Hyvä uusi opiskelija!

Samankaltaiset tiedostot
Hyvä uusi opiskelija!

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Derivaatan sovellukset (ääriarvotehtävät ym.)

Tekijä Pitkä matematiikka

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

11 MATEMAATTINEN ANALYYSI

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Ratkaisut vuosien tehtäviin

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Ympyrän yhtälö

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

= 9 = 3 2 = 2( ) = = 2

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

y=-3x+2 y=2x-3 y=3x+2 x = = 6

Matematiikan peruskurssi 2

Differentiaalilaskenta 1.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) = = 21 tosi

Preliminäärikoe Pitkä Matematiikka

4. Kertausosa. 1. a) 12

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Integrointi ja sovellukset

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

yleisessä muodossa x y ax by c 0. 6p

2 Pistejoukko koordinaatistossa

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

3 TOISEN ASTEEN POLYNOMIFUNKTIO

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Paraabeli suuntaisia suoria.

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

Ratkaisuja, Tehtävät

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

5 Rationaalifunktion kulku

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

4 TOISEN ASTEEN YHTÄLÖ

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Johdatus reaalifunktioihin P, 5op

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Matematiikan perusteet taloustieteilij oille I

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

Ratkaisut vuosien tehtäviin

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

B. 2 E. en tiedä C ovat luonnollisia lukuja?

MATP153 Approbatur 1B Harjoitus 6 Maanantai

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

3 Yleinen toisen asteen yhtälö ja epäyhtälö

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Matematiikan peruskurssi 2

MAB3 - Harjoitustehtävien ratkaisut:

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

Tehtävien ratkaisut

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

4 Polynomifunktion kulku

MAB3 - Harjoitustehtävien ratkaisut:

Transkriptio:

Hyvä uusi opiskelija! Tässä tulee tärkeää tietoa heti syksyn alussa pidettävästä laskutaitotestistä. Matematiikka kuuluu tekniikan alan opiskelijan tärkeimpiin oppiaineisiin. Matematiikan opiskelu kehittää opiskelijan käsitteellistä ajattelua, loogista päättelyä ja ongelmanratkaisutaitoja. Tekniikan alan opiskelijan asiantuntijuus rakentuu matemaattis-luonnontieteelliselle perustalle. Matemaattiset taidot ovat keskeinen osa diplomi-insinöörin ammatillista osaamista. Matematiikka on kumulatiivinen oppiaine, missä uutta rakennetaan aina vanhasta muodostuvan perustan päälle. Matematiikan opinnoissa eteneminen edellyttää, että esitiedot ovat kunnossa. Yliopistotason matematiikan kursseilla opiskelijan oletetaan hallitsevan lukion pitkän matematiikan oppimäärä. Näitä asioita ei kerrata yliopistotason matematiikan kursseilla. Kaikki opiskelijat osallistuvat matematiikan esitietojen hallintaa mittaavaan laskutaitotestiin kurssin PLA-11310 Matematiikka P1 alussa viikolla 35. Laskutaitotesti kuuluu kurssin Matematiikka P1 suoritusvaatimuksiin. Tuloksen perusteella opiskelija saa palautetta osaamisensa tasosta ja sen riittävyydestä ajatellen yliopistotasoisten diplomi-insinöörin tutkintoon sisältyvien matematiikan kurssien suorittamista. Laskutaitotesti on 10:n tehtävän monivalintatesti. Jokaiseen tehtävään annetaan 4 vastausvaihtoehtoa, joista vain 1 on oikein. Kaikkiin tehtäviin ei tarvitse vastata. Laskutaitotesti arvostellaan siten, että oikeasta vastauksesta saa yhden pisteen (+1p), tyhjästä vastauksesta ei saa mitään (0p) ja väärästä vastauksesta menettää puoli pistettä (-0.5p). Tuloksen perusteella opettaja ohjaa opiskelijaa tarvittaessa täydentämään osaamistaan riittävälle tasolle. Jos laskutaitotestin tulos on -5p +4.5p, niin suositellaan vahvasti, että opiskelija osallistuu kurssille PLA-11010 Johdatus yliopistomatematiikkaan. Jos laskutaitotestin tulos on +5p +7.5p, niin kertaamisesta voisi olla hyötyä jatkoa ajatellen. Jos laskutaitotestin tulos on +8p +10p, niin opiskelijan esitiedot yliopistotason matematiikan opiskeluun ovat erinomaisessa kunnossa. Laskutaitotesti suoritetaan itsenäisesti ilman laskinta tai muuta sellaista apuvälinettä. Myöskään kirjallisuutta ei saa käyttää. Aikaa laskutaitotestin suorittamiseen on 60 minuuttia. Annamme oheisen monisteen, jotta voitte harjoitella ennen laskutaitotestiä. Moniste sisältää harjoitustehtäviä 12 eri matematiikan aihealueelta. Harjoitustehtävät on laadittu siten, että niiden ratkaisemiseen vaadittavia taitoja tarvitaan laskutaitotestissä. Laskutaitotestin tehtävät ovat monisteen harjoitustehtävien kaltaisia tehtäviä samoilta matematiikan aihealueilta. Koska laskutaitotestissä ei saa käyttää mitään apuvälineitä, tulee tehtävien ratkaisemista harjoitella kynällä ja paperilla. Jos monisteen harjoitustehtävät tuntuvat vaikeilta, niin kannattaa kerrata niitä lukion tai ammattikorkeakoulun matematiikan kurssikirjoja, missä on käsitelty monisteen harjoitustehtävien kaltaisia tehtäviä. Kurssi PLA-11010 Johdatus yliopistomatematiikkaan tarjoaa opiskelijalle erinomaisen tilaisuuden matematiikan opiskelun esitietojen hankkimiseen ja täydentämiseen. Kurssiin kuuluvien asioiden hallitseminen on edellytys kaikilla muilla matematiikan kursseilla käsiteltävien asioiden ymmärtämiselle ja omaksumiselle. Matematiikan opiskelun esitiedot käydään kurssilla perinpohjaisesti lävitse ja asiat eivät varmasti unohdu kurssin jälkeenkään. Opiskelijalla on kurssin suoritettuaan hyvät valmiudet yliopistotasoisten matematiikan kurssien menestyksekkääseen suorittamiseen. Kurssi Johdatus yliopistomatematiikkaan on suunniteltu suoritettavaksi ensimmäisenä opiskeluvuotena yhtä aikaa opintokokonaisuuden Matematiikka P1 ja Matematiikka P2 kanssa, joiden suorittamista se tukee. Opiskelija voi sijoittaa kurssin Johdatus yliopistomatematiikkaan DI-tutkinnon vapaasti valittaviin opintoihin. Jos sinulla on kysyttävää laskutaitotestistä, niin voit ottaa yhteyttä matematiikan yliopisto-opettaja Timo Rantaan (timo.ranta@tut.fi). Opettaja on tavoitettavissa to 22.6. saakka ja taas ma 31.7. eteenpäin. Matematiikan opettajat toivottavat kaikille hyvää kesää!

Laskutaitotestin harjoitustehtävät 20172018 1/14 Rationaalifunktiot 1. Kun polynomi 6x 3 + 11x 2 + 7x + 8 jaetaan polynomilla 2x + 3, jakojäännös on (a) 2 (b) 0 (c) 2 (d) 5. 2. Kun polynomi x 4 + 2x 2 x + 5 jaetaan polynomilla x 2, jakojäännös on (a) 17 (b) 5 (c) 22 (d) 27. 3. Kun polynomi 5x 4 + 6x 3 7x + 1 jaetaan polynomilla x 2 + x 1, jakojäännös on (a) 10x 5 (b) 10x + 5 (c) 5x 10 (d) 5x + 10. ( 1 4. Lauseke + 1 + ) 1 x+1 x 2 +1 x (x 6 + x 5 + x 4 + x 3 ) sievennettynä on 3 (a) x 5 + x 4 + 3x 3 + x 2 + x + 1 (b) x 5 + 2x 4 + x 3 + 2x 2 + x + 1 (c) x 5 + x 4 + x 3 + x 2 + 3x + 1 (d) x 5 + 3x 4 + x 3 + x 2 + x + 1. ( 1 5. Lauseke + ) ( 1 x+1 x 1 / x 1 x 2 1 x) sievennettynä on (a) 2x (b) 2x 2 (c) 2/x (d) 2/x 2. Suorat 6. Suora s kulkee pisteiden ( 1, 3) ja (2, 1) kautta. Suoran s kulmakerroin on (a) 4 (b) 4/3 (c) 4/3 (d) 2/3. 7. Suora s kulkee pisteiden ( 1, 2) ja (3, 5) kautta. Suoran s yhtälö on (a) 4x+3y = 5 (b) 3x 4y+5 = 0 (c) 3x 4y+11 = 0 (d) y = 3(x 2)/4. 8. Suora s kulkee pisteen (3, 4) kautta ja sen kulmakerroin on 3/2. Suoran s yhtälö on (a) 3x+2y = 1 (b) 3x 2y = 1 (c) 3x+2y+5 = 0 (d) 2x/3+y 5 = 0. 9. Suoran s 1 yhtälö on 3x y + 5 = 0 ja suoran s 2 yhtälö on x + 3y 6 = 0. Suorien s 1 ja s 2 välinen leikkauskulma on (a) 30 (b) 60 (c) 45 (d) 90. 10. Pisteen (1, 2) kohtisuoraetäisyys suorasta y = x + 1 on (a) 1/ 2 (b) 2 (c) 2 (d) 2 2. 11. Suorien 4x + 3y = 0, x = 0 ja 2y 3 = 0 rajaaman kolmion pinta-ala on (a) 25/32 (b) 27/32 (c) 29/32 (d) 31/32. 12. Suorien x + y 1 = 0 ja y = x 1 välinen kohtisuoraetäisyys on (a) 1 (b) 3 (c) 8/5 (d) 2.

2/14 Laskutaitotestin harjoitustehtävät 20172018 13. Mikä on sen suoran yhtälö, joka kulkee pisteen (1, 3) kautta ja on kohtisuorassa suoraa 2x 3y 5 = 0 vastaan? (a) 2x 3y + 6 = 0 (b) 3x + 2y + 3 = 0 (c) 2x y + 5 = 0 (d) 2x + y = 6 14. Suorat 2x + 3y 4 = 0 ja ax + 2(a 1)y + 3 = 0 ovat kohtisuorassa toisiaan vastaan, kun a:n arvo on (a) 3/4 (b) 3/4 (c) 4/3 (d) 1. 15. Suorien 2x y + 1 = 0, y = 10x 3 ja 10x + 2y = 9 yhteinen leikkauspiste on (a) (x, y) = ( 1, 3) (b) suorilla ei ole yhteistä leikkauspistettä (c) (x, y) = (2, 5) (d) (x, y) = (1/2, 2). Logaritmit 16. Tiedetään, että log k a = 4, log k b = 1 ja log k c = 2. Lausekkeen log k (a 3 b 5 c) arvo on (a) 15 (b) 19 (c) 27 (d) 29. 17. Lausekkeen ln 50 + ln 120 2 ln 4 arvo on (a) 3 ln 5 ln 3 (b) ln 1215 (c) 3 ln 5 + ln 3 (d) ln 325. 18. Yhtälö log l 15 = 5 toteutuu, kun l:n arvo on (a) 5 15 (b) 5 3 (c) 5 3 5 (d) 2. 19. Lausekkeen ((ln 25) 2 (ln 5) 2 )/ ln 5 arvo on (a) 5 (b) ln 10 (c) 3 ln 10 (d) 3 ln 5. 20. Yhtälö e 3x+2 = 2 toteutuu x:n arvolla (a) (2 + ln 2)/3 (b) ( 2 + ln 2)/3 (c) (2 ln 2)/3 (d) ( 3 + ln 2)/2. 21. Yhtälön log 4 x log 4 (x + 3) = 2 ratkaisu on (a) x = 1/10 (b) x = 1/5 (c) x = 1/4 (d) x = 1. 22. Lauseke e 2 ln cos x + (ln e sin x ) 2 sievenee muotoon (a) 2 sin 2 (2x) + cos(2x) (b) 1 (c) 0 (d) 1/(sin x cos x) 2. 23. Funktion ln(x/(2 + x)) määrittelyalue on (a) x < 0 (b) x > 2 (c) x < 2 x > 0 (d) 2 < x < 0. 24. Lauseke e 2x+3 ln x voidaan esittää muodossa (a) x 3 e 2x (b) xe 2x (c) 3x 2 e x (d) x 3 e x. 25. Lausekkeen arvo on log 10 1 + log 10 10 + log 10 100 + log 10 1000 + log 10 (1/10) + log 10 (1/100) (a) 2 (b) 3 (c) 4 (d) 5.

Laskutaitotestin harjoitustehtävät 20172018 3/14 Eksponentit 26. Yhtälö 2 sin x = e cos x toteutuu x:n arvolla (a) tan 1 (ln 2 + nπ) (b) cot 1 (ln 2) + nπ (c) tan 1 (ln 2) + nπ/2 (d) cot 1 (1/ ln 2), missä n Z. 27. Yhtälön (2 x ) 2 + 2 2 x 1 = 0 reaalinen ratkaisu on (a) log 2 ( 2 1) (b) log 3 ( 2 1) (c) log 2 ( 2 1) (d) ln 2. 28. Yhtälön (ln x) 3 2(ln x) 2 2 ln x = 0 ratkaisu on (a) e 1± 2 0 (b) e 2 0 (c) e 1 (d) e 1± 3 1. 29. Yhtälön 3 3x 3 2x+1 3 2x 2 + 3 x 1 = 0 ratkaisut ovat (a) 1 2 (b) 1 2 (c) 2 1 (d) 2 2. 30. Yhtälö 1 3 2 x = 10 2 4 x toteutuu reaalisella x:n arvolla (a) ln(3/2) (b) ln(2) ln(3) (c) log 2 (2)/ log 2 (3) (d) ln(3)/ ln(2). 31. Yhtälön 3/8 1000 log 10 x = x 2 reaalinen ratkaisu on (a) 1/2 (b) 2/3 (c) 1 (d) 4/3. 32. Yhtälöparin 2 log 3 x + 4 log 4 y = 0, log 3 x + 8 log 4 y = 3/2 ratkaisu on (a) (x, y) = ( 1/ 2, 3) (b) (x, y) = (1/ 2, 3) (c) (x, y) = (1/ 3, 2) (d) (x, y) = ( 3, 1/ 2). 33. Yhtälöpari x log 10 x+log 10 y = 100, xy log 10 x = 1 ratkeaa, kun (a) (x, y) = (1, 100) (b) (x, y) = (100, 1) (c) (x, y) = (1/10, 1/10) (d) (x, y) = (1, 1/10). 34. Yhtälön 4 x+2 = 2 x2 +1 ratkaisut ovat (a) 1 1 (b) 1 3 (c) 3 1 (d) 1 2. 35. Yhtälön (ln 2) x+1 = (ln 5) ln 2 ratkaisu on (a) ln 2 ln(ln 5) ln(ln 2) 1 (b) ln 2 ln(ln 5) ln(ln 5) 1 (c) Derivointi ja tangenttisuorat ln 5 ln(ln 2) ln(ln 2) 1 (d) ln 10 ln(ln 5) ln(ln 2) 1. 36. Funktion f(x) = (x 3 3x 1) sin x derivaatta x:n suhteen on (a) 3 sin x x 2 cos x (b) 3(x 2 1) sin x (x 3 3x + 1) cos x (c) 3(x 2 1) sin x + (x 3 3x 1) cos x (d) (x 3 3x + 1) cos x. 37. Funktion f(t) = e xt2 3xt+x 2 derivaatta t:n suhteen on (a) (t 2 3t + 2x)e xt2 3xt+x 2 (b) (2xt 3x)e xt2 3xt+x 2 (c) e xt2 3xt+x 2 (d) e xt2 +x 2.

4/14 Laskutaitotestin harjoitustehtävät 20172018 38. Funktion f(x) = cos x/x derivaatta x:n suhteen on (a) ( x sin x cos x)/x 2 (b) (x sin x + cos x)/x 2 (c) (sin x cos x)/x 2 (d) (x 2 sin x + cos x)/x 2. 39. Funktion f(x) = ln(ln x) derivaatta x:n suhteen on (a) 1/ ln x (b) 1/(x ln x) (c) 1/x (d) x/ ln x. 40. Funktion f(x) = x x derivaatta x:n suhteen on (a) x x (b) x x (1 + ln x) (c) x x (ln x 1) (d) x x (1 ln x). 41. Polynomin p(x) = x 3 + 3x 2 1 kuvaajan pisteen (1, 1) kautta kulkevan tangenttisuoran yhtälö on (a) y = 2x 3 (b) 3x + y 3 = 0 (c) 2x 3y + 2 = 0 (d) 3x y 2 = 0. 42. Suoran ympyräpohjaisen kartion tilavuus V saadaan lausekkeesta V = πr 2 h/3. Oletetaan, että säde r ja korkeus h ovat ajan t funktioita. Olkoon kartion korkeuden muutosvauhti h = dh/dt. Jotta kartion tilavuus ei muuttuisi, niin kartion säteen muutosvauhdin r = dr/dt on oltava (a) rh /(2h) (b) rh /(2h) (c) h /h (d) rh /h. 43. Mihin käyrän y = e x+1 pisteeseen asetetun tangentin kulmakerroin on 2? (a) (ln 2, 2e) (b) (0, e) (c) (ln 2 1, 2) (d) (ln 2 + 1, 2e 2 ). 44. Käyrälle y = 2x 3 + 4x 2 + x 1 pisteeseen ( 1, 0) asetetun tangentin yhtälö on (a) y = x/2 1/2 (b) y = x + 1 (c) y = 2x 2 (d) y = x 1. 45. Funktion f(x) = (sin x + cos x) 2 derivaatalla on välillä 0 x 90 nollakohtana (a) 0 (b) 45 (c) 30 (d) 60. 46. Funktion f(x) = 3 x 2 sin(2x) derivaatta x:n suhteen on (a) (b) (c) (d) 1/3(x 2 sin(2x)) 2/3 (2x sin(2x) x 2 cos(2x)) 3/4(x 2 sin(2x)) 4/3 (2x sin(2x) x 2 cos(2x)) 1/3(x 2 sin(2x)) 2/3 (2x sin(2x) + x 2 cos(2x)) 2/3(x 2 sin(2x)) 2/3 (x sin(2x) + x 2 cos(2x)). 47. Funktion f(x) = e 3 cos(2x 3 ) derivaatta x:n suhteen on (a) 6e 3 x 2 sin(2x 3 ) (b) 3e 2 sin(2x 3 ) (c) e 3 cos(2x 3 ) 6e 3 x 2 sin(2x 3 ) (d) 3e 2 cos(2x 3 ) 6e 3 x 2 sin(2x 3 ).

Laskutaitotestin harjoitustehtävät 20172018 5/14 Integrointi 2 48. Integraalin 1 x2 1 dx arvo on (a) 8/3 (b) 0 (c) 1 (d) 2. 49. Funktion 3x 2 + 2x + 1 integraalifunktio, jonka kuvaaja kulkee pisteen ( 2, 1) kautta on (a) x 3 +2x 2 +1 (b) x 3 +2x 2 +x+3 (c) x 3 /2+x 2 +x+3 (d) x 3 +x 2 +x+7. 50. Funktion 2x 2 integraalifunktio, jonka kuvaaja erottaa x-akselista 4 pituusyksikön jänteen on (a) 2x 2 + 2x 15/2 (b) x 2 2x 3 (c) x 2 /2 + x 3/2 (d) x 2 /4 + 2x + 3. 51. Funktion x/(x 2 + 1) 2 integraalifunktio, jonka kuvaajan käännepisteet ovat x-akselilla on (a) 1/(x 2 + 1) + 3 (b) 1/(2(x 2 + 1)) (c) 1/(x 2 + 1) + 3/8 (d) 1/(2(x 2 + 1)) + 3/8. 52. Olkoon F (x) se funktion f(x) = x 3 + 2x + 1 integraalifunktio, joka kohdassa x = 2 saa arvon 4. Määritä F ( 2). (a) 2/3 (b) 1 (c) 3/2 (d) 0. 53. Funktion ln x 2x 2 integraalifunktio on (a) ln(x 2 )+1 x 2 + C (b) ln x 1 2x + C (c) ln x+1 2x 2 + C (d) ln x 1 2x + C. 54. Määritä t siten, että 2t 0 xe(x2) dx = (e 1)/2. (a) t = 0 (b) t = 1 (c) t = ±1/2 (d) t = 1. 55. Paraabeli y 2 2y + x = 0 ja y-akseli rajoittavat alueen, jonka pinta-ala on (a) 1 (b) 2/3 (c) 1/2 (d) 4/3. 56. Käyrät y = x ja y = x 2 2x rajoittavat alueen, jonka pinta-ala on (a) π (b) 3 (c) 9/2 (d) 5. 57. Integraalin 2 1 (2/x + ex )dx arvo on (a) ln 4 + e 2 e (b) 2 ln 2 (c) 2 ln 2 + e 2 (d) ln 4 + e. Ääriarvot Oletetaan, että x ja y ovat reaalimuuttujia. 58. Kun 0 x 1, mikä on funktion f(x) = e (2+x x x) minimiarvo? (a) e 9/4 (b) e 2 (c) 1/2 (d) e 5/2

6/14 Laskutaitotestin harjoitustehtävät 20172018 59. Seuraavista funktioista yksi on sellainen, että sillä on paikallinen minimi, kun 1 x 3. Mikä funktio? (a) f(x) = (x + 1)(x 1)(x 3) (b) f(x) = (x + 1)(x 1)(x 3) (c) f(x) = (x + 1)(x 1)(x + 3) (d) f(x) = (x + 1)(x 1)(x + 3) 60. Kahden ei-negatiivisen reaaliluvun summa on 10. Niiden kuutioiden summan minimiarvo on (a) 200 (b) 250 (c) 300 (d) 350. 61. On puoliympyrä, jonka halkaisija on 2r. Tähän puoliympyrään piirretään suorakulmio siten, että yksi sivu on puoliympyrän halkaisijan päällä. Mikä on tällaisen suorakulmion suurin mahdollinen ympärysmitta? (a) 3r/ 2 (b) 4r/ 5 (c) 3r 2 (d) 10r/ 5 62. Missä pisteessä funktiolla f(x) = x 3 x on paikallinen minimi? (a) x = 1/ 3 (b) x = 1/ 3 (c) x = 1 (d) x = 3/8 63. Kahden metrin naru leikataan kahtia. Ensimmäisestä pätkästä muodostetaan neliö ja toisesta pätkästä muodostetaan ympyrä. Jos halutaan, että neliön ja ympyrän pinta-alojen summa on mahdollisimman pieni, niin mikä on sen pätkän pituus, josta neliö muodostetaan? (Kaikki pituudet metreinä.) (a) 4/(4 + π) (b) 2π/(4 + π) (c) 8/(4 + π) (d) 4/(2 + π) 64. Kun 1 x 10, mikä on funktion f(x) = x x + 27/ x minimiarvo? (a) 36 (b) 28 (c) 3 (d) 12 3 65. Funktion f(t) = t 2 1 maksimiarvo välillä 2 t 1 on (a) 1 (b) 1 (c) 3 (d) 5. 66. Funktio F (x) = (x 2 8)e x saa pienimmän arvonsa x:n arvolla (a) 2 (b) 4 (c) ± 2 2 (d) 0.

Laskutaitotestin harjoitustehtävät 20172018 7/14 Yhtälöiden ratkaiseminen Oletetaan, että x ja y ovat reaalimuuttujia. 67. Tarkastellaan reaalifunktiota f(x) = (x 2)(x + 2)(x 2 2x + 2). Monessako eri pisteessä funktio f(x) leikkaa x-akselin? (a) 0 (b) 2 (c) 3 (d) 4 68. Laske yhtälön e x x = e 2x e 2x e 2 ratkaisu(t). (a) x = 2 ± 2 (b) x = 2 ± 2 (c) x = 0, x = 4 (d) x = 1 69. Laske yhtälön x/2 = 2x 2 ratkaisu(t). (a) x = 4/3, x = 5/4 (b) x = 1/2 (c) x = 4/3, x = 4/5 (d) ei ole ratkaisua 70. Laske yhtälön 6x = 2x 4 ratkaisu(t). (a) ei ole ratkaisua (b) x = 1 (c) x = 1/2, x = 1 (d) x = 1/2 71. Tarkastellaan reaalifunktioita f 1 ja f 2 : f 1 (x) = 2x + 1, f 2 (x) = αx x + 2. Millä vakion α arvoilla funktiot f 1 ja f 2 leikkaavat tasan yhdessä pisteessä? (a) α = 2 (b) α = 0, α = 1, α = 9 (c) α = 0, α = 1, α = 9 (d) α saa olla mikä tahansa reaaliluku 72. Tarkastellaan reaalifunktioita f 1 ja f 2 : f 1 (x) = αx + 1, f 2 (x) = x + 1 2 Millä vakion α arvoilla funktiot f 1 ja f 2 eivät leikkaa missään pisteessä? (a) α = 1/2 (b) α = 1/2 (c) α = 1 (d) α 1/2. 73. Laske yhtälöiden ratkaisu(t). 1 x + 1 y = 4 xy ja x y = 2 (a) (x, y) = (2, 6), (x, y) = (2, 0) (b) (x, y) = (1, 3) (c) (x, y) = ( 3, 1) (d) (x, y) = ( 1, 3)

8/14 Laskutaitotestin harjoitustehtävät 20172018 74. Laske yhtälöiden ratkaisu(t). y = ln(2x) + 2 ja y ln x 2 = 1 (a) (x, y) = (e, ln 2 + 2) (b) (x, y) = (2e, ln 4 + 2) (c) (x, y) = (2e, ln 4 + 3) (d) (x, y) = (e 2, ln 4 + 2) 75. Tarkastellaan seuraavaa yhtälöä: (x + 3) 2 + (y 3) 2 = 9. Monessako pisteessä tämän yhtälön kuvaaja leikkaa y-akselin? (a) 3 (b) 2 (c) 1 (d) 0 76. Mikä seuraavista yhtälöryhmistä on sellainen, että sillä on tasan 2 ratkaisupistettä? (a) y = x + 1, y = 2x (b) y = x + 1, y = 2x (c) y = x + 1, y = x/2 (d) y = x + 1, y = x/2 77. Laske yhtälön 1 + x 2/(x + 2) = 0 ratkaisu(t). (a) x = 1, x = 4 (b) x = 0, x = 3 (c) x = 2 (d) ei ole reaaliratkaisua 78. Laske yhtälöiden y = 2/(1 + x) ja x = 2/(1 + y) ratkaisu(t). (a) (x, y) = (1, 2), (x, y) = (2, 1) (b) (x, y) = ( 1, 2), (x, y) = (2, 2/3) (c) (x, y) = ( 1, 1), (x, y) = (2, 2) (d) (x, y) = (1, 1), (x, y) = ( 2, 2) 79. Mikä seuraavista funktioista leikkaa x-akselin arvoilla 2 ja 1? (a) f(x) = x(x + 2) (x + 2) (b) f(x) = (x 1)/(x + 2) (c) f(x) = sin(π(x + 2)/2) (d) f(x) = 1/(x 1) 2/x Epäyhtälöiden ratkaiseminen Oletetaan, että x on reaalimuuttuja. 80. Laske seuraavan epäyhtälöryhmän ratkaisu: x 2 2, x 3 1, x 4. (a) 2 x < 4 (b) 1 x 4 (c) x = ±2 (d) 2 < x < 3 tai 3 < x < 2 81. Laske epäyhtälön (x 3)(x + 2) 6 ratkaisu. (a) 2 x 3 (b) 3 x 4 (c) 0 x 1 (d) x 0

Laskutaitotestin harjoitustehtävät 20172018 9/14 82. Laske epäyhtälön e 2x+2 > 16 ratkaisu. (a) x > ln 4 (b) x > 1 2 ln 2 (c) x > 1 + ln 2 (d) x > 1 + 2 ln 2 83. Laske epäyhtälön 2x 4 x + 3 < 1 ratkaisu. (a) x < 2/3 (b) 2/3 < x < 6 (c) x > 0 (d) 3 < x < 2 84. Laske epäyhtälöiden 3x 5 < 6 ja 2x + 1 2 ratkaisu. (a) 1/2 x < 7 (b) x 1/2 tai x 11/3 (c) 1/2 x < 11/3 (d) x = 3/2 85. Laske epäyhtälön ratkaisu. 2 + 2x 2x 2 2 (a) 4/5 x < 1 (b) 0 x < 1 (c) 0 x < 2 (d) 2/3 x < 1 86. Laske epäyhtälön e x e x e x x ratkaisu. (a) 0 x 2 (b) x 2 tai x 0 (c) x ln 2 (d) x saa olla mikä tahansa reaaliluku 87. Jos a, b ja c ovat kaikki ei-negatiivisia reaalilukuja ja a > b ja c > 0, niin mikä seuraavista on aina tosi? (a) (a c)/(b c) > 1 (b) (a + c)/(b + c) > c (c) (a + c)/(b + c) > 1 (d) (a 2 b 2 )/c > 1 88. Laske epäyhtälön 1 2/(1 + x) > 1 ratkaisu. (a) 1 < x < 0 (b) 2 x < 1 (c) x 1 (d) x < 1 tai x > 0 89. Laske epäyhtälön x 2 4x + 4 1 ratkaisu. (a) 1 x 3 (b) x < 1 tai x > 3 (c) 3 x 1 (d) 4 x 1 90. Laske epäyhtälön (2x 3) 2 9 > 0 ratkaisu. (a) 0 < x < 3 (b) x < 0 tai x > 3 (c) x < 3 (d) x = ±2

10/14 Laskutaitotestin harjoitustehtävät 20172018 Polynomit Oletetaan, että x on reaalimuuttuja. 91. Mikä polynomi seuraavista on se, jolla on kaksinkertainen nollakohta arvolla x = 2? (a) f(x) = x 2 4x + 4 (b) f(x) = x 3 4x 2 + 4x (c) f(x) = x 2 4 (d) f(x) = x 3 + 4x 2 + 4x 92. Mikä seuraavista funktioista on se, jonka arvo vähenee jatkuvasti, kun 3 < x < 2? (a) f(x) = x 2 + 5x + 6 (b) f(x) = x 2 5x + 6 (c) f(x) = x 2 x 6 (d) f(x) = x 2 + x 6 93. Polynomin f(x) = x 2 +αx+8 suurin arvo saavutetaan pisteessä x = 2. Mikä on vakion α arvo? (a) 2 (b) 4 (c) 4 (d) 12 94. Kun tarkastellaan polynomia f(x) = 2x 2 9x+4 välillä 0 < x < 2, seuraavista väitteistä vain yksi on tosi. Mikä niistä? (a) f:n arvo laskee kun x kasvaa (c) f saavuttaa maksimiarvonsa (b) f saavuttaa minimiarvonsa (d) f:lla on kaksi nollakohtaa 95. Kun f(x) = (x + 1) 3, laske f (f(1)). (Huom: f (x) on funktion f derivaatta eli df/dx.) (a) 64 (b) 12 (c) 8 (d) 243 96. Kun f(x) = (x + 2) 4, mikä seuraavista ei ole totta? (Huom: f (x) on funktion f derivaatta eli df/dx.) (a) f(0) = f( 4) (c) f( 2) = f ( 2) (b) f(1) = f ( 1) (d) f saavuttaa minimiarvonsa, kun x = 2 97. Kun f(x) = x 3 2x, laske f(f( 1)). (a) 1 (b) 1 (c) 33 (d) 33 98. Montako reaalinollakohtaa yhtälöllä x(x 2 1)(x 2 + x + 1) = 0 on? (a) 4 (b) 5 (c) 3 (d) 2 99. Mitkä ovat yhtälön 2x 2 + 9x 9 = 0 reaalinollakohdat? (a) ei ole reaalinollakohtaa (b) x = 3/2, x = 3 (c) x = 3, x = 6 (d) x = 3/2, x = 3

Laskutaitotestin harjoitustehtävät 20172018 11/14 100. Polynomilla f(x) = 2x 3 + 4x 2 + αx on kaksoisnollakohta, kun x = 1. Mikä on vakion α arvo? (a) 0 (b) 2 (c) 2 (d) 6 101. Kun muodostetaan polynomien f(x) = (x 2) ja g(x) = (3x 3) 2 tulo, mikä on x 2 kerroin? (a) 36 (b) 36 (c) 0 (d) 3 Trigonometriset funktiot Oletetaan, että x on reaalimuuttuja. 102. Mikä seuraavista yhtälöistä on totta kuvan perusteella? α c a b (a) sin α = a 2 + b 2 (b) sin α = c/b (c) sin α = a/c (d) sin α = b/c 103. Sievennä tan x/ sin x sin x/ tan x. (a) tan x sin x (b) cos x (c) tan x/ cos x (d) cos x 104. Sievennä (cos x + cos( x))/ tan x. (a) 2 sin x (b) 0 (c) 2/ sin x 2 sin x (d) 1 105. Kun x = π/4, laske tan x/ sin x cos( x). (a) 1 (b) 1/ 2 (c) 0 (d) π/2 106. Sievennä sin(π + x)/ tan x cos( x). (a) tan x (b) 2 cos x (c) 0 (d) 2 cos x 107. Laske yhtälön 2/ 3 = tan x/ sin x ratkaisu(t). (a) x = ±π/6 + 2nπ, n on kokonaisluku (b) x = 1 (c) x = π/2 + 2nπ, n on kokonaisluku (d) x = nπ, n on kokonaisluku 108. Laske yhtälön 1 = sin(2x) ratkaisu(t). (a) x = π/2 + nπ, n on kokonaisluku (b) x = π/4 + nπ, n on kokonaisluku (c) x = π/4 + 2nπ, n on kokonaisluku (d) x = nπ/4, n on kokonaisluku

12/14 Laskutaitotestin harjoitustehtävät 20172018 109. Kun 0 x < π, laske yhtälön sin 2 x cos 2 x = 0 ratkaisu(t). (a) x = π 2 (b) x = 0, x = π/2 (c) x = 0, x = π (d) x = π/4, x = 3π/4 110. Kun 0 x < 2π, laske yhtälön 2 cos 2 x + 3 sin 2 x = 3 ratkaisu(t). (a) x = 0, x = π (b) x = π/2, x = 3π/2 (c) x = π/4, x = 5π/4 (d) x = π/3 111. Mitkä ovat yhtälöiden y = sin x ja y = sin(x)/3 yhteiset nollakohdat? (a) x = 3nπ, n on kokonaisluku (b) x = nπ/3, n on kokonaisluku (c) x = nπ, n on kokonaisluku (d) x = n, n on kokonaisluku 112. Mikä seuraavista yhtälöistä on tosi kaikilla kulman α arvoilla? (a) sin(α) = sin( π 2 α) (b) sin(α) = cos( π 2 α) (c) sin(α) = sin(α π 2 ) (d) sin(α) = cos(α + π 2 ) 113. Mikä seuraavista epäyhtälöistä on tosi, kun π 4 < x < π 2? (a) tan x > 1 (b) tan x < 1 (c) 1 < tan x < 1 (d) tan x < 1 114. Kun tan x = 3, niin (a) cot x = 1 3 (b) cot x = 3 (c) cot x = 3 3 (d) cot x = 1 + 3. 115. Oheisen suorakulmion pinta-ala on (a) ac cos θ (b) ac sin θ (c) ac tan θ (d) ac. 116. Oheisen suunnikkaan pinta-ala on (a) ab cos θ (b) ab tan θ (c) ab sin θ (d) ab cot θ.

Laskutaitotestin harjoitustehtävät 20172018 13/14 Geometria (x, y)-tasossa 117. Laske väli α:lle, kun tiedetään, että ympyrä (x 1) 2 + (y + 3) 2 = 4 ja suora x = α eivät leikkaa. (a) 1 < α < 4 (b) 3 < α < 6 (c) α < 1 α > 3 (d) α > 4 118. Ympyrä, jonka säde on 4, ja suora y = x sivuavat vain origossa kuvan mukaisesti. Mikä on ympyrän keskipiste? y y = x x (a) ( 2, 2) (b) (2, 2) (c) (1, 1) (d) (2 2, 2 2) 119. Missä pisteessä (pisteissä) suora y = x 2 ja ympyrä, jonka säde on 5 ja keskipiste on ( 1, 2), leikkaavat? (a) (x, y) = ( 2, 1) ja (x, y) = (1, 3) (c) (x, y) = ( 2, 1) (b) (x, y) = ( 2, 0) ja (x, y) = (1, 3) (d) ei missään pisteissä 120. Kolmion pisteet (x, y)-tasossa ovat (2, 3), (4, 5) ja (4, 1). Laske kolmion pintaala. (a) 1 (b) 2 (c) 4 (d) 2 121. Missä pisteessä (pisteissä) suora y = 2x + 1 ja neliö, jonka keskipiste on origo, sivut samansuuntaisia kuin x- ja y-akselit ja ympärys on 12, leikkaavat? (a) ( 3/2, 5/4) ja (3/2, 5/4) (b) ( 1, 3/2) ja (1, 3/2) (c) ( 1/4, 3/2) ja (5/4, 3/2) (d) (0, 0) ja (1, 2) 122. Laske pisteiden ( 1, 2) ja (3, 6) etäisyys. (a) 4 2 (b) 2 5 (c) 15 (d) 5 123. Kun x on vaaka-akseli ja y on pystyakseli yhtälön y 2 = x 1 kuvaaja on (a) paraabeli, joka aukeaa oikealle (b) paraabeli, joka aukeaa vasemmalle (c) paraabeli, joka aukeaa alaspäin (d) paraabeli, jonka huippu on pisteessä ( 2, 1).

14/14 Laskutaitotestin harjoitustehtävät 20172018 124. Mikä on alla olevan kuvaajan yhtälö? 4 3 2 1 y 0 1 2 3 4 1 0 1 2 3 4 5 x (a) y = x(x 2)(x 4)/4 (b) y = x(x 2)(x 4)/4 (c) y = x(x + 2)(x + 4)/4 (d) y = cos(πx/2) 125. Kun x on vaaka-akseli ja y on pystyakseli yhtälön x 2 + y 2 4x + 4 = 9 kuvaaja on (a) ympyrä, jonka keskipiste on (2,0) ja säde 3 (c) ympyrä, jonka keskipiste on (1,0) ja säde 3 126. Suorat y = 2x + 1 ja (4x + 2)/y = 2 leikkaavat (a) kaikissa pisteissä (b) paraabeli, joka aukeaa ylöspäin (d) paraabeli, joka aukeaa alaspäin. (b) ei missään pisteessä (c) pisteessä ( 1, 1) (d) pisteessä (0, 1). 127. Mikä on alla olevan kuvaajan yhtälö? 3 2.5 2 1.5 y 1 0.5 0 0.5 1 2 1.5 1 0.5 0 0.5 1 1.5 2 x (a) y 2 + x 2 2x + 4 = 0 (b) y x 2 /2 + 1 = 0 (c) y x 2 + 1 = 0 (d) y 2 2x + 1 = 0