MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
|
|
- Timo-Jaakko Majanlahti
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus. d) Muodosta vektorin AB kanssa vastakkaissuuntainen yksikkövektori.. Merkitään suunnikkaan ABCD sivuvektoria AB a ja AD b. Piste P jakaa sivun CD suhteessa 3 : 1 ja piste Q jakaa sivun CB suhteessa 1 :. Ilmaise vektorit AP, AQ ja QP vektorien a ja b avulla. 3. Piste P jakaa janan AB suhteessa 3 : 1. Määritä P:n koordinaatit, kun A=(3,0,1) ja B=(-5,4,11). 4. Olkoot vektorit u ja v erisuuntaiset. Jaa vektori 4u 14v vektorien u v ja u v suuntaisiin komponentteihin. 5. Kolmiossa ABC piste P jakaa sivun AC suhteessa 3 : 1 ja piste R sivun BC samoin suhteessa 3 : 1. a) Esitä vektori PR vektorien AB u ja AC v avulla. b) Laske jakosuhde PR : AB. 6. Ovatko vektorit 15i 9 j 6k ja 40i 4 j 16k samansuuntaiset, vastakkaissuuntaiset vaiko erisuuntaiset?
2 Pistetulo, vektorien kohtisuoruus, vektorien välinen kulma 7. Olkoon vektori a 10i 5 j ja vektori b i 11j. Ovatko vektorien a ja b summa ja erotus kohtisuorassa toisiaan vastaan? 8. Määritä reaaliluku t siten, että vektorit a 1 i 8 j ja b 7i t j ovat a) yhdensuuntaisia, b) kohtisuorassa toisiaan vastaan. 9. Olkoot vektorit a ja b ovat erisuuntaiset. Millä vakion t arvolla vektorit u ta b ja v a tb ovat vastakkaissuuntaiset? 10. Laske a b, kun yksikkövektorit a ja b ovat tasasivuisen kolmion peräkkäisinä sivuina. 11. Laske vektorien a ja a b välinen kulma, kun a 3i j ja b j 4k. 1. Suuntaissärmiön ABCD-A'B'C'D' kärjestä A lähtevät särmävektorit ovat AB i j, AD i j 3k ja AA 3 j 4k. Kuinka suuren kulman tahkon ABCD lävistäjä AC muodostaa suuntaissärmiön lävistäjän AC' kanssa? 13. Laske sen kolmion pinta-ala, jonka kärjet ovat pisteissä A(1, 1, ), B(, 3, 6) ja C(3,, ).
3 Suorat ja tasot 14. Määritä pisteiden P 1 (1,, 4) ja P ( 3, 6, 5) kautta kulkevan SUORAN vektori ja parametriyhtälöt. Merkitään suoran yleinen piste P(x, y, z). 15. a) Määritä pisteiden A(1,, 8), B( 1, 1, 4) ja C(, 1, 3) määräämän tason vektoriyhtälö. b) Onko piste D(3,, ) tässä tasossa? 16. Suora kulkee pisteiden A(, 1, 1) ja B(8, 3, 9) kautta. Osoita, että suora on tasolla x y z 4 = Määritä sen tason normaalimuotoinen yhtälö, joka kulkee pisteen P(1, -3, ) kautta ja on kohtisuorassa tämän pisteen paikkavektoria vastaan. 18. a) Määritä tason x 3y z 6 0 jokin normaalivektori. b) Missä pisteissä taso x 3y z 6 0 leikkaa koordinaattiakselit? 19. Määritä sen tason normaalimuotoinen yhtälö, joka on tason x 3y z 8 0 suuntainen ja kulkee pisteen (-, 1, -3) kautta. 0. Osoita, että tasot x 4y 6z 7 0 ja x y 3z 9 0 ovat yhdensuuntaiset. 1. a) Määritä pisteiden A(1,, 0), B(-1, 3, -) ja C(, 1, 3) kautta kulkevan tason normaalimuotoinen yhtälö. b) Onko piste (, 3, -5) tällä tasolla?
4 . Yo-K09 3. Yo-K07 4. Yo-S06 5. Yo-K03 Skalaariprojektio, vektoriprojektio 6. Olkoon vektorit a i j ja b 4i. a) Määritä vektorin a skalaariprojektio vektorilla b. b) Määritä vektorin a vektoriprojektio a b vektorilla b. c) Piirrä vektorit a, b ja a b samaan koordinaatistoon ja alkamaan samasta pisteestä. 7. Kuinka pitkä on vektorin a i 7j 7k projektio vektorilla b 8i 4j k? 8. Määritä vektorin a i j 3k vektoriprojektio vektorilla b i j k.
5 9. a) Määritä pisteen A(6, 4, 4) projektiopiste P pisteiden B (, 1, ) ja C(3, 1, 4) kautta kulkevalla suoralla. b) Huomaa, kuinka kätevää nyt on määrittää pisteen etäisyys suorasta! Eli, laske pisteen A etäisyys pisteiden B ja C kautta kulkevasta suorasta. 30. Todista, että vektoreiden a ja b skalaariprojektion voi laskea myös kaavalla: on vektorin b suuntainen yksikkövektori. ab a b 0, missä 0 b 31. a) Todista, että vektorin a xi y j zk pituuden voi laskea myös kaavalla: a a a. a b b) Todista, että vektoreiden a ja b vektoriprojektion voi laskea myös kaavalla: ab b. b Jakosuhdevektori JAKOSUHDELAUSE Jos janan AB piste P jakaa janan AB suhteessa q : p, niin OP pa qb p q 3. Janan AB piste P jakaa janan suhteessa :3. Ilmaise vektori OP vektoreiden a OA ja b OB avulla. 33. Piirretään samasta pisteestä alkavat vektorit janan päätepisteisiin ja janan keskipisteeseen. Todista: Janan keskipisteeseen piirretty vektori on janan päätepisteisiin piirrettyjen vektorien keskiarvo. 34. Kolmion huipusta lähtevät sivujanavektorit ovat a i j k ja b i j 4k. Muodosta kolmion huipusta kannalle piirretyn keskijanavektorin lauseke.
6 35. Piste P jakaa pisteiden A(1,, 4) ja B(,,1) välisen janan AB suhteessa :1. a) Määritä pisteen P paikkavektori OP. b) Määritä piste P. 36. Missä suhteessa janan BC piste P jakaa janan BC? pa qb 37. Todista jakosuhdelause OP. p q Determinantit 38. Laske determinantin arvo Laske determinantin arvo V E L IL, kun VI E 6.
7 40. Osoita esimerkillä, että determinantteja ei voida laskea yhteen seuraavasti: a b e f a e b f. c d g h c g d h 41. Ilmaise ( x y)( x y) kaksirivisenä determinanttina. Vihje: muistikaava! 4. Laske determinantin arvo i j k 43. Mitä vektoria determinantti esittää? 44. Lineaarisen normaalimuotoisen yhtälöparin voi ratkaista determinanteilla seuraavasti: Dx x a x b y c D yhtälöparilla on yksikäsitteinen ratkaisu, jossa a D x b y c y y a b c b a c D, D ja D a b c b a c. ( D 0) x y D Ratkaise determinanteilla yhtälöpari 3x y 6 0. x y Todista, että ensimmäisestä sarakkeesta voi ottaa mahdollisen yhteisen tekijän determinantin kertoimeksi seuraavasti xa b c a b c xd e f x d e f. xg h i g h i
8 Vektori- eli ristitulo 46. Olkoon a i j 3k ja b i 3j k. a) Muodosta a b. b) Laske a b. c) Muodosta a b. 47. Ristitulo ei ole vaihdannainen eli a b b a. Olkoon a i 3 j k ja b i j k. a) Laske a b b) Laske b a. 48. Osoita ristitulon avulla, että vektorit a 4i j 8k ja 1 b i j k ovat yhdensuuntaiset. 49. Määritä ne yksikkövektorit, jotka ovat kohtisuorassa origon sekä pisteiden A(-, 0, 1) ja B(3, 4, -) kautta kulkevaa tasoa vastaan. 50. Muodosta yksikkövektorit, jotka ovat kohtisuorassa pisteiden A = (1, 1, 1), B = (, 3, 4) ja C = (7, 6, 5) muodostamaa tasoa vastaan. 51. Laske sen kolmion ala, jonka kärkinä ovat pisteet A(1, 0, ), B(1, -, 3) ja C(4,, 0). 5. Suunnikkaassa ABCD on lävistäjävektorit AC 3i j k ja BD i j 3k. Laske suunnikkaan ala. 53. Määritä pisteiden A(1,, 0), B(-1, 3, -) ja C(, 1, 3) kautta kulkevan tason normaalimuotoinen yhtälö ax by cz d Todista yhdensuuntaisuuslause: a b a b 0. (vihje: laske ristitulo vektoreille a x1i y1 j z1k ja b ta tx1i ty1 j tz1k )
9 Skalaarikolmitulo 55. Tutki skalaarikolmitulolla, sijaitsevatko pisteet A = (1, 1, 1), B = (, -, 0), C = (-1,, -) ja D = (-9, 11, -9) samassa tasossa? 56. Määritä vakio a siten, että vektorit a i j k, b i 3j k ja c ai 4 j k sijaitsevat samassa tasossa. 57. Laske vektorien a i j 3k, b i 4k ja c i j k määräämän suuntaissärmiön tilavuus. 58. Tetraedrin kärkinä ovat pisteet A(1, -, -3), B(, -, 0), C(4, 0, -6) ja D(5, -4, -). Laske tetraedrin tilavuus. 59. Suuntaissärmiön pohjasärminä ovat vektorit a 3i j k ja b i j 4k sekä sivusärmänä vektori c 4i j k. Laske suuntaissärmiön a) tilavuus b) pohjan pinta-ala c) korkeus. 60. Origosta alkavat vektorit a i j k ja b i j k määräävät tason. Laske pisteen P(-, 1, 3) etäisyys kyseisestä tasosta. (Vihje: Ajattele tasoa suuntaissärmiön pohjaksi ja pisteen etäisyyttä korkeudeksi) 61. Todista, että skalaarikolmitulon saa kätevästi determinantilla eli, että vektoreille a axi ay j azk, b bx i by j bzk ja c cxi cy j czk pätee: a a a x y z ( a b ) c b b b x y z c c c x y z
10 Eri lukujärjestelmät 6. Luettele luvut 1 10 binäärilukuina. 63. Luettele luvut 1 10 viisikantaisen lukujärjestelmän lukuina. 64. Mikä kymmenjärjestelmän luku on binääriluku Muuta luku 46 binääriluvuksi. 66. Muuta luku kymmenjärjestelmän luvuksi. 67. Muuta heksadesimaaliluku 3A1E kymmenjärjestelmän luvuksi. 68. Muuta luku 3010 heksadesimaaliluvuksi. 69. Muuta 035 a) binääriluvuksi. b) heksadesimaaliluvuksi. 70. Laske allekkain a) b) Laske allekkain heksadesimaalilukujen erotus C1 A.
11 Pascalin kolmio ja binomikaava 7. Kirjoita Pascalin kolmion 11. rivi. 73. Laske Pascalin kolmion avulla ( x ) 5 y. 74. Laske Pascalin kolmion avulla ( x ) 3 y. 75. Laske Pascalin kolmion avulla 4 (3x ). 76. Laske Pascalin kolmion avulla 6 (x 3). 77. Binomikertoimen voi laskea kaavalla: n n! k k!( n k)!. Laske ilman laskinta Todista, että n n k n k. 79. Laske ilman laskinta Laske a) n 0 b) n Binomikaava on n n ( a b) a b k 0 k n n k k. Laske binomikaavalla ( x ) 3 y. 8. Päättele binomikaavan avulla, mikä on polynomin 10 ( x 6) kahdeksannen asteen termi.
12 GeoGebra-harjoituksia 83. Piirrä GeoGebralla ympyrä ja sen ulkopuolelle yksi piste. Piirrä tästä ulkopuolisesta pisteestä ympyrälle tangentit. Piirrä ympyrän keskipisteestä säteet tangenttien sivuamispisteisiin. Kun liikutat ulkopuolista pistettä tai muutat ympyrää, on tangenttien ja säteiden säilyttävä muutoksessa mukana! 84. Piirrä GeoGebralla kolmio ABC ja siihen kärjestä C lähtevä korkeusjana kannalle AB. Huomaa, että kun muutat kolmion muotoa sen kärkipisteistä, niin korkeusjanan on pysyttävä mukana muutoksessa. Yritä tehdä ratkaisustasi myös sellainen, että korkeusjana tulee kannan jatkeelle kantakulman ollessa tylppä. 85. Piirrä GeoGebralla kolmio ja sen jokaiselle sivulle keskinormaali. Piirrä ympyrä, jonka keskipiste on keskinormaalien leikkauspiste ja eräs kehän piste on jokin kolmion kärkipisteistä. Mitä huomaat? 86. Tee GeoGebralla konstruktio, joka havainnollistaa ns. Thaleen lausetta: puoliympyrän sisältämä kehäkulma on suorakulma. 87. Tee GeoGebralla 3 liukusäädintä a, b ja c. Tee liu uista sellaiset, että niiden arvoa voi muuttaa välillä [ 4,4]. Muodosta paraabelit y ax bx c ja x ay by c. Tutki liukujen avulla, kuinka kertoimet vaikuttavat paraabeleihin.
13 88. Tee GeoGebralla liuku r, jonka arvo on kokonaisluku välillä [ 5,5]. Tutki eksponentin r vaikutusta r funktion f ( x) x kuvaajaan. x x, kun 89. Piirrä GeoGebralla paloittain määritellyn funktion f( x) x 4, kun x GeoGebran Jos(<Ehto>, <Niin>, <Muuten>) komentoa. kuvaaja. Käytä 90. Piirrä GeoGebran 3D-piirtoalueessa kuutio, jonka särmän pituus on. Piirrä kuution sisälle mahdollisimman suuri pallo. 91. Ratkaise GeoGebralla: määritä sen tason normaalimuotoinen yhtälö, joka on tason x 3y z 8 0 suuntainen ja kulkee pisteen (-3, 1, ) kautta.
14 VASTAUKSET 1.. a) OA i j 4k b) AB 3i j 7k c) AB d) i j k AP b a 4 AQ a b QP b a P 3,3,8 4. a 5( u v) 9( u v) 5. a) 1 4 u b) 1 : 4 6. Vastakkaissuuntaiset 7. On 8. a) 9. t = t b) ,8 t , A
15 14. x = t Vastaus: xi y j z k i j 4k t(4i 4 j 9k), y = 4 t, t reaaliluku z = t 15. a) xi y j zk = i j 8k + s( i j 4k ) + t( i 3 j 5k ). b) On 16. Suora on tasolla 17. x 3y z a) n i 3j k b) (-3,0,0), (0,,0) ja (0,0,-6) 19. x 3y z Tasojen normaalivektorit ovat yhdensuuntaiset 1. a) x 4y z 9 0 b) On tasolla. 1x 9y z Parametriesitys x t y 3 10t z 6 9t ja leikkauspiste 10 11,, x 1 y z ,, a) b) i c) i j k 9 9 9
16 9. a) P (4, 3,6) b) Todista! 31. Todista! 3. 3 a b a b v i 1 j 3 k 35. a) 5 i j k b) P 5,, : Todista! L 40. Anna esimerkki! 41. x y y x i 4 j 14k 44. x 1 y Todista! 46. a) 3i 5 j 4k b) 11 c) 7i 5j k 47. a) 7i 4 j 5k b) 7i 4 j 5k 48. Ristitulo on nollavektori, joten vektorit ovat yhdensuuntaiset.
17 ( i j k ) ( i j k ) x 4y z Muista todistaa lause kumpaankin ekvivalenssin suuntaan! 55. Pisteet sijaitsevat samassa tasossa. 56. a = a) 60 b) 15 c) Todista, että yhtälön molemmat puolet ovat samat. 6. 1,10,11,100,101,110,111,1000,1001, ,,3,4,10,11,1,13,14, BC 69. a) b) 35
18 70. a) 11 b) F x 5x y 10x y 10x y 5xy y x 3x y 3xy y x 16x 16x 96x x 576x 160x 430x 4860x 916x Todista, että yhtälön molemmat puolet ovat samat a) 1 b) n a 3a b 3ab b x 83. Just do it! 84. Just do it! 85. Ympyrä kulkee aina muidenkin kolmion kärkipisteiden kautta! Siis keskinormaalien leikkauspiste on kolmion ympäri piirretyn ympyrän keskipiste! 86.
19 x 3y z 4 0
Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
LisätiedotTekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
LisätiedotTekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
Lisätiedot3 Yhtälöryhmä ja pistetulo
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5..06 Yhtälöryhmä ja pistetulo Ennakkotehtävät. z = x y, x y + z = 6 ja 4x + y + z = Sijoitetaan z = x y muihin yhtälöihin. x y + x y =
Lisätiedot0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.
Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotJuuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Vektorit. Vektori LUVUN. YDINTEHTÄVÄT 0. Piste P jakaa janan BC suhteessa : eli kahteen yhtä suureen osaan. Siten CP CB u ja DP DC CP DC CBv u u v. Vastaavasti DQ DA AQ DA ABu v. 7 7 0. a) Pisteen koordinaatit
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Lisätiedot1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
LisätiedotVEKTORIT paikkavektori OA
paikkavektori OA Piste A = (2, -1) Paikkavektori OA = 2i j 3D: kuvan piirtäminen hankalaa Piste A = (2, -3, 4) Paikkavektori OA = 2i 3j + 4k Piste A = (a 1, a 2, a 3 ) Paikkavektori OA = a 1 i + a 2 j
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotYleistä vektoreista GeoGebralla
Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotTASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
LisätiedotA-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3
Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
LisätiedotSuora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotOta tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
Lisätiedot2 Vektorit koordinaatistossa
Vektorit koordinaatistossa Ennakkotehtävät. Esimerkiksi 4i 4i4i i 4i Kaikkien reittien esitysmuoto vektoreiden i a avulla lausuttuna on sama. . a) Vektorin 4i komponentit muodostavat suorakulmaisen kolmion,
Lisätiedot2 Vektorit koordinaatistossa
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5..06 Vektorit koordinaatistossa Ennakkotehtävät. Esimerkiksi 4i 4i4i i 4i Kaikkien reittien esitysmuoto vektoreiden i a avulla lausuttuna
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
LisätiedotAvaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät
11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit
Lisätiedot169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus
5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2
Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
LisätiedotSuorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
Lisätiedot4.3 Kehäkulma. Keskuskulma
4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
LisätiedotPyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
LisätiedotYhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
Lisätiedotc) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
LisätiedotGeometriaa GeoGebralla Lisätehtäviä nopeasti eteneville
Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä
LisätiedotVektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.
49 3 VEKTORIT 3.1 VEKTORIN KÄSITE Vektori on suure, jolla suuruuden lisäksi on myös suunta (esim. kiihtyvyys). Skalaari puolestaan on suure, jolla on vain suuruus (esim. tiheys). Vektori graafisesti: Vektorin
LisätiedotLineaarialgebran laskumoniste Osa1 : vektorit
Lineaarialgebran laskumoniste Osa1 : vektorit A. Sinin, kosinin ja tangentin laajennetut määritelmät 1. Määritä ao. yksikköympyrän avulla a) sin(120 o ) b) cos(180 o ) (piirrä kulman kylki, ja lue kuvasta
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotPäähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48
Trigonometriset funktiot 169. Muutetaan asteet radiaaneiksi. 180 astetta on radiaaneina π eli 180 = π rad Tällöin 1 rad. 180 45 1 a) 45 180 4 4 65 1 b) 65 180 6 10 c) 10 180 5 5 d) 5 180 4 40 7 e) 40 180
LisätiedotHARJOITUSTEHTÄVIÄ. Millä vektorin c arvoilla voidaan vektoreita a + b, a + c ja b +2 c siirtelemällä muodostaa kolmio?
Pitkäranta: Calculus Fennicus II.2. Tason vektorit Koska ilmeisesti pätee v 1, v 2 W v 1 + v 2 W, v W λ v W λ R, on W itsekin vektoriavaruus. Sen kantaan tarvitaan vain yksi vektori, esim a, joten dim
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Lisätiedot1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
Lisätiedot3 Vektorin kertominen reaaliluvulla
3 Vektorin kertominen reaaliluvulla Summalla a + a + a tarkoitetaan lausekkeessa esiintyvän vektorin a kanssa samansuuntaista, mutta pituudeltaan tähän nähden kolminkertaista vektoria. Tätä summaa on tarkoituksenmukaista
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
LisätiedotOppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8
Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä
LisätiedotSuorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
LisätiedotTekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
LisätiedotMAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
LisätiedotGeometriaa kuvauksin. Siirto eli translaatio
Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotYmpyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
LisätiedotHarjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.
MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
LisätiedotRatkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
LisätiedotMatematiikan ilmiöiden tutkiminen GeoGebran avulla
Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion
LisätiedotTehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
LisätiedotKaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
LisätiedotPythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
LisätiedotPreliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
LisätiedotParaabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
Lisätiedotc) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d.
Tekijä Pitkä matematiikka 4 9.12.2016 20 a) Vektorin a kanssa samansuuntaisia ovat vektorit b ja d. b) Vektorit ovat erisuuntaiset, jos ne eivät ole yhdensuuntaiset (samansuuntaiset tai vastakkaissuuntaiset).
LisätiedotLineaarialgebra 5 op
Lineaarialgebra 5 op Vektorit osa1 Peruslaskutoimitukset Komponenttiesitys Vektorin pituus Jana vektorimuodossa Koordinaatistopisteen paikkavektori Vektorit Vektoreita tarvitaan mekaniikassa ja fysiikassa
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotSuorien ja tasojen geometriaa Suorien ja tasojen yhtälöt
6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran
LisätiedotTaso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
LisätiedotJuuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
LisätiedotPreliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
LisätiedotOsoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2
8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotLieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa
Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen
LisätiedotKenguru 2019 Student Ratkaisut
sivu 0 / 22 3 pistettä TEHTÄVÄ 1 2 3 4 5 6 7 8 VASTAUS C B D C B E C A 4 pistettä TEHTÄVÄ 9 10 11 12 13 14 15 16 VASTAUS B B E D A E A A 5 pistettä TEHTÄVÄ 17 18 19 20 21 22 23 24 VASTAUS E E D D C C B
LisätiedotPreliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa
Lisätiedotjoissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut
LisätiedotYmpyrän yhtälö
Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
LisätiedotKansainväliset matematiikkaolympialaiset 2008
Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotAvaruusgeometrian kysymyksiä
Avaruusgeometrian kysymyksiä Tässä esitettävät tehtävät ja lauseet kattavat asioita, jotka saattavat tulla vastaan mahdollisissa kolmiulotteisen geometrian kilpailukysymyksissä. Lukemista helpottaa, jos
Lisätiedot5 Rationaalifunktion kulku
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja
Lisätiedota) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Lisätiedot