaasua keskittyneet Linnunradan tasoon + spiraalihaaroihin Tähtitieteen perusteet, Luento 17,

2 16.2 Avoimet tähtijoukot Assosiaatioita stabiilimpia: esim Seulaset n v Erittäin tärkeitä etäisyyden määrityksessä: a) Kinemaattinen parallaksi Joukon tähdillä yhteinen avaruusliike näyttävät perspektiivin takia liikkuvan kohti tiettyä taivaanpallon pistettä (= kasautumispiste K) v r = v cos θ v t = v sin θ jossa θ = tähden kulmaetäisyys pisteestä K Doppler-siirtymä spektrissä v r Ominaisliike µ v t = µ r Etäisyys: r = v t /µ = v sin {z θ} /µ v cos θ tan θ r = v r tan θ µ Joukon etäisyys = eri tähdille saatujen etäisyyksien keskiarvo. Vertaa trigonometrinen parallaksi: r 30 pc esim. Hyadit r = 40 pc Tähtitieteen perusteet, Luento 17,

3 b) Pääsarja-sovitus Tähtijoukon tähdet samanikäisiä, sama kemiallinen koostumus selkeä ja kapea pääsarja HR-diagrammassa (T eff ja L) samoin väri vs. näennäinen magnitudi diagrammassa Voidaan käyttää hyväksi iän-määrityksessä: mitä nuorempi joukko, sitä massiivisemmat tähdet ovat yhä pääsarjassa Etäisyyden määritys: Asetetaan tutkittavan joukon (B V ), m V -diagramma standardijoukon (Hyadit) (B V ), M V diagrammin päälle vertikaalisesta siirroksesta saadaan joukon etäisyysmoduli: m V M v = 5 log 01 (r/10pc) etäisyys (värit ja magnitudit korjattu ekstinktiosta monivärifotometriaa käyttäen) Menetelmällä saadaan tarkat etäisyydet useiden kpc päähän. Tähtitieteen perusteet, Luento 17,

4 Joukon HR-diagramman kehitys iän mukana Tähtitieteen perusteet, Luento 17,

5 16.3 Pallomaiset tähtijoukot tähteä, pallosymmetrinen jakauma tähtitiheys 10-kertainen verrattuna avoimiin joukkoihin Linnunradan vanhimpia tähtipopulaatioita, jopa v. yht. n. 200 Tyypillinen väri-magnitudi diagramma: Pääsarjassa vain pienimassaisia punaisia tähtiä (alhainen metallipitoisuus alempana kuin kiekkotähtien pääsarja) Jättiläishaara + horisontaalihaara: sisältää RR Lyrae muuttujia (L 100L ) etäisyysmittaus mahdollinen suurin osa tähdistä pc kokoisella alueella kertainen vaippa ulkosäde määräytyy Linnunradan gravitaatiokentän vuorovesivoimista Suuri tähtitiheys lähekkäisiä kaksoistähtiä (millisekunti-poulsareita), tähtien törmäyksiä ( blue stranglers ) Kaksi populaatiota: kiekkojoukot (Z 0.3Z ): keskittynyt Linnunradan tasoon, osallistuu pyörimiseen halojoukot (Z 0.01z ): pallomainen jakauma n. 35 kpc alueessa, ratatasojen suunnat satunnaiset (ei pyörimistä) Tarkka syntymekanismi huonosti tunnettu Tähtitieteen perusteet, Luento 17,

6 17 Linnunrata Linnunrata = 1) taivaalla havaittava sumumainen vyö 2) oman galaksimme nimi ( Galaxy vs galaxy ) Linnunradan vyö: Linnunrata on litistynyt kiekkomainen tähtisysteemi, Aurinko likimain keskitasossa Historiaa: Galilei: Linnunrata-vyö koostuu tähdistä 1600:lla Herschel: tähtilaskennat yritys muodon määrittämiseen 1700:lla Kapteyn: arvio Linnunradan koolle n Shapley 1920: pallomaisten joukkojen jakauma Auringon sijainti Linnunradassa Tähtitieteen perusteet, Luento 17,

7 Tähtitieteen perusteet, Luento 17,

8 Tähtitieteen perusteet, Luento 17,

9 17.1 Linnunradan tutkimuksen menetelmiä Nähdään ainoastaan silmänräpäyskuva : T hav 100 yr vs. T periodi yr Vertaa Aurinkokunta: T hav 500 yr vs. T periodi 1 yr radat Tähtilaskennat Kiinnostaa tähtitiheys D(r), mitataan N(m)? Mahdollista johtaa N(m) D(r), mikäli tähtien kirkkausfunktio tunnetaan (eli suhteellinen osuus abs. kirkkauden funktiona) (Kapteyn, Seeliger...) Kirkkaiden kohteiden jakauma pallomaiset joukot avoimet joukot Kefeidit, RR-Lyrae tähdet O,B tähdet Tähtien liiketilat: vain tämänhetkinen nopeus (ei ratoja kuten Aurinkokunnassa) v r Doppler-siirtymä µ ominaisliike Interstellarisen kaasun jakauma ja liiketilat: neutraali vety HI, 21 cm viiva vertaaminen muihin galakseihin: runsaasti havaintoja eri galaksityypeistä, eri suunnista, eri ikäisiä (punasiirtymän kasvaessa) Menetelmiä: Stellaari-statistiikka: N(m) D(r) Stellaari-dynamikka: gravitoivien systeemien ominaisuudet, tietokonesimulaatiot Kaasudynamiikka: interstellaarinen materia Tähtien kehitysteoria Usealla aallonpituuskaistalla tehtävät havainnot Tähtitieteen perusteet, Luento 17,

10 Etäisyydenmittaus-menetelmiä ( kosminen tikapuu ) a) Trigonometriset parallaksit Maan pinnalta: α > 0.03 Hipparcos 300 pc, Gaia 3kpc r < 30pc b) Statistiset parallaksit ( sekulaariset ) Edellä Hyadien etäisyyden määritys-menetelmä Sama voidaan tehdä myös Auringon liikkeen avulla: valitaan kohteita joilla tuntematon, mutta tn. sama etäisyys Esim. sama näennäinen magnitudi + spektriluokka r selville ominaisliikkeiden keskiarvosta c) Pääsarja-sovitus joukoille d) Fotometriset parallaksit Abs. magnitudi spektrin perusteella Kefeidit: Abs. magnitudi periodin perusteella Abs. + naennainen magnitudi etäisyys Tähtitieteen perusteet, Luento 17,

11 kosmiset tikapuut Statistiset parallaksit tärkeä askelma! Linnunrata 30 kpc Andromeda 700 kpc Virgon joukko 16 Mpc Tähtitieteen perusteet, Luento 17,

12 16.2 Linnunradan kohteiden havaitut jakaumat Galaktiset koordinaatit: Mikäli Aurinko olisi ympyräradalla, liikkeen suunta olisi l = 90, b = 0 Tähtitieteen perusteet, Luento 17,

13 Mitä voidaan havaita? Auringon lähiympäristö: eri spektriluokan tähtien vertikaalinen jakauma: Mitä vanhempi populaatio sitä suurempi vertikaalinen paksuus Nuoret kohteet: keskittyneet voimakkaasti Linnunradan tasoon Muodostavat spiraalihaaroja (nähdään vain lähimmät segmentit) Pyörimissuunta: l = 90 haarat laahaavia (OK) Tähtitieteen perusteet, Luento 17,

14

15 PAKSU KIEKKO OHUT KIEKKO Tähtitieteen perusteet, Luento 17,

16

17 c) LSR:n suhteen laskettujen satunnaisnopeuksien jakauma (satunnaisnopeudet= pekuliaarinopeudet) Nopeat tähdet ( v > 100km/s) suhteessa LSR) näyttävät liikkuvan vain toiseen suuntaan!? Syy nopeuksien epäsymmetriaan (Lindblad 1926) Pakonopeus Linnunradasta Auringon etäisyydellä n. 310 km/s Tähtitieteen perusteet, Luento 17,

18 16.3 Linnunradan pyöriminen Linnunradan litistyneisyys pyörivä kiekko Mikä on pyörimisnopuden riippuvuus etäisyydestä Linnunradan keskuksesta? Jos massa on jakaantunut pallosymmetrisesti: voima suunnattu kohti keskipistettä, voiman suuruus riippuu ainoastaan säteen R sisäpuolisesta massasta M(R) F R = GM(R)/R 2 Ympyrärata: V c 2 /R = FR V c = (Planeettaliike M(R) = M ja Vc a 1/2 ) r GM(R) R ja M(R) = V c 2 R G Linnunradan massa aksiaalisymmetrisesti jakaantunut (kun unohdetaan spiraalihaarat ja pilvirakenne yms = hyvä approksimaatio) Nyt radiaalinen voima F R riippuu massajakauman muodosta (erityisesti sekä sisä- että ulkopuolisesta massasta: silti M(R) = V c 2 R G Merkitään V c (R) = Ω(R)R jossa Ω(R) kulmanopueus etäisyydellä R Jos tunnetaan tiheysjakauma ρ(r, Z)r rotaatiokäyrä V c (R) = ympyräratanopeus etäisyydellä R (ja vastaava kulmanopeuskäyrä ) on yleensä hyvä suuruusluokka-arvio Tähtitieteen perusteet, Luento 17,

19 Oortin kaavat Mittamalla tähtien nopeuksia on mahdollista määrittää Auringon lähiympäristössä kulmanopus Ω ja kulmanopeusgradientti dω/dr Yhdistetään v LSR arvoon (=V c ) R Saadaan myös V c (R) ja dv c /dr Differentiaalinen rotaatio: Ω(R) ei vakio etäisyyden suhteen Oortin kaavat (1927): v r = Ar sin 2l v t = Ar cos 2l + Br r = tähden etäisyys Auringosta Oortin vakiot: A = 15 km/s kpc B = 10 km/s kpc Tähtitieteen perusteet, Luento 17,

20 v r = Ar sin 2l v t = Ar cos 2l + Br µ = A cos 2l + B Johdettu approksimoimalla Ω(R) = Ω(R ) + dω/dr R=R (R R ) A = 1 2 B = 1 2 Ω d(ωr) «dr Ω + d(ωr) dr R «R Saadaan A B = Ω(R ) = V /R = 25 km/s kpc = /v Auringon kiertoliikkeen periodi 2π/Ω = v V = LSR:n nopeus = 220 km/sec Auringon etäisyys R = Ω /V = 8.8 kpc Tähtitieteen perusteet, Luento 17,

21 Linnunradan rotaatiokäyrä 21 cm viivan mittauksista Atomäärisen vedyn (HI) 21 cm viiva: ei pölyn absorbtiota nähdään Linnunradan läpi Viivaprofiili pilven radiaalinopeus Pilven etäisyys? - Saadaan mikäli olemassa malli Linnunradan rotaatiokäyrälle - Malli voidaan muodostaa (osittain) samoista 21 cm mittauksista! MALLIN MÄÄRITTÄMINEN: Oletetaan, että pilvet ympyräradoilla: Kulmanopus kasvaa sisäänpäin Suurin mitattu radiaalinopeus pilvellä 4, etäisyydellä R k = R sin l v r = R k (Ω(R k ) Ω ) saadaan Ω k ja V k = Ω k R k Toistetaan eri l arvoilla: Linnunradan rotaatiokäyrä (vain Auringon sisäpuolisessa alueessa) (Ulkopuolinen alue vaatii eri menetelmät) Tähtitieteen perusteet, Luento 17,

22 Oletetaan nyt Ω(R) tunnettu Voidaan konstruoida nopeuskenttä v r = R (Ω Ω ) sin l Pilven l, v r paikka Linnunradassa Huom: ei yksikäsitteinen Esim. a) Mitataan suunnassa l = 30 olevalle pilvelle v r =60 km/s Nopeuskenttäkuvasta: r=4.5 tai 12.5 kpc Oortin kaava vr = Ar sin 2l r = 60/(15 sin 60 ) 4.6 kpc b) Entä jos l = 60, v r =- 80 km/s Nopeuskenttäkuvasta: r =16 kpc Oortin kaava r = 80/(15 sin 120 ) 6 kpc Ei sovellu! Tähtitieteen perusteet, Luento 17,

23

24 Linnunradan rotaatiokäyrä Esim.: Arvioi Auringon sisäpuolinen massa, kun approksimoidaan Linnunradan massaa pallosymmetrisellä jakaumalla: M(R) = V c 2 R G Sijoitetaan R = 8.5 kpc = m Vc= 220 km/s = m/s G= m 3 /(Kg s 2 ) M(R ) = ( ) kg = kg = M oikeaa suuruusluokkaa! Kokonaismassa? Vanha rotaatiokäyrä R=20 Kpc V=170 km/s M(20) M Uusi rotaatiokäyrä R=20 Kpc V=300 km/s M(20) M Ulko-osien rotaatiokäyrän tunteminen erittäin tärkeää kokonaismassan arvioinnissa! Nouseva rotaatiokäyrä Linnunradassa pimeää ainetta Kokonaismassa-arvio M (n. 10 kertainen vrt v. 1975) Tähtitieteen perusteet, Luento 17,

25 17.4 Linnunradan rakenne Pimeää ainetta Vanhojen tähtien pallomainen halo Nuorten & keski-ikäisten tähtien + tähtienvälisen aineen kiekko Paksu + ohut kiekko (syntyneet eri aikaan?) Kierteisrakenne Keskuspullistuma + sauva.. Spiraalirakenne Miten spiraalirakenne syntyy, säilyy? Umpeenkiertymisongelma: differentiaalinen rotaatio jos koostuu samoista tähdistä niin haarat kiertyvät nopeasti umpeen Mahdollisia ratkaisuja: statistiset tiheysvaihtelut tähtienmuodostusaalto: venyvät spiraalinpätkiksi ja korvautuvat uusilla massiivisia tähtiä SN-räjähdys ympäröivän kaasun kokoonpuristuminen massivisia tähtiä ok epäsäännölliselle spiraalirakenteelle? Mutta miten tehdä vahvoja 2-haaraisia spiraaleja? Spiraalit ovat tiheysaaltoja (Lin + Shu 1964, Toomre) Galaksin gravitaatiopotentiaalissa vakiokulmanopeudella pyörivä spiraalikomponentti (aksiaalisymmetrisen lisäksi) spiraalihaara = pyörivä tihentymä, jonka läpi yksittäiset tähdet ja kaasupilvet virtaavat Mahdollista konstruoida malleja, joissa spiraalitihentymän garvitaatiokenttä luo sopivan spiraalipotentiaalin ( self consistent ) Läheisten galaksien aiheuttama vuorovesihäiriö: 2-haarainen spiraali luonnollinen vaste ulkoiseen häiriöön Galaksin sauvan aiheuttamat häiriöt (sauva itsessään = tiheysaalto) Tähtitieteen perusteet, Luento 17,

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum

Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 2: Tähtien etäisyyksien ja nopeuksien määrääminen, 19/09/2016 Peter Johansson/ Linnunradan rakenne Luento 2 19/09/16 1 Tällä luennolla käsitellään

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Tähtitaivaan alkeet Juha Ojanperä Harjavalta

Tähtitaivaan alkeet Juha Ojanperä Harjavalta Tähtitaivaan alkeet Juha Ojanperä Harjavalta 14.1.-10.3.2016 Kurssin sisältö 1. Kerta Taivaanpallo ja tähtitaivaan liike opitaan lukemaan ja ymmärtämään tähtikarttoja 2. kerta Tärkeimmät tähdet ja tähdistöt

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ 56 VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ Hyvällä havaitsijalla keskimääräinen virhe tähdenlennon kirkkauden arvioimisessa on noin 0.4 magnitudia silloin, kun meteori näkyy havaitsijan näkökentän keskellä.

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Pimeän energian metsästys satelliittihavainnoin

Pimeän energian metsästys satelliittihavainnoin Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi

Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Muunnoskaavat horisonttijärjestelmä < > ekvaattorisysteemi Edellä pallokolmioiden yleiset ratkaisukaavat: sin B sin a = sin A sin b cos B sin a = cos A sin b cos c + cos b sin c cos a = cos A sin b sin

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

2. MITÄ FOTOMETRIA ON?

2. MITÄ FOTOMETRIA ON? Fotometria Tekijät: Hänninen Essi, Loponen Lasse, Rasinmäki Tommi, Silvonen Timka ja Suuronen Anne Koulut: Mikkelin Lyseon lukio ja Mikkelin Yhteiskoulun lukio Päiväys: 21.11.2008 Lukion oppiaine: Fysiikka

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin

Lisätiedot

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden

Lisätiedot

TÄHTITIETEEN PERUSTEET (8OP)

TÄHTITIETEEN PERUSTEET (8OP) TÄHTITIETEEN PERUSTEET (8OP) HEIKKI SALO, KEVÄT 2013 (heikki.salo@oulu.fi) Kurssin sisältö/alustava aikataulu: (Luennot pe 12-14 salissa FY 1103) PE 18.1 1. Historiaa/pallotähtitiedettä I to 24.1 Kollokvio

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe )

13.3 Supernovat. Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L. Raskaiden alkuaineiden synteesi (useimmat > Fe ) 13.3 Supernovat Maailmankaikkeuden suurienergisimpiä ilmiöitä: L max 10 9 L nähdään suurilta etäisyyksiltä tärkeitä etäisyysmittareita Raskaiden alkuaineiden synteesi (useimmat > Fe ) Kirkkausmaksimi:

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Tietokoneet täh++eteessä

Tietokoneet täh++eteessä Tietokoneet täh++eteessä Peter Johansson Fysiikan laitos, Helsingin yliopisto PC- käy:äjät ry kevätkokous 2014 Helsinki 23.3.2014 1. Miksi +etokoneita tarvitaan täh++eteessä ja mikä on niiden rooli modernissa

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu Luento 9.4.2015, V-M Pelkonen 1 1. Luennon tarkoitus Havaintoaikahakemuksen (teknisen osion) valmistelu Mitä kaikkea pitää ottaa

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Kiimakallio tuulivoimahanke, Kuortane

Kiimakallio tuulivoimahanke, Kuortane S U U N N IT T EL U JA T EK N IIK K A LAGERWEY DEVELOPMENT OY Kiimakallio tuulivoimahanke, Kuortane Lagerwey L100 x 2 x hh135m FCG SUUNNITTELU JA TEKNIIKKA OY 25.3.2015 P26678 FCG SUUNNITTELU JA TEKNIIKKA

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Luento 9: Pyörimisliikkeen dynamiikkaa

Luento 9: Pyörimisliikkeen dynamiikkaa Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

eologian tutkimuskeskus Ahvenanmaa, Jomala ---- eofysiikan osasto Seismiset luotaukset Ahvenanmaalla Jomalan alueella 1987.

eologian tutkimuskeskus Ahvenanmaa, Jomala ---- eofysiikan osasto Seismiset luotaukset Ahvenanmaalla Jomalan alueella 1987. eologian tutkimuskeskus Ahvenanmaa, Jomala ---- eofysiikan osasto J Lehtimäki 16.12.1987 Työraportti Seismiset luotaukset Ahvenanmaalla Jomalan alueella 1987. Jomalan kylän pohjoispuolella tavataan paikoin

Lisätiedot

Luento 10: Keskeisvoimat ja gravitaatio

Luento 10: Keskeisvoimat ja gravitaatio Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä

Lisätiedot

RANTOJEN SIIVOUSOHJE MARLIN. Baltic Marine Litter - MARLIN

RANTOJEN SIIVOUSOHJE MARLIN. Baltic Marine Litter - MARLIN RANTOJEN SIIVOUSOHJE MARLIN Baltic Marine Litter - MARLIN YLEISTÄ VALITTAVISTA RANNOISTA 1. Roskaantumista tutkittaessa valitaan rantakaistale, joka on leveydeltään vähintään 100 m, korkeintaan 1000 m.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio

Luento 12: Keskeisvoimat ja gravitaatio Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Integraalilaskenta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Integraalilaskenta (MAA Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot