Luento 8: Epälineaarinen optimointi

Samankaltaiset tiedostot
Luento 8: Epälineaarinen optimointi

Taustatietoja ja perusteita

Luento 9: Yhtälörajoitukset optimoinnissa

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

1 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Matematiikan tukikurssi

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

2 Osittaisderivaattojen sovelluksia

12. Hessen matriisi. Ääriarvoteoriaa

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matemaattinen Analyysi / kertaus

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Kertausta: avaruuden R n vektoreiden pistetulo

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

Matematiikan tukikurssi

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

1 Sisätulo- ja normiavaruudet

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

b 1. b m ) + ( 2b Ax) + (b b)

Ominaisvektoreiden lineaarinen riippumattomuus

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Vanhoja koetehtäviä. Analyyttinen geometria 2016

1 Rajoittamaton optimointi

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

802320A LINEAARIALGEBRA OSA II

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

1 Lineaariavaruus eli Vektoriavaruus

Ominaisarvo ja ominaisvektori

6 MATRIISIN DIAGONALISOINTI

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kertausta: avaruuden R n vektoreiden pistetulo

Insinöörimatematiikka D

Ortogonaalisen kannan etsiminen

Konjugaattigradienttimenetelmä

Sisätuloavaruudet. 4. lokakuuta 2006

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Paikannuksen matematiikka MAT

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

Matematiikka B1 - avoin yliopisto

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

5 Differentiaaliyhtälöryhmät

Johdatus tekoälyn taustalla olevaan matematiikkaan

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

6. OMINAISARVOT JA DIAGONALISOINTI

Vektorit, suorat ja tasot

1. Normi ja sisätulo

MS-C1340 Lineaarialgebra ja

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Tampereen yliopisto Informaatiotieteiden yksikkö

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

Matematiikan tukikurssi. Toinen välikoe

802320A LINEAARIALGEBRA OSA I

Talousmatematiikan perusteet: Luento 9

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

r > y x z x = z y + y x z y + y x = r y x + y x = r

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Käänteismatriisi 1 / 14

(1.1) Ae j = a k,j e k.

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

Harjoitusten 5 vastaukset

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Pienimmän neliösumman menetelmä

Tekijä Pitkä matematiikka

3.3 Funktion raja-arvo

Matematiikan tukikurssi

1 Matriisit ja lineaariset yhtälöryhmät

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6 Variaatiolaskennan perusteet

2. Teoriaharjoitukset

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Matematiikan tukikurssi, kurssikerta 3

Kohdeyleisö: toisen vuoden teekkari

Transkriptio:

Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään R m n. n kpl. R R. R n on vektoriavaruus, kun määritellään yhteenlasku ja skalaarilla kertominen: x + y = (x,..., x n ) + (y,..., y n ) := (x + y,..., x n + y n ), ja αx = α(x,..., x n ) := (αx,..., αx n ). R n on sisätuloavaruus, kun määritellään sisätulo: x y := n x i y i. i= Käytämme vektoreille myös matriisimerkintää, jolloin esimerkiksi x x =. x n ; x T = [ x x n ], ja x y = x T y. x:n pituus eli normi: x := n x 2 i = x T x. i= Schwartzin epäyhtälö: x y x y. Kolmioepäyhtälö: x + y x + y. Normi määrää metriikan, eli etäisyyden d: d(x, y) := x y = n (x i y i ) 2 i=

on x:n ja y:n välinen etäisyys. Vektoriavaruus R n varustettuna metriikalla d on n-ulotteinen euklidinen avaruus. Funktion maksimi ja minimi Olkoon f : R n R; f(x) = f(x,..., x n ). Määritellään: x on lokaali minimi, jos r > 0 s.e. f(x) f(x + h) h R n, h < r; eli h R n s.e. x + h B(x, r) := {x + h h < r}. Joukko B(x, r) on x-keskinen, r-säteinen avoin pallo. x on globaali minimi, jos f(x) f(x + h) h R n. Vastaavasti määritellään lokaali- ja globaali maksimi. Minimi- tai maksimipistettä x sanotaan myös optimipisteeksi. Funktion arvoa f(x) optimipisteessä x sanotaan minimi- tai maksimiarvoksi, tai optimiarvoksi. Kvadraattinen funktio Funktio f : R n R on lineaarinen, jos f(x) = c T x. Kvadraattinen funktio f : R n R on muotoa f(x) = 2 i c ix i + d, eli matriisimuodossa f(x) = 2 xt Qx + c T x + d, missä Q R n n ja Q on symmetrinen, eli Q=Q T. i j q ijx i x j + Huomaa Mikä tahansa neliömuodon keskellä oleva neliömatriisi A voidaan aina muuttaa symmetriseksi matriisiksi Q: skalaari x T Ax = (x T Ax) T = x T A T x Siis x T Ax = x T /2(A + A T )x, missä Q = (A + A T ) on symmetrinen. Esimerkki Hae funktion f(x) kvadraattinen esitys. f(x) = (x x 2 ) 2 + (x + 2x 2 + ) 2 8x x 2 = 2x 2 6x x 2 + 5x 2 2 + 2x + 4x 2 + 2

Mielivaltainen kahden muuttujan neliömuoto voidaan kirjoittaa seuraavasti: [ ] [ ] α β 2 [x x x 2 ] = β γ x 2 2 αx2 + βx x 2 + 2 γx2 2 [ ] [ ] [ ] α β 4 6 2 Q = =, c =, d =. β γ 6 0 4 Q R n n on positiivisesti definiitti, jos x T Qx > 0 x R n, x 0. positiivisesti semidefiniitti, jos x T Qx 0 x R n. negatiivisesti definiitti ja negatiivisesti semidefiniitti määritellään vastaavasti, mutta < ja merkeillä. Huomaa Q R n n positiivisesti definiitti Q:n kaikki ominaisarvot > 0. Vastaavasti muille definiittisyyksille ominaisarvot ovat 0, < 0, 0. Huomaa Q on positiiviseti- tai negatiivisesti definiitti käänteismatriisi Q. Esimerkki Olkoon f(x) = 2 xt Qx, ja Q positiivisesti definiitti x = 0 on f:n yksikäsitteinen globaali minimi. Jos Q on positiivisesti semidefiniitti x = 0 on globaali minimi, mutta ei välttämättä yksikäsitteinen. Differentioituvuus Määritelmiä: Olkoon f : R n R. f(x) := [ f/ x (x),, f/ x n (x) ] T on f:n gradientti pisteessä x. Gradientti ajatellaan siis pystyvektorina. Funktion f Hessen matriisi pisteessä x on 2 f/ x 2 (x) 2 f/ x x n (x) H f (x) :=..... R n n. 2 f/ x n x (x) 2 f/ x 2 n(x) 3

Huomaa, että H f (x) T = H f (x). f (x) Olkoon f: R n R m, f(x) =.. f m (x) Funktion f Jacobin matriisi pisteessä x on f (x) T f / x (x) f / x n (x) J f (x) :=. =..... R m n. f m (x) T f m / x (x) f m / x n (x) Funktio f on differentioituva x:ssä, jos f(x + h) f(x) = f(x) T h + h ε(x; h) h R n, missä funktio ε(x; ) : R n R on sellainen, että lim h 0 ε(x; h) = 0; käytämme raja-arvosta myös merkintää ε(x; h) 0, kun h 0. Huomaa Vaikka f:n osittaisderivaatat ovat olemassa pisteessä x, sen ei silti tarvitse olla differentioituva. Kuitenkin pätee: jos f:llä on jatkuvat osittaisderivaatat pisteessä x, se on (jatkuvasti) differentioituva x:ssä. Funktio on kahdesti differentioituva x:ssä, jos h R n on: f(x + h) f(x) = f(x) T h + 2 ht H f (x)h + 2 h 2 β(x; h), missä β(x; h) 0, kun h 0. Taylorin kaava: Jos f on kahdesti differentioituva x:ssä, on voimassa: f(x + h) = f(x) + f(x) T h + 2 ht H f (z)h = f(x) + f(x) T h + 2 ht H f (x)h, missä x, h R n ja z = x + αh, jollekin α, 0 < α <. On likimäärin - merkintä = tarkoittaa: vasen puoli miinus oikea puoli saadaan mielivaltaisen pieneksi, kun vain h on riittävän pieni. Tämä pätee, jos H f on x:n ympäristössä jatkuva. Huomaa Tästä lähtien oletamme aina, että osittaisderivaatat, tai toiset osittaisderivaatat silloin, kun niistä on kyse, ovat jatkuvia ko. tarkastelupisteessä. 4

Optimin välttämättömät- ja riittävät ehdot Lause Olkoon x funktion f lokaali optimipiste. Tällöin f(x) = 0, eli välttämättömät ehdot lokaalille optimille ovat: f(x)/ x i = 0, i n. Kyseessä on siis n:n yhtälön ryhmä n:n tuntemattoman muuttujan x i määräämiseksi. Todistus Olkoon esimerkiksi x lokaali minimi. Tällöin h R n, α > 0, on voimassa: f(x + αh) f(x) = α f(x) T h + α h ε(x, αh). Vastaoletus. Olkoon f(x) 0. Valitaan h s.e. f(x) T h < 0. f(x + αh) f(x) α = f(x) T h + h ε(x, αh) < 0, kun α > 0 on riittävän pieni. Tällöin f(x + αh) < f(x), mikä on ristiriita, koska x on lokaali minimipiste. Lause Olkoon f : R n R kahdesti differentioituva x:ssä. Tällöin (a) x on lokaali minimi f(x) = 0 ja H f (x) on positiivisesti semidefiniitti. (b) f(x) = 0 ja H f (x) positiivisesti definiitti x on yksikäsitteinen lokaali minimi. Vastaavasti lokaalille maksimille: (a) f(x) = 0 ja H f (x) on negatiivisesti semidefiniitti, (b) f(x) = 0 ja H f (x) negatiivisesti definiitti. Huomaa Ehdon f(x) = 0 toteuttava piste x voi olla myös ns. satulapiste, tai käännepiste. Esimerkiksi f(x) = x 3, x = 0 on käännepiste. Esimerkki f(x) = x + 2x 3 + x 2 x 3 x 2 x 2 2 x 2 3 f/ x (x) = 2x = 0 f(x) = 0 f/ x 2 (x) = x 3 2x 2 = 0 f/ x 3 (x) = 2 + x 2 2x 3 = 0 5

Yhtälöryhmän ratkaisu on x = (/2, 2/3, 4/3). Onko tämä maksimi tai minimi? 2 0 0 H f (x) = 0 2 0 2 Huomaa Kvadraattiselle f:lle H f (x) ei riipu x:stä. Jos f:ssä on x i :n korkeampia potensseja mukana, H f (x) riippuu yleensä x:stä. Ratkaistaan H f (x):n ominaisarvot: det(h f (x) λi) = 2 λ 0 0 0 2 λ 0 2 λ = (2 + λ) 3 + 2 + λ = (2 + λ)[(2 + λ) 2 ] = 0 λ = 2, λ 2 = 3, λ 3 = Siis H f (x) on negatiivisesti definiitti, joten kyseessä on lokaali maksimi. Derivoimissääntöjä f(x) = c T x = n i= c ix i ; f(x) = [ f x (x)... f x n (x)] T = [c,..., c n ] T = c. f(x) = Ax; A = a T. R m n, missä a T i on A:n i:s vaakavektori. a T m [ a T x] T J f (x) =. = [ a T mx] T a T. a T m = A. 6

f(x) = 2 xt Qx; vakio f(x) = 2 xt Q x + vakio 2 xt Q x = vakio 2 xt Q x + 2 = 2 QT x + 2 Qx vakio x T Q T x = Qx, jos Q on lisäksi symmetrinen. Huomaa Joissain kirjoissa f(x) määritellään vaakavektorina, jolloin: Esimerkki [c T x] = c T ja [x T Qx] = x T Q + x T Q T. f(x) = 2 xt Qx + c T x + d, Q T = Q, ja Q positiivisesti definiitti, eli Q on olemassa. f(x) = Qx + c = 0 x = Q c Nyt H f (x) = Q on positiivisesti definiitti, joten x = Q c on yksikäsitteinen lokaali, itse asiassa globaali, minimi. Funktion f : R 2 R graafinen esitys Funktion f vakiokäyrä, tai käyrä, x x 2 -tasossa on niiden pisteiden (x, x 2 ) joukko, jotka antavat f:lle saman arvon. Siis, kun c R, joukko {(x, x 2 ) R 2 f(x, x 2 ) = c } on f:n arvoon c liittyvä käyrä. 7

Lause f(x) on kohtisuorassa käyrän tangenttia vastaan pisteessä x, ja osoittaa f:n noususuunnan pisteessä x; ks kuva. Todistus Olkoon x ja x + h samalla f:n käyrällä. 0 = f(x + h) f(x) = f(x) T h + h ε(x, h) f(x) T h + ε(x, h) = 0. h Nyt h/ h on yksikkövektori, joka lähenee käyrän tangentin suuntaista yksikkövektoria u, kun h 0. Lisäksi ε(x, h) 0, kun h 0. Koska mielivaltaisen lähellä u:ta on olemassa vektori h/ h, s.e. f(x) T (h/ h ) saadaan mielivaltaisen pieneksi, on ilmeistä, että f(x) T u = 0. Lisäksi vektori d := f(x) 0 on f:n noususuunta pisteessä x. Tämä seuraa alla olevista lasku- ja noususuuntia koskevista tarkasteluista. Määritelmä R n :ssä vektori d on f:n laskusuunta pisteessä x, jos δ > 0 s.e. f(x + λd) < f(x) λ (0, δ). Lause f(x) T d < 0 d on f:n laskusuunta x:ssä. Todistus Differentioituvuudesta seuraa: f(x + λd) f(x) λ = f(x) T d + d ε(x; λd) jokaisella λ > 0. Koska f(x) T d ei riipu λ:sta, ja ε(x; λd) 0 kun λ 0, niin f(x) T d < 0 f(x + λd) < f(x) jokaisella riittävän pienellä luvulla λ, λ > 0. Vastaavasti, f(x) T d > 0 d on f:n noususuunta, eli δ > 0 s.e. f(x + λd) > f(x) λ (0, δ). Jos f(x) 0, niin d = f(x) on f:n laskusuunta pisteessä x: 8

f(x) T d = f(x) T f(x) = f(x) 2 < 0. Samoin d = f(x) 0 on noususuunta. Itse asiassa f(x) 0 on f:n jyrkimmän nousun (steepest ascent) suunta pistessä x. Todistus menee seuraavasti. Olkoon d mielivaltainen noususuunta. Valitaan d. Schwartzin epäyhtälöstä 0 < f(x) T d f(x) d = f(x). Toisaalta, jos d = f(x)/ f(x), niin d =, ja f(x) T d = f(x), joten f(x) T d f(x) T d jokaiselle d, jolle d. f(x + λ d) f(x) f(x + λd) f(x) d, jolle d, ja λ riittävän pieni. Samassa mielessä f(x) on f:n jyrkimmän laskun suunta pisteessä x. Esimerkkejä Seuraavissa kuvissa on piirretty eri funktioiden f : R 2 R vakiokäyriä (contour of objective function). Esimerkiksi toisen asteen funktion käyrät ovat yleisessä tapauksessa ellipsipintoja, ks. kuva 2. Vakiokäyrien tuttu sovellus on kartoissa käytettävät maaston korkeuskäyrät, kuva 4. Numeeristen iterointien etenemistä voidaan havainnollistaa vakiokäyrien muodostamaan maastoon syntyvinä polkuina. Kuvassa 2 funktion f(x) gradientti pisteessä x on [ ] [ ] x a x f(x) = = x 2 b Gradientin suuntaisen suoran kulmakerroin on siis k = (x 2 b)/(x a). Ratkaistaan käyrän f(x) = c yhtälöstä x 2 (x ), eli x 2 x :n funktiona. Tällöin x 2(x ) = (x a)/(x 2 b) = /k, joten annetun pisteen x kautta kulkevan käyrän tangentin suuntainen suora ja gradientin suuntainen suora ovat kohtisuorassa toisiaan vastaan. x 2 [ a b ]. 9

c x 2 c 2 f(x) u h c 3 x c 4 x Kuva : Funktion f käyriä: c > c 2 > c 3 > c 4. x 2 2c x a b x 2 f(x) x Kuva 2: Funktion f(x) = /2(x a) 2 + /2(x 2 b) 2 arvoon c liittyvä käyrä on (a,b)-keskinen ympyrä, säde 2c. 0

2.5 f(x) 0.5 0 0.5.5 2 3 2 0 x 2 2 3 3 2 x 0 2 3 Kuva 3: Funktiolla f(x) = 2 x2 2 x2 2 on satulapiste pisteessä x=0. x x 2 - tasossa näkyy f:n vakiokäyriä satulapisteen ympäristössä. Kuva 4: Kartan korkeuskäyrät ovat maastonkorkeuden h(x, y) vakiokäyriä, missä h:n arvoon 0 liittyvä käyrä esittää merenpinnan tasoa.