Tampereen yliopisto Informaatiotieteiden yksikkö

Samankaltaiset tiedostot
6. OMINAISARVOT JA DIAGONALISOINTI

Paraabeli suuntaisia suoria.

Luento 8: Epälineaarinen optimointi

Ellipsit, hyperbelit ja paraabelit vinossa

Luento 8: Epälineaarinen optimointi

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia

1 Lineaariavaruus eli Vektoriavaruus

x = sinu z = sin2u sinv

Tekijä Pitkä matematiikka

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Kuvaus. Määritelmä. LM2, Kesä /160

6 MATRIISIN DIAGONALISOINTI

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

802320A LINEAARIALGEBRA OSA I

Ominaisvektoreiden lineaarinen riippumattomuus

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Vektorit, suorat ja tasot

Neliömuodoista, matriisin ominaisarvoista ja avaruuden kierroista

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Ratkaisut vuosien tehtäviin

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

OMINAISARVOISTA JA OMINAISVEKTOREISTA

Ortogonaalisen kannan etsiminen

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Pythagoraan polku

ANALYYTTISTA GEOMETRIAA LUKIO-OPETUKSESSA. Eeva Kuparinen. Pro gradu -tutkielma Tammikuu 2008 MATEMATIIKAN LAITOS TURUN YLIOPISTO

Lineaarikuvauksen R n R m matriisi

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

2 Pistejoukko koordinaatistossa

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

Matematiikan tukikurssi

Numeeriset menetelmät

Vektorilaskenta, tentti

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Moniulotteisia todennäköisyysjakaumia

MS-A0004/A0006 Matriisilaskenta

5 OMINAISARVOT JA OMINAISVEKTORIT

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

5 Ominaisarvot ja ominaisvektorit

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Ratkaisut vuosien tehtäviin

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

5 Differentiaaliyhtälöryhmät

Suorista ja tasoista LaMa 1 syksyllä 2009

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

l 1 2l + 1, c) 100 l=0

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

Ominaisarvo-hajoitelma ja diagonalisointi

Determinantti 1 / 30

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

2 Konveksisuus ja ratkaisun olemassaolo

ominaisvektorit. Nyt 2 3 6

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Avaruuden R n aliavaruus

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

6 Geometria koordinaatistossa

MS-C1340 Lineaarialgebra ja

Miten osoitetaan joukot samoiksi?

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ominaisarvo ja ominaisvektori

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Taustatietoja ja perusteita

Tehtävien ratkaisut

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

4 Yleinen potenssifunktio ja polynomifunktio

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Paikannuksen matematiikka MAT

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

Matemaattinen Analyysi / kertaus

Algebra I, Harjoitus 6, , Ratkaisut

1 Ominaisarvot ja ominaisvektorit

= 9 = 3 2 = 2( ) = = 2

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Insinöörimatematiikka D

Transkriptio:

Tampereen yliopisto Informaatiotieteiden yksikkö Kevät 017 Luennot: Kerkko Luosto Muistiinpanot: Jesse Railo (013) ja Jussi Klemetti (017)

6 Kartioleikkaukset Vanhan ajan geometrian merkittävimpiä tuloksia oli havainto, että erilaisilla toisen asteen käyrillä on yhdistävä geometrinen ominaisuus: ne saadaan kaikki kartioleikkauksina. Tässä luvussa tasotarkastelutkin tehdään tavanomaisessa karteesisessa tasossa kompleksitason asemasta, koska kartioita tietenkin joudutaan käsittelemään kolmiulotteisessa avaruudessa. 6.1 Ellipsi, paraabeli ja hyperbeli Kartioleikkauksia ovat ympyrä, ellipsi, paraabeli ja hyperbeli, jotka pystytään muodostamaan suoran ympyräkartion ja tason leikkauksina R 3 :ssa. Kartioleikkauksien tarkastelu tehdään seuraavassa aliluvussa, kun tässä on ensin määritelty tarvittavat käyrätyypit. Määritelmä 6.1. Ellipsillä tarkoitetaan niiden tason pisteiden uraa (eli joukkoa), joille etäisyyksien summa kiinteistä pisteistä p ja q on näiden pisteiden keskinäistä etäisyyttä suurempi vakio, ts. joukko E on ellipsi, jos on olemassa sellaiset p, q R ja vakio c> p q, että E={ x R x p + x q =c}. Pisteitä p ja q kutsutaan ellipsin E polttopisteiksi. Mahdollinen erikoistapaus on p=q. Tällöin E={ x R x p =c}={ x R x p =c/}, ts. E on ympyrä. Ympyrät ovat siis ellipsejä, mutta ellipsit eivät eivät tietenkään yleisesti ole ympyröitä. Sen sijaan määritelmä kieltää mahdollisuuden p q ja c = p q, jolloin joukon E voidaan osoittaa surkastuvan janaksi. Lause 6.. Olkoon E R ellipsi, jonka polttopisteet sijaitsevat x-akselilla symmetrisesti origon suhteen. Tällöin joillakin a, b>0 pätee E={(x, y) R x a + y b= 1}. Todistus. Oletuksen mukaan ellipsin E polttopisteet ovat p =( t, 0) ja q =(t, 0) jollakin t 0. Merkitään c:llä vakiota, joka on kuten määritelmässä, ts. c> p q = ( t, 0) = t ja E={v R v p + v q =c}. 57

58 LUKU 6. KARTIOLEIKKAUKSET Huomataan, että(c/, 0) E, sillä ( c, 0) (t, 0) + (c, 0) ( t, 0) = c t + c + t =( c t)+(c + t)=c. Merkitään a = c/. Havaitaan, että E sisältyy a-sivuiseen neliöön: sillä kaikilla v=(x, y) R pätee E Q ={(x, y) R x a, y a}, v p + (v q = (x t, y) + (x, y) ( t, 0) = (x t, y) + (x+ t, y) max{ x, y }. Kun(x, y) Q, niin (x, y) E (x, y) (t, 0) + (x, y) ( t, 0) =a (x t) + y + (x+ t) + y = a (x t) + y = a (x+ t) + y (x t) + y = 4a 4a (x+ t) + y +(x+ t) + y x xt+ t = 4a 4a (x+ t) + y + x + xt+ t 4a (x+ t) + y = 4a + 4xt ( x t a a=a ) 0 a ((x+ t) + y )=a 4 + a xt+ x t a x + a xt+ a t + a y = a 4 + a xt+ x t (a t )x + a y = a 4 a t = a (a t ) x y a + a t= 1. Merkitään b= a t. Koska a=c/>t, niin 0<b a. Edellinen johto merkitsee, että E {(x, y) R x a +x b = 1} S ={(x, y) R x a, y b}. Erityisesti E siis sisältyy suorakaiteeseen S Q. Huomattakoon myös, että edellisessä johdossa oli vain yksi kohta( ), jossa päättelyssä oli implikaatio ekvivalenssin sijasta. Implikaatio johtui siitä, että yhtälön molemmat puolet korotettiin neliöön, jolloin yhtäpitävyys pätee vain, jos yhtälön puolet ovat samanmerkkiset. Osoitetaan nyt, että samanmerkkisyys todellakin pätee suorakaiteessa S. Kun(x, y) S, niin (x, y) ( t, 0) = (x+ t) + y ( ) (a+t) + b = a + at+ t + a t = a at a + a = a

6.1. ELLIPSI, PARAABELI JA HYPERBELI 59 joten a (x+ t) + y 0, mikä osoittaa, että implikaatio kohdassa( ) voidaan korvata ekvivalenssilla. Siis E={(x, y) R x y a+ b= 1}. Huomautus. Janoja origosta pisteisiin(a, 0) ja(0, b) kutsutaan ellipsin puoliakseleiksi. Puoliakselit voitaisiin tietenkin määritellä myös ellipseille, joiden polttopisteet eivät sijaitse symmetrisesti x-akselilla. Ei ole vaikeata osoittaa, että mielivaltaisella ellipsillä on symmetriakeskipiste, joka on polttopisteiden yhdysjanan keskipiste. Ellipsien symmetriaryhmät ovat isomorfisia, jos ellipsit eivät ole ympyröitä. Määritelmä 6.3. Tasokuvio on paraabeli, jos se on niiden pisteiden ura, jotka ovat yhtä kaukana kiinteästä pisteestä p ja kiinteästä suorasta l, missä oletetaan, että p l. Pistettä p kutsutaan polttopisteeksi) ja suoraa l johtosuoraksi. Lause 6.4. Jos paraabelin P johtosuora on x-akselin suuntainen, niin jollakin a, b, c, a 0, pätee P={(x, y) R ax + bx+ c= y}. Todistus. Olkoon P:n johtosuora l={(x, y) R y=t}, missä t R on vakio, ja P:n polttopiste p=(p 0, p 1 ) R, missä p 1 t. Määritelmästä saadaan missä a= (x, y) P y t = (x p 0 ) +(y p 1 ) y yt+ t =(x p 0 ) +(y p 1 ) y yt+ t = x xp 0 + p 0 + y yp 1 + p 1 y(p 1 t) = yp 1 yt= x xp 0 + p 0 + p 1 t 0 y= x xp 0 + p 0 + p 1 t (p 1 t) 1 (p 1 t), b= p 0 p 1 t ja c= p 0 + p 1 t (p 1 t). = ax + bx+ c, Määritelmä 6.5. Olkoon a ja b kaksi tason R pistettä ja 0<d< a b. Polttopisteiden a ja b sekä erotusparametrin d määräämä hyperbeli on H ={ x R x a x a =d}.

60 LUKU 6. KARTIOLEIKKAUKSET 6. Kartio leikkaa tasoa Määritelmä 6.6. Suora kaksivaippainen ympyräkartio on R 3 :n osajoukko K, jonka määräävät huippu p R 3, huipun kautta kulkeva suora l ja suhde k> 1. Kartio K koostuu niistä pisteistä, joilla etäisyyksien suhde huipusta p ja suorasta l on vakio k. Lause 6.7. Suoran kaksiosaisen ympyräkartion K yhtälö on. asteen polynomiyhtälö muuttujien x 0, x 1 ja x suhteen, kun(x 0, x 1, x ) K. Todistus. Olkoon K suora kaksivaippainen ympyräkartio, jonka huippu p=(p 0, p 1, p ) R 3, määräävä suora on l ja suhde on k> 0. Olkoon s=(s 0, s 1, s ) suoran l suuntavektori, jolle s =1, ts. l={ p+λs λ R}, sillä määritelmän mukaan p l. Merkitään k= 1/ sin α, missä α ]0, π [. Huomataan, että K koostuu niistä pisteistä x=(x 0, x 1, x ), joille suoran l ja janan[p, x] välinen kulma on α, ja lisäksi pisteestä p K. Siis Kun x=(x 0, x 1, x ) R 3, niin K={ x R 3 (p x) s = p x s cos α}. x K (p x) s= p x s cosα =1 (p i x i )s i =cosα (p i x i ) (Molemmat puolet epänegatiivisia) ( s i (x i p i )) = cos α (x i p i ) s i(x i p i ) + s i s j (x i p i )(x j p j )=cos α i,j {0,1,}, i j (s i cos α)(x i p i ) + i,j {0,1,}, i j s i s j (x i p i )(x j p j )=0. (x i p i ) Tämä yhtälö tunnistetaan muodoltaan polynomiyhtälöksi. Lisäksi se on toista astetta, sillä jos s i cos α= 0 jokaisella i {0, 1, }, niin s 0 = s 1 = s = 1/3, sillä s 0 + s 1 + s = 1, mistä seuraa s 0 s 1 = 1/3 0. Lause 6.8. Kun suoraa kaksivaippaista ympyräkartiota leikataan xy-tasolla, niin saadaan kartioleikkaus, jonka yhtälö on toisen asteen muotoa muuttujien x 0 ja x 1 suhteen, ts. jos L on tämä kartioleikkaus, niin missä f on toisen asteen polynomi. L={(x 0, x 1, x ) R 3 f(x 0, x 1 )=0},

6.3. TOISEN ASTEEN KÄYRÄN ANALYSOINTI 61 Todistus. Olkoon K kyseinen kartio, jota leikataan xy-tasolla{(x 0, x 1, x ) R 3 x = 0}. Käytetään kartiolle edellisessä todistuksessa johdettua yhtälöä ja sijoitetaan sinne x = 0. Tällöin saadaan missä L=K {(x 0, x 1, 0) (x 0, x 1 ) R }={(x 0, x 1, x ) R 3 f(x 0, x 1 )=0}, f(x 0, x 1 )=(s 0 cos α)(x 0 p 0 ) +(s 1 cos α)(x 1 p 1 ) +(s cos α)(0 p ) + s 0 s 1 (x 0 p 0 )(x 1 p 1 )+s 0 s (x 0 p 0 )(0 p )+s 1 s (x 1 p 1 )(0 p ), joka on korkeintaan toista astetta oleva polynomifunktio muuttujien x 0 ja x 1 suhteen. Jälleen huomataan, että polynomi f on toista astetta, sillä kaikki toisen asteen kertoimet eivät voi hävitä: Jos nimittäin olisi s 0 cos α= s 1 cos α= s 0 s 1 = 0, niin seuraisi s 0 = s 1 = cosα= 0, mikä on ristiriidassa sen kanssa, että α ]0, π/[. 6.3 Toisen asteen käyrän analysointi Määritelmä 6.9. Polynomikuvaus p R n R on k:nnen asteen muoto(k, n Z + ), jos kaikilla x R n, t R pätee p(tx)=t k p(x). Toisen asteen muotoa kutsutaan neliömuodoksi. Lemma 6.10. Polynomikuvaus p R R on neliömuoto, jos ja vain jos joillakin kertoimilla a, b, c R pätee, että p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1, kun(x 0, x 1 ) R. Todistus. Oletetaan ensin, että joillakin vakioilla a, b, c R pätee, että p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1, kun(x 0, x 1 ) R. Tällöin kaikilla(x 0, x 1 ) R ja t R on voimassa p(t(x 0, x 1 ))=p(tx 0, tx 1 )=a(tx 0 ) + b(tx 0 )(tx 1 )+c(tx 1 ) = t ax 0 + bx 0x 1 + cx 1 = t p(x 0, x 1 ). Siis tällainen p on neliömuoto. Olkoon sitten polynomikuvaus p R R mielivaltainen neliömuoto. Oletetaan, että deg(p), ts. kun(x 0, x 1 ) R, niin p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 + dx 0+ ex 1 + f, missä a, b, c, d, e, f R ovat vakioita. Koska p on neliömuoto, niin erityisesti f= p(0, 0)=p(0 (0, 0))=0 p(0, 0)=0.

6 LUKU 6. KARTIOLEIKKAUKSET Edelleen joten d=0. Vastaavasti a d=p( 1, 0)=p(( 1)(1, 0))=( 1) p(1, 0)=p(1, 0)=a+d p(0, 1)=p(0, 1) c e=c+ e e=0. Siis p on haluttua muotoa. Todistetaan lopuksi, miksi tapaus deg(p) > on mahdoton. Kirjoitetaan p(x 0, x 1 )= a i,j x0 ixj 1, i,j N missä vain äärellisen moni vakioista a ij eroaa nollasta. Oletetaan vastoin väitettä, että joillakin i, j N a ij 0 ja i+j>. Merkitään Valitaan y=(y 0, y 1 ) R, jolle Merkitään Tällöin kaikilla t R on voimassa n = max{ i+j i, j N, a ij 0}>. p(ty) t n τ = k=0 n = t k k=0 n 1 = t k k=0 n 1 δt k. n k=0 τ= a i,j y i 0 yj 1 0. i,j N, i+j=n δ= a i,j y i 0 yj 1. i,j N, i+j<n i,j N, i+j=k i,j N, i+j=k a i,j (ty 0 ) i (ty 1 ) j t n τ a i,j y i 0 yj 1 tn a ij y i 0 yj 1 i,j N, i+j=k i,j N, i+j=n a ij y i 0 yj 1 Kun t 1, tästä seuraa p(ty) t n τ nδt n 1. Erityisesti kun t max{1, nδ/ τ }, niin p(ty) t n τ nδt n 1 t n τ t n τ /=t n τ / ja p(ty) t n τ +nδt n 1 3t n τ /.

6.3. TOISEN ASTEEN KÄYRÄN ANALYSOINTI 63 Mutta tästähän seuraa p(4ty) p(ty) vaikka toisaalta neliömuodolle p saadaan (4t)n τ / 3t n τ / = 4n /3, p(4ty) p(ty) = 4 4 3 /4<4 n /3. Tämä on ristiriita, joka osoittaa mahdottomaksi, että p:ssä olisi toista astetta korkeampia termejä. Määritelmä 6.11. Neliömuoto p R R on indefiniitti, jos se saa sekä positiivisia että negatiivisia arvoja. Jos p ei ole indefiniitti ja p(x) 0, kun x R {0}, niin p on definiitti. Jos p ei ole indefiniitti eikä definiitti, niin se on semidefiniitti. Lause 6.1. Neliömuoto p R R, p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1, on 1) indefiniitti, jos b 4ac> 0, ) semidefiniitti, jos b 4ac= 0 ja 3) definiitti, jos b 4ac< 0. Todistus. Käsitellään ensin erikoistapaus a=c= 0, jolloin p(x 0, x 1 )=bx 0 x 1, kun(x 0, x 1 ) R. Lisäksi saadaan, että b 4ac= b 0. Jos b=0, niin b 4ac= 0 ja p on nollakuvaus, joten se on semidefiniitti. Jos taas b 0 eli b 4ac= b > 0, niin p saa selvästi sekä positiivisia että negatiivisia arvoja eli p on indefiniitti. Oletetaan sitten, että a 0 tai c 0. Tilanteen symmetrisyyden vuoksi voidaan olettaa, että a 0. Tällöin saadaan p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 = a(x 0 + b a x 0x 1 )+cx 1 = a(x 0 + b a x 0x 1 + b 4a x 1 )+cx 1 ab = a(x 0 + b a x 1) + 4ac b x1 4a ( ), 4a x 1 kun(x 0, x 1 ) R. Jaetaan nyt käsittely kolmeen tapaukseen. Oletetaan, että b 4ac< 0, jolloin 4ac b > 0. Lausekkeessa( ) summattavat ovat samanmerkkisiä tai ainakin toinen on nolla. Voidaan olettaa, että a > 0, jolloin p(x 0, x 1 )=a(x 0 + b a x 4ac b 1) + x1. 4a 0 0

64 LUKU 6. KARTIOLEIKKAUKSET Tästä muodosta havaitaan, että p(x 0, x 1 )=0, jos ja vain jos a(x 0 + b a x 1) = 0 4ac b x1 4a = 0 Siis tässä tapauksessa p on definiitti. Oletetaan sitten, että b 4ac=0, jolloin x 0 + b a x 1= 0 x 1 = 0 x 0 = 0 x 1 = 0. p(x 0, x 1 )=a(x 0 + b a x 1), kun(x 0, x 1 ) R. Selvästi p ei voi saada sekä positiivisia että negatiivisia arvoja. Toisaalta p(x 0, x 1 )=0 x 0 = b a x 1. Siis p on semidefiniitti. Oletetaan lopuksi, että b 4ac> 0. Edelleen kaava( ) on voimassa. Voidaan olettaa, että a>0. Tällöin kaikilla x 0 0 pätee p(x 0, 0)=ax 0 > 0 ja jos(x 0, x 1 ) R, x 1 0, toteuttaa yhtälön x 0 + b a x 1= 0, niin Siis p on idefiniitti. p(x 0, x 1 )= 4ac b x1 4a < 0. Määritelmä 6.13. Olkoot A, B R. Tasokuviot A ja B ovat yhtenevät, A B, jos on olemassa yhtenevyyskuvaus f R R, jolle B= f[a]. Lause 6.14. Olkoon C = g 1 {0} toisen asteen käyrä, missä g R R, g(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 + dx 0+ ex 1 + f. Merkitään p:llä vastaavaa neliömuotoa p R R, p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1. Jos p on definiitti tai indefiniitti, niin C p 1 {γ} jollakin vakiolla γ R. Todistus. Osoitetaan, että itse asiassa on olemassa sellainen siirto s t, t=(t 0, t 1 ) R, että s t C p 1 {γ}. Olkoon t=(t 0, t 1 ) R. Kun(x 0, x 1 ) R, niin (g s 1 t)(x 0, x 1 )=(g s t )(x 0, x 1 )=g(x 0 + t 0, x 1 + t 1 ) = a(x 0 + t 0 ) + b(x 0 + t 0 )(x 1 + t 1 )+c(x 1 + t 1 ) + d(x 0 + t 0 )+e(x 1 + t 1 )+f = ax 0 + bx 0x 1 + cx 1 +(at 0+ bt 1 + d)x 0 +(bt 0 + ct 1 + e)x 1 + at 0 + bt 0t 1 + ct 1 + dt 0+ et 1 + f = p(x 0, x 1 )+(at 0 + bt 1 + d)x 0 +(bt 0 + ct 1 + e)x 1 + p(t 0, t 1 ).

6.3. TOISEN ASTEEN KÄYRÄN ANALYSOINTI 65 Siirto s t halutaan valita siten, että at 0 + bt 1 + d=0 ja bt 0 + ct 1 + e=0 eli Tällä yhtälöllä on ratkaisu, koska ( a b b c )(t 0 t 1 )=( d e ). det( a b b c )=4ac b 0, sillä p on definiitti tai indefiniitti. Jos t=(t 0, t 1 ) on tämä ratkaisu, niin kaikilla x=(x 0, x 1 ) R pätee (g s 1 t)(x 0, x 1 )=p(x 0, x 1 )+γ, missä γ= p(t 0, t 1 ). Siis p 1 {γ}=s t [C] C. Lemma 6.15. Neliömuodon p R R, p(x 0, x 1 )=ax 0 + bx 0x 1 + cx 1 lausekkeella on esitys p(x 0, x 1 )=(x 0 x 1 )( a b/ b/ c )(x 0 x 1 ). Todistus. Todellakin (x 0 x 1 )( a b/ b/ c )(x 0 x 1 )=(x 0 x 1 )( ax 0+ bx1 bx 0 + cx ) 1 = ax0 + bx 0x 1 + bx 0x 1 + cx1 = ax0 + bx 0x 1 + cx1. on Seuraavaksi esitämme joitain aputuloksia lineaarialgebrasta. Fakta: Symmetrisellä n n-matriisilla on n lineaarisesti riippumatonta ominaisvektoria. Karakteristinen polynomi matriisille ( a b/ b/ c ) a λ b/ b det( )=(a λ)(c λ) b/ c λ 4 = λ (a+c)λ+ac b 4. Tämän polynomin diskriminantti on D=( (a+c)) 4(ac b 4 )=(a c) + b 0.

66 LUKU 6. KARTIOLEIKKAUKSET Huomataan, että Tällöin D= 0 a=c, b=0. ( a b/ b/ c )=(a 0 0 a )=ai, missä I on identiteettimatriisi, ja matriisilla on ominaisvektorit (1,0) ja (0,1). Fakta: Symmetrisen n n-reaalimatriisin ominaisarvot ovat reaalisia. Fakta: Symmetrisen n n-matriisin eri ominaisarvoja vastaavat ominaisvektorit ovat keskenään kohtisuorassa. Todistus. Olkoon A symmetrinen n n-matriisi, ts. A T = A. Olkoon x ja ominaisarvoa λ vastaava ominaisvektori ja vastaavasti y ominaisarvoa µ vastaava ominaisvektori. Tällöin x T Ay=x T (µy)=µ(x T y) ja Siis x t Ay=(y T Ax) T =(y T (λx)) T = λ(x T y). (µ λ)x T y=0 x T y=0 x ja y ovat kohtisuorassa. Merkitään kiertomatriisia R φ =( cosφ sin φ sin φ cosφ ). Luennoilla esitettiin seuraavien tulosten todistusten hahmotelmat. Lause 6.16. Olkoon f R R toisen asteen polynomifunktio, jota vastaava neliömuoto on definiitti. Tällöin jokaisella γ R tasa-arvokäyrä f 1 {γ} on joko ellipsi tai piste tahi tyhjä joukko. Lause 6.17. Olkoon f R R toisen asteen polynomifunktiot, jota vastaava neliömuoto on indefiniitti. Tällöin jokaisella γ R tasa-arvokäyrä f 1 {γ} on joko hyperbeli tai toisiaan leikkaava suorapari. Lause 6.18. Olkoon f R R toisen asteen polynomifunktiot, jota vastaava neliömuoto on semidefiniitti. Tällöin jokaisella γ R tasa-arvokäyrä f 1 {γ} on joko paraabeli tai suora tai yhdensuuntaisista suorista koostuva suorapari tahi tyhjä joukko.