Täydellinen klassinen fysiikka 1900



Samankaltaiset tiedostot
S Fysiikka IV (SE, 3,0 ov) S Fysiikka IV (Sf, 4,0 ov )

Kvanttifysiikka k-2006

Fysiikka 8. Aine ja säteily

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

2. Fotonit, elektronit ja atomit

Kvanttifysiikan perusteet 2017

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

Mustan kappaleen säteily

Kvanttisointi Aiheet:

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Luento 6. Mustan kappaleen säteily

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

Valon hiukkasluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 3. Elektroniikan ja nanotekniikan laitos

S Fysiikka III (EST) (6 op) 1. välikoe

Mustan kappaleen säteily

3.1 Varhaiset atomimallit (1/3)

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

766326A ATOMIFYSIIKKA 1 - SYKSY 2017

FRANCKIN JA HERTZIN KOE

766326A Atomifysiikka 1 - Syksy 2013

Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia

Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Atomien rakenteesta. Tapio Hansson

PHYS-C0240 Materiaalifysiikka kevät 2017

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe , malliratkaisut

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Shrödingerin yhtälön johto

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op

1.5 RÖNTGENDIFFRAKTIO

FRANCKIN JA HERTZIN KOE

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri

Infrapunaspektroskopia

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).

Todennäköisyys ja epämääräisyysperiaate

Fysiikan valintakoe klo 9-12

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

1. JOHDANTOA. Makroskooppinen aine koostuu atomeista ja molekyyleistä. Atomit koostuvat ytimestä ja elektroneista.

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa

SMG-4300: Yhteenveto ensimmäisestä luennosta

4. ATOMI. Kuva atomista?

1.1 ATOMIN DISKREETIT ENERGIATILAT

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Asiaa käsitteleviä artikkeleita on koottu kansioon, jonka saa lainaan oppilaslaboratorion kopista. s ja kontaktipotentiaalierosta K.

Opettajaopiskelijoiden käsityksiä kvanttimekaniikasta

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8. Aine ja säteily. Sanoma Pro Oy Helsinki

SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA

Kuvan 4 katkoviivalla merkityn alueen sisällä

Valo ja muu sähkömagneettinen säteily

FYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSA242 Statistinen fysiikka, Harjoitustentti

Teoreetikon kuva. maailmankaikkeudesta

SPEKTROMETRI, HILA JA PRISMA

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

YO-harjoituskoe A / fysiikka Mallivastaukset 1. a)

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Harjoitustehtävien vastaukset

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

Mekaniikan jatkokurssi Fys102

Työn tavoitteita. 1 Teoriaa

Valo ja muu sähkömagneettinen säteily

FYS08: Aine ja Energia

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

Kuva 1. Braggin diffraktio sarjasta atomitasoja.

766334A Ydin- ja hiukkasfysiikka

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

13 LASERIN PERUSTEET. Laser on todennäköisesti tärkein optinen laite, joka on kehitetty viimeisten 50 vuoden aikana.

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V

Bohr Einstein -väittelyt. Petteri Mäntymäki Timo Kärkkäinen

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

Perusvuorovaikutukset. Tapio Hansson

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Transkriptio:

KVANTTIFYSIIKAN TUTKIMUSALA: Aineen atomirakenne Elektronitilat Aineen sähköiset ja kemialliset ominaisuudet Sähkömagneettisen kentän kvantittuminen Sähkömagneettisen säteilyn ja aineen vuorovaikutus, aineen optiset ominaisuudet Täydellinen klassinen fysiikka 1900 Maailmankaikkeus käyttäytyy koneen tavoin. Kokonaisuus jaettavissa rajatta osiin. Liike kuvattavissa syyn ja seurauksen tarkkana lakina rajaton ennustettavuus eli determinismi. Valon ominaisuudet täydellisesti kuvattavissa Maxwellin yhtälöiden avulla. Energia on joko liike-energiaa tai kenttäenergiaa. Tutkittavan objektin rakenne ja liiketila on mitattavissa rajattomalla tarkkuudella häiritsemättä systeemiä. G. Galileo 1615-164 I Newton (164-177) J. C. Maxwell (1831 1879) 1

Esimerkki atomirakenteesta: nanokiteet AFM-kuva InP saarekkeista GaAs kiteen pinnalla. TKK, Optoelektroniikan laboratorio InP saarekkeen atomitasot TEM-kuva Lundin yliopisto Kide koostuu järjestäytyneistä atomeista Suurennettu TEM kuva

Sinkkivälkehila Koe Elektronivyöt ja fotonit Teoria 3

Puolijohdeteknologia Aktiivinen materiaali 100 nm InAs kvanttipyramideja InGaAs/GaAs VECSEL Saito et al., Appl. Phys. Lett. 71, 590 (1997) 3 nm Kvanttifysiikan ilmiömaailma Sähkömagneettisen kentän kvantittuminen Atomien viivaspektrit Valosähköinen ilmiö Comptonin sironta Elektronin de Broglie aallonpituus Braggin diffraktio 4

Wilhelm Röntgen (1845 193) Löysi röntgen-säteilyn puolivahingossa Röntgen itse oli melko pihalla löydöksensä ominaisuuksista ja nimesi sen X-säteiksi Saksalainen fyysikko Ensimmäinen fysiikan Nobel, 1901, röntgensäteilystä Röntgensäteilyn havaitseminen Hehkukatodilta irtoavat elektronit kiihdytetään muutaman kilovoltin jännite-eron yli. Osuessaan anodiin ne hidastuvat nopeasti ja emittoivat SM-säteilyä 5

Röntgensäteilyn intensiteettijakauma Varatun hiukkasen hidastuessaan emittoimaa säteilyä kutsutaan jarrutussäteilyksi. Jarrutussäteilyn intensiteettijakauma on jatkuva. Röntgenputkesta tulevassa säteilyssä esiintyy myös voimakkaita karakteristisia viivoja K α -röntgenspektrit 1/ Röntgenputkessa muodostuu fotoneita joiden energia on suurempi kuin tutkittavan aineen K-ionisaatioenergia. Röntgenfotoni irrottaa K-kuorelta elektronin, jolloin jäljelle jää tyhjä 1s-elektronitila. 6

K α -röntgenspektrit / Muodostunut ioni pyrkii alimpaan energiatilaan, joten K-kuorelle muodostuneen aukon täyttää jokin ylemmän kuoren elektroni. Jos aukon täyttävä elektroni tulee M-kuorelta emittoituu K β säteilyä. Max Planck (1858 1947) Planck tutki mustan kappaleen säteilyä ja päätyi 1990 malliin, jossa valo emittoituu energiakvantteina, jotka toteuttavat yhtälön E= hf Fysiikan Nobel 1918: Energiakvanttien löytäminen Saksalainen teoreettinen fyysikko Vaikka Planckin säteilymalli selitti mustan kappaleen säteilyn hän ei itse luottanut teoriaansa. 7

Mustan kappaleen säteily Ulkoa aukkoon osuva valo absorboituu ontelon sisäseiniin. Ontelossa oleva SM-kenttä on tasapainossa seinämän kanssa. 0 Planckin fotonihypoteesi 1/3 Seinämän atomit ovat oskilaattoreita, joiden energiat ovat kvantittuneet : E = E + nhf n = 0,1,,3,4 n hon Planckin vakio ja E 0 ns nollapiste - energia. Boltzmannin jakauman mukaan oskillaattori on energiatasolla n todennäköisyydellä : Pn exp ( En/ kt) / = exp ( En/ kt) n 8

Planckin fotonihypoteesi /3 Oskillaattorin keskimääräinen energia on hf E = PnEn = Enexp ( En / kt) / exp ( En / kt) = hf / kt n n n e 1 Planck oletti, että nämä ovat myös SM- kentän keskimääräiset moodienergiat!! SM - moodin energiakvantti = fotoni Energia Liikemäärä Aallonpituus E = hf p= E/ c λ = c/ f = ch/ E = h/ p Planckin fotonihypoteesi 3/3 Energiatiheys = SM-moodien tiheys 8π hf 1 E( f) = c e max 3 3 hf / kt 1 Wienin siirtymälaki λ T = hc/ 4.9651k Stefan - Boltzmannin laki : E E tot = at 4 Plackin vakio : 34 h = 6,656 10 Js Klassinen teoria (Raylight - Jeans) 3 8π hf E( f) = kt 3 c (keskimääräinen moodienergia = kt ) 9

Big Bang ja,7 K fotonisäteily 1965 A. Penzias ja R. Wilson havaitsivat radioteleskoopilla 7,35 cm mikroaaltosäteilyn. Säteilyn intensiteetti oli sama kaikista avaruuden suunnista mitattuna Myöhemmissä mittauksissa eri aallonpituuksilla saatiin oheisen kuvan intensiteettijakauma. Se vastaa,7 K mustankappaleen lähettämän säteilyn jakaumaa (kuvaan on piirretty Planckin säteilylaki, joka yhtyy hienosti kokeellisiin arvoihin). Säteily voidaan selittää avaruuden adiabaattisella laajenemisella alkuräjähdyksen jälkeen. Alkuräjähdyksen jälkeen äärimmäisen kuuma kaasu on jäähtynyt,7 Kelviniin laajetessaan adiabaattisesti muutaman miljardin valovuoden laajuiseksi palloksi. Tilatiheys SM-resonaattorissa 1/7 10

Tilatiheys SM-resonaattorissa /7 Tilatiheys SM-resonaattorissa 3/7 11

Tilatiheys SM-resonaattorissa 4/7 Tilatiheys SM-resonaattorissa 5/7 1

Tilatiheys SM-resonaattorissa 6/7 Tilatiheys SM-resonaattorissa 7/7 13

Fotoelektronien havaitseminen P. Lenard havaitsi fotonien metallin pinnalta iroittamat elektronit 1900 Sai fysiikan Nobelin 1905 Valonlähteestä L tulevat fotonit iroittavat elektroneita katodilta C. Elektronit kulkevat anodilla olevan reiän läpi keräyslevylle α. Kun magneettikenttä kytketään päälle elektronivirta ohjautuu levylle β. Kokeella voidaan määrätä varauksen merkki ja q/ m suhde. Valosähköinen ilmiö 1/4 Fotonit läpäisevät lasiseinämän ja irrottavat metallilevyltä elektroneita Tyhjössä olevaa metallipintaa valaistaan valolla, jonka aallonpituutta ja intensiteettiä voidaan säätää. Metallista irronneet elektronit havaitaan mittaamalla keräilylevyltä C tuleva virta I. Elektroneja voidaan hidastaa säädettävällä sähkökentällä. Kullekin aallonpituudelle määrätään elektronivirran estojännite V 0. 14

Valosähköinen ilmiö /4 Valon taajuuden ollessa alempi kuin kynnystaajuus ei fotoelektronivirtaa saada suurellakaan valoteholla Klassisen fysiikka ei toimi: Olkoon valon intensiteetti 1W/m, aallonpituus 400 nm. Yhden elektronin irrottamiseen tarvitaan, ev. Kalium:, ev=teho pinta-ala aika Aika =, ev/ 1 Wm 10 m = 11s Pinnalle tulee 1W/ ( 400nm h/c ) = 18 10 fotonia/sm!! Atomin säde on 10-10 - 0 m. ( π ) Valosähköinen ilmiö 3/4 Elektronitilat metallissa Elektronin energia fermipinnalla on irroitustyön φ 0 verran pienempi kuin elektronin potentiaalienergia tyhjössä metallikappaleen ulkopuolella. 15

Valosähköinen ilmiö 4/4 Energiansäilymislaki h hf = φ0 + ev0 V0 = f φ0/ e e Suoran kulmakerroin on h/ e Albert Einstein selitti valosähköisen ilmiön 1905 ja sai siitä fysiikan nobelin 191 Comptonin sironta 1/4 Comptonin sironnalla tarkoitetaan hyvin lyhyen aallonpituuden omaavan SM-säteilyn sirontaa heikosti sidotuista elektroneista. Compton sironta on yhä merkittävä materiaalien elektronirakenteen tutkimusmenetelmä. A.H. Compton havaitsi 19 röntgensäteiden epäelastisen sironnan ja selitti sen aallonpituuden muutoksen Planckin fotonimallin ja energian ja liikemäärän säilymislakien avulla. Sai tästä ansiosta fysiikan Nobelin 197. 16

Energian säilyminen: Comptonin sironta /4 e e e E + mc = E+ c mc + p Liikemäärän säilyminen: p= p + p e Sironneen fotonin suuntakulma voidaan laskea säilymislaeista ilman SM-kentän ja elektronin dynamiikan yksityiskohtia. ( E+ mec E ) Comptonin sironta 3/4 Liikemäärän säilymislaista : 1 pe = p + p pp i = E + E EE cos c Energian säilymislaista : ( θ ) 1 pe = mc ( ) e = E + E + E E mc e EE c c Yhdistämällä ja sijoittamalla E = hc / λ ( hmc)( 1 cos ) ( 1 cos ) λ λ = θ = λ θ e C missä λ C = hmc= Comptonin aallonpituus e 17

Comptonin kaava Compton sironta 4/4 C ( 1 cos ) λ λ = λ θ Huomaa myös elastisen sironnan intensiteettimaksimi aallonpituudella λ = λ Comptonsironneet fotonit Elastisesti sironneet fotonit (b)-(d) Sironneen säteilyn intensiteetti aallonpituuden funktiona λ λ Sironneiden fotonien aallonpituus Varausten välinen vuorovaikutus Myös varattujen hiukkasten välinen vuorovaikutus eli Coulombin laki toteutuu fotonien vaihdon kautta. Elektroni 1 emittoi fotonin ja antaa sille osan energiastaan ja liikemäärästään. Elektroni absorboi fotonin jolloin sen energia ja liikemäärä muuttuvat. 18

Sähkömagneettinen säteilyspektri Einsteinin teorian mukaan kaikki SM-säteily koostui energiakvanteista, joiden energia saadaan yhtälöstä E = hf. Korkeataajuisen säteilyn fotonien energia on suuri ja siksi niiden terminen virittyminen on vähäistä mustan kappaleen säteilyssä Absorptio- ja emissiospektrit Siirtymät stationääristen tilojen välillä : Absorptio: A+ hf A Emissio: * * A A+ hf Niels Bohr esitti idean stationäärisistä tiloista ja selitti atomin energiatilat osin klassisella mallilla Fysiikan Nobel 19 19

Jatkuvan spektrin muodostuminen Hiukkasella on sen näkemän potentiaalienergia-kentän ominaisuuksista riippuen viiva ja jatkumo spektrit. Spektri = hiukkasen stationääristen energiatilojen jakauma Viivaspektri muodostuu elektronin siirtyessä kahden sidotun tilan (E<0) välillä. Optinen spektroskopia J. von Fraunhofer (1787-186) tutki auringon spektriä ja havaitsi siinä satoja voimakkaita viivoja. 0

Atomien viivaspektrit Vetyatomin fotoemissiospektrin muodostuminen Balmer sarja havaittiin jo v. 1885 atomi Rekyyli-ilmiö fotoemissiossa Liikemäärän säilyminen: p = p = hν c fotoni Energian säilyminen: patomi Ei = Ef + + hν M hν Ei Ef = hν 1+ Mc hν = E E i f ( Ei Ef ) Mc Emittoituvan fotonin energia on pienempi kuin stationääristen tilojen energiaero! 1

Franckin ja Hertzin koe 1/ J. Franckin ja G. Hertzin kokeessa (1914) elektroneja irtoaa hehkukatodilta elohopeakaasuun. Elektronit kiihtyvät sähkökentän vaikutuksesta ja törmäävät satunnaisesti elohopea-atomeihin. Frankin ja Hertzin koe / Anodivirta kasvaa V:n funktiona kunnes elektroneilla on energiaa elohopea-atomin virittämiseen. Viritykseen osallistuneille elektroneilla ei ole energiaa estojännitealueen ylittämiseen joten anodivirta pienenee. Anodivirta kiihdytysjännitteen V funktiona. Kiihdytysjännitteen kasvaessa anodivirta kasvaa jälleen. Maksimeja havaitaan ennen kuin elektroni kykenee virittämään yhden tai useamman elohopea-atomin. Atomin virittämiseen tarvitaan 4,9 ev energiaa.

Elektronien diffraktio kiteessä a Sironneiden elektronien (a) interferenssikuvio elektronisuihkun (energia 10-40 kev, G. P. Thomson) kulkiessa monikiteisen metallikalvon läpi. Vastaavan aallonpituuden omaavilla röntgensäteillä (b)saatiin samanlainen kuvio (Max Laue). b De Broglie aallonpituus De Broglie ehdotti aaltoluonteen selitykseksi elektronilla olevan aallonpituus λ= h p Tämä on sama aallonpituuden ja liikemäärän suhde, jonka Planck esitti fotonille! 3

Fotoneille : λ = h/ p= hc/ E Neutroneille : λ = h/ p= h/ MnE = hc / M c E Elektronille : λ = h/ p= h/ mee = hc / m c E n mc e M c e 0,5 GeV 1000 GeV Aallonpituus ja energia n Elektronien Braggin diffraktio kiteestä Saman liikemäärän ja siis de Broglie aallonpituuden omaavien elektronien suihku osuu erilliskiteeseen kulmassa θ. Vierekkäisistä kidetasoista heijastuneet säteet interferoivat vahvistavasti, jos säteiden matkaero on aallonpituuden monikerta: S = dsin θ = nλ, n = 1,,... Braggin diffraktioehto 4

Neutronispektroskopia Termisillä neutroneilla voidaan tutkia mm aineiden kiderakennetta. Fissioreaktorista tuleva suihku tehdään monokromaattiseksi NaCl kiteellä. Monokromaattinen neutronisuihku diffraktoituu tutkittavana olevasta näytteestä. Termisiä neutroneita ydinreaktorista Heisenbergin epämääräisyysyhtälö Elektronin paikan epämääräisyys x-suunnassa b Ensimmäistä minimiä vastaa diffraktiokulma (ks. seuraava sivu) sin θ = λ/ b Tätä vastaava liikemäärä x-suunnassa on x Heisenbergin epämääräisyysyhtälö seuraa suoraan h λ h h sin x λ b b x Schrödingerin aaltoyhtälöstä! Sitä ei tarvita erillisenä olettamuksena p = p θ = = = p x= h 5

Ensimmäinen diffraktiominimi Ensimmäiseen minimiin raon reunalta ja keskeltä tulevien säteiden matkaero on puoli aallonpituutta. s = λ/ = b/tan θ b/sinθ λ bsinθ sin θ λ/ b Kun tämä ehto toteutuu raosta keskenään etäisyydellä b/ lähtevät osaaallot sammuttavat pareittain toisensa Ajan ja energian epämääräisyys Energian mittaamiseen käytetty aika t ja energian mittaustarkkuus E toteuttavat yhtälön E t h jota kutsutaan energian ja ajan epämääräisyysyhtälöksi. Kaasumaisesta näytteestä tulevassa valossa viivanleveys aiheutuu myös atomien liikkeestä spektrometriin nähden (Doppler leveneminen) 6

Fotonien absorptio ja sironta Fotonien tärkeimmät vuorovaikutusprosessit väliaineessa ovat: 1. Valosähköinen ilmiö.. Comptonin sironta. 3. Parin muodostus (fotonin energia siirtyy elektroni-positroniparille, osa liikemäärästä kiteeseen kuuluvalle ytimelle. Plackin fotonihypoteesi : Yhteenveto 1/4 Fotonin energia Fotonin liikemäärä valon nopeus aallonpituus Planckin vakio E = hf p= E/ c c= fλ λ = h/ p h = 6,656 10 34 Js 8πν h 1 Planckin säteilylaki: E( f) = c e 3 3 hf / kt 1 Stefan - Boltzmannin laki : E tot = at 4 7

Valosähköinen ilmiö : 0 Yhteenveto /4 Fotoelektronin energia: Ek = hν φ0 h 1 Pysäytysjännite: V0 = f φ0 e e φ = Irroitustyö (tai työfunktio) Comptonin sironta λ λ = λc ( 1 cosθ) λ = Comptonin aallonpituus c Braggin ehto : dsinθ = nλ Yhteenveto 3/4 Hiukkasen de Broglie aallonpituus : λ = h p Hiukkasen kulmataajuus: ω E / ħ ħ = h /π (luetaan h-bar) kätevä apusuure Aaltovektori: p ħk Aineaallot etenevät ryhmänopeudella : dω Vapaalle hiukkaselle: v g = de dp= p m= v dk he E p Vaihenopeus vapaalle hiukkaselle: v 1 p = λ f = = = = v ph p m Vaihenopeus on puolet aallon nopeudesta!! 8

Yhteenveto 4/4 Heisenbergin epämääräisyysyhtälöt : Paikalle ja liikemäärälle: x p h Ajalle ja energialle: t E h t = energian mittaamiseen kuluva aika E = energian mittaustarkkuus Fysiikan Nobel 1931: Kvanttimekaniikan kehittämisestä. Esitti Heisenbergin epätarkkuusyhtälön helmikuussa 197 kirjeessään Wolfgang Paulille ja julkaisi tuloksen myöhemmin samana vuonna. Werner Heisenberg (1901 1976) 9