https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

Samankaltaiset tiedostot
&idx=2&uilang=fi&lang=fi&lvv=2015

dx=2&uilang=fi&lang=fi&lvv=2015

Kokonaisuudet johon opintojakso kuuluu Lang=fi&lang=fi&lvv=2014

dx=5&uilang=fi&lang=fi&lvv=2014

&idx=2&uilang=fi&lang=fi&lvv=2015

x=2&uilang=fi&lang=fi&lvv=2016

x=2&uilang=fi&lang=fi&lvv=2017

&idx=2&uilang=fi&lang=fi&lvv=2015

g=fi&lvv=2018&uilang=fi#parents

dx=2&uilang=fi&lang=fi&lvv=2015

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

riippumattomia ja noudattavat samaa jakaumaa.

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Tilastollisen päättelyn perusteet, MTTTP5. Luentorunko, lukuvuosi

Todennäköisyys (englanniksi probability)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, syksy Raija Leppälä

30A02000 Tilastotieteen perusteet

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

7.4 Normaalijakauma (kertausta ja täydennystä) Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96) = 0,025, P(Z -1,96) = 0,025

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

/1. MTTTP5, luento Kertausta. Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Todennäköisyyden ominaisuuksia

Luottamusvälit. Normaalijakauma johnkin kohtaan

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyslaskenta - tehtävät

Mat Sovellettu todennäköisyyslasku A

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden aksioomat

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

D ( ) E( ) E( ) 2.917

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

Johdatus todennäköisyyslaskentaan Todennäköisyyden aksioomat. TKK (c) Ilkka Mellin (2005) 1

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Osa 1: Todennäköisyys ja sen laskusäännöt

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyden käsite ja laskusäännöt

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MTTTP5, luento Luottamusväli, määritelmä

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä

Tilastollinen aineisto Luottamusväli

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Osa 2: Otokset, otosjakaumat ja estimointi

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta

Mat Sovellettu todennäköisyyslasku A

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Teema 7: Todennäköisyyksien laskentaa

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

Tilastollisten menetelmien perusteet I,TILTP2 Luentorunko, syksy 2000

1. JOHDANTO. SIS LLYSLUETTELO sivu 1. JOHDANTO 3

Otoskoko 107 kpl. a) 27 b) 2654

4. laskuharjoituskierros, vko 7, ratkaisut

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Sovellettu todennäköisyyslaskenta B

TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS

3.7 Todennäköisyysjakaumia

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Sovellettu todennäköisyyslaskenta B

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Väliestimointi (jatkoa) Heliövaara 1

12 TODENNÄKÖISYYSJAKAUMIA

&idx=1&uilang=fi&lang=fi&lvv=2017

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Teema 8: Parametrien estimointi ja luottamusvälit

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

tilastotieteen kertaus

6. laskuharjoitusten vastaukset (viikot 10 11)

Sovellettu todennäköisyyslaskenta B

D ( ) Var( ) ( ) E( ) [E( )]

9 Yhteenlaskusääntö ja komplementtitapahtuma

Transkriptio:

25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa yksinkertaisia todennäköisyyslaskuja sekä kombinatoriikan alkeet. Esim. Kuinka todennäköistä on saada täysosuma samalla viikolla sekä lotossa että Eurojackpotissa?

25.10.2016/2 Hän ymmärtää satunnaismuuttujan ja sen jakauman. Esim. Nopanheitossa silmäluku, diskreetti satunnaismuuttuja, jakauma diskreetti tasajakauma Esim. Satunnaisesti väliltä (0, 1) valittu reaaliluku, jatkuva satunnaismuuttuja, jakauma jatkuva tasajakauma

25.10.2016/3 Hän pystyy yksinkertaisissa tilanteissa määrittämään satunnaismuuttujan jakauman. Esim. Avainnipussa on 5 avainta, joista yksi on kotiavain. Valitset satunnaisesti yhden. Määritä todennäköisyys sille, että saat kotiavaimen yrityskerralla k. Montako kertaa joudut keskimäärin yrittämään saadaksesi kotiavaimen? Hän tuntee odotusarvon ja varianssin ominaisuudet. Esim. Oletetaan, että sijoituskohteista A ja B keskimääräinen tuotto euron sijoituksesta on µ ja varianssi σ 2. Miten 1000 euroa kannattaa sijoittaa kohteisiin A ja B?

25.10.2016/4 Opiskelija tuntee binomijakauman ja normaalijakauman ja osaa laskea näihin liittyviä todennäköisyyksiä. Esim. Kuinka todennäköistä on läpäistä väittämistä koostuvan tentti arvaamalla? Esim. Lentoyhtiöllä on kone, joka voi ottaa kuljetettavaksi 5000 kg. Voiko yhtiö ottaa kuljetettavakseen 100 lammasta? Aiemmin on ollut punnittuna 1000 vastaavanlaista lammasta, joiden keskipaino on ollut 45 kg ja hajonta 3 kg.

25.10.2016/5 Opiskelija ymmärtää satunnaisotoksen, otossuureen, otossuureen jakauman sekä otossuureiden käytön tilastollisessa päättelyssä. Esim. Rattaan keskimääräinen pyörimisaika on 150 s ja keskihajonta 10 s. Onko rasvaaminen vaikuttanut keskimääräiseen pyörimisaikaan? Rasvauksen jälkeen viiden rattaan pyörimisaikojen keskiarvo oli 162 s. Esim. Pyöritetään rulettia 3400 kertaa ja saadaan 140 nollaa, jolloin pelipaikka voittaa. Voitko todistaa oikeudessa, että pelipaikan ruletti toimii väärin? Esim. Tuottavatko koneet A ja B keskimäärin samanmittaisia tankoja?

25.10.2016/6 Opiskelija ymmärtää estimoinnin ja hypoteesien testaukseen liittyvän teorian opintojaksolla esitetyssä laajuudessa. Esim. Populaatiossa π % viallisia. Miten arvioidaan? Onko arvio luotettava? Esim. Populaation odotusarvon µ arviointi. Miten arvioidaan? Onko arvio luotettava? Esim. Tarkastellaan kahden populaation odotusarvoja. Miten arvioidaan niiden yhtäsuuruutta? Onko arvio luotettava?

25.10.2016/7 Hän tunnistaa erilaiset estimointitilanteet, osaa valita tilanteeseen soveltuvan luottamusvälin sekä käyttää sitä tilastollisessa päättelyssä. Esim. Puolueen kannatuksen arviointi. Kyselyssä kannattajia 15 %, otoskoko 2000. Esim. Hillopurkkien keskimääräisen painon arviointi. Satunnaisesti valittujen 25 hillopurkin keskipaino 330 g ja keskihajonta 20 g. Esim. Tuottavatko koneet A ja B keskimäärin samanmittaisia tankoja? Molempien koneiden tuotannosta valittu satunnaisesti 100 tankoja, joiden keskiarvoiksi saadaan 2,5 cm ja 2,7 cm sekä keskihajonnoiksi 0,005 cm ja 0,006 cm.

25.10.2016/8 Hän ymmärtää tilastollisen testauksen periaatteet ja osaa suorittaa tilastollisen testauksen annetussa empiirisessä tilanteessa. Esim. Puolue väittää kannatuksensa olevan eli 18 %. Voitko uskoa väitteen? Esim. Voidaanko uskoa, että hillopurkit painavat keskimäärin 340 g. Esim. Tuottavatko koneet A ja B keskimäärin samanmittaisia tankoja?

25.10.2016/9 3 Kurssin kotisivu http://www.uta.fi/sis/mtt/mtttp5/syksy_2016.html Opetus Kurssi-info (sisältö, tentit, harjoitushyvitys) Luennot, luentorunko (sis. kaavat, taulukot), luentokalvot Harjoitukset, tehtävät, ohjeet (Moodle), ratkaisut Oheiskirjallisuutta Usein kysyttyä Linkkejä Palaute

25.10.2016/10 Luku 2 Todennäköisyyslaskentaa 2.1 Satunnaisilmiö ja tapahtuma Satunnaisilmiö useita tulosmahdollisuuksia epävarmuutta tuloksesta Esim. 2.1.2 Rahanheitto, nopanheitto, lottoaminen, vakioveikkaus, kortin vetäminen sekoitetusta pakasta. Kaikki mahdolliset tulokset muodostavat perusjoukon E.

25.10.2016/11 Esim. 2.1.1 Rahanheitto E = {kruuna, klaava} Nopanheitto E = {1, 2, 3, 4, 5, 6} Lottoaminen E = {kaikki mahdolliset lottorivit}, joita on 15380937 Vakioveikkaus E = {kaikki mahdolliset rivit}, joita on 1594323

25.10.2016/12 Tapahtuma on perusjoukon osajoukko. Esim. 2.1.1 Rahanheitto A = {saadaan kruuna} Nopanheitto A = {saadaan parillinen} = {2, 4, 6} Lottoaminen A = {saadaan 7 oikein} B = {saadaan 6 oikein ja yksi lisänumero } C = {saadaan kaikki väärin} Vakioveikkaus A = {saadaan 13 oikein} B = {saadaan 12 oikein}

25.10.2016/13 2.2 Klassinen todennäköisyys Perusjoukossa n tulosta, jotka kaikki yhtä todennäköisiä. Tapahtumaan A liittyviä tuloksia k kappaletta. Tällöin A:n todennäköisyys P(A) = k/n. Esim. 2.2.1 Lottoaminen A = {saadaan 7 oikein}, P(A) = 1/15380937 Vakioveikkaus A = {saadaan 13 oikein}, P(A) = 1/1594323

2.3 Todennäköisyyslaskennan aksioomat ja laskusäännöt 25.10.2016/14 Todennäköisyys on joukkofunktio P, joka liittää jokaiseen satunnaisilmiön tapahtumaan A reaaliluvun P(A). Tätä kutsutaan tapahtuman A todennäköisyydeksi ja se toteuttaa tietyt aksioomat. Aksiooma 1 Jos A on mikä tahansa satunnaisilmiön tapahtuma, niin 0 P(A) 1. Aksiooma 2 P(E) = 1 (varma tapahtuma)

Olkoot A ja B saman satunnaisilmiön tapahtumia. Määritellään yhdiste A B = {A tai B tai molemmat tapahtuvat} ja leikkaus A B = {A ja B molemmat tapahtuvat}. A ja B ovat erillisiä, jos ne eivät voi tapahtua samanaikaisesti, siis A B =. 25.10.2016/15 Aksiooma 3 Esim. 2.3.1 Jos A ja B erillisiä, niin P(A B) = P(A) + P(B). Nopanheitto A = {saadaan parillinen}, P(A) = 3/6, B = {saadaan ykkönen}, P(B) = 1/6, A B =, joten P(A B) = P(A) + P(B)

25.10.2016/16 Laskusääntö 1 P( ) = 0. Tapahtuman A komplementti A C = {A ei tapahdu}. Laskusääntö 2 P(A C ) = 1 P(A). Esim. 2.3.3 Vakioveikkaus A = {korkeintaan 11 oikein} P(A) = 1 P(A C ) = 1 - P{12 tai 13 oikein} = 1 (P{12 oikein} + P{13 oikein})

25.10.2016/17 Esim. Heität noppaa kunnes saat numeron 6. Laske todennäköisyys sille, että joudut heittämään ainakin 3 kertaa. Tällöin joudut heittämään 3 tai 4 tai 5 tai kertaa. Todennäköisyys lasketaan komplementin kautta, 1 P{heittokertoja 1 tai 2} = 1 (P{heittokertoja 1} +P{heittokertoja 2}) = 1 P{heittokertoja 1} - P{heittokertoja 2} = 1 1/6 (5/6)(1/6) = 25/36

25.10.2016/18 Laskusääntö 3 Jos tapahtumat A 1, A 2,, A k ovat pareittain erilliset, niin P(A 1 A 2 A k ) = P(A 1 ) + P(A 2 ) + + P(A k ). Esim. 2.3.4 Kortin vetäminen korttipakasta A = {saadaan ruutu}, B = {saadaan hertta}, C = {saadaan risti}. P(saadaan ruutu tai hertta tai risti) = P(A)+P(B)+P(C) = 39/52.

25.10.2016/19 Laskusääntö 4 (yleinen yhteenlaskusääntö) P(A B) = P(A) + P(B) P(A B). Esim. 2.3.5 Kortin vetäminen korttipakasta P{kortti pata tai ässä} = P{kortti pata} + P{kortti ässä} - P{kortti pataässä} = 13/52 + 4/52 1/52