min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Samankaltaiset tiedostot
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

b 1. b m ) + ( 2b Ax) + (b b)

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

1 Rajoitettu optimointi I

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Luento 4: Lineaarisen tehtävän duaali

Harjoitus 7: vastausvihjeet

Malliratkaisut Demot

6 Variaatiolaskennan perusteet

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 8: Epälineaarinen optimointi

Harjoitus 8: Excel - Optimointi

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Taustatietoja ja perusteita

1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut

Luento 8: Epälineaarinen optimointi

Malliratkaisut Demo 1

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

12. Hessen matriisi. Ääriarvoteoriaa

6. Toisen ja korkeamman kertaluvun lineaariset

Mat Dynaaminen optimointi, mallivastaukset, kierros 5

1 Rajoittamaton optimointi

Piiri K 1 K 2 K 3 K 4 R R

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

Harjoitus 4: Matlab - Optimization Toolbox

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...

k = 1,...,r. L(x 1 (t), x

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

2 Osittaisderivaattojen sovelluksia

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

2 Konveksisuus ja ratkaisun olemassaolo

Este- ja sakkofunktiomenetelmät

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa

Jos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on. p(0) = p(s) = 0.

Lineaarinen optimointitehtävä

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

MATP153 Approbatur 1B Harjoitus 5 Maanantai

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Malliratkaisut Demot

Luento 3: Simplex-menetelmä

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Matematiikan tukikurssi

Harjoitus 5 ( )

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

1 Perusteita lineaarisista differentiaaliyhtälöistä

Luku 4. Derivoituvien funktioiden ominaisuuksia.

[xk r k ] T Q[x k r k ] + u T k Ru k. }.

Harjoitus 6 ( )

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Matematiikan tukikurssi

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

Matematiikan tukikurssi

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Matematiikan tukikurssi

Luento 6: Monitavoitteinen optimointi

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

5 Differentiaaliyhtälöryhmät

Toispuoleiset raja-arvot

y + 4y = 0 (1) λ = 0

Harjoitus 5 ( )

Johdatus reaalifunktioihin P, 5op

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

Transkriptio:

TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4 = v = 4/3, x = /3, x = /3 Ratkaisu on optimaalinen, koska kohdefunktio ja käypä joukko ovat konvekseja Kyseessä on minimi, sillä sijoittamalla rajoitusehto kohdefunktioon, saadaan f(x ) = ( x ) + x = x + 3x Derivoimalla saadaan f (x ) = 6x = x = /3 ja f (x ) = 6 >, joten kyseessä on minimi min x 3 + x3 x + x = () 3x 3x + v = { x = ± v/3 = ±a x = ± v/3 = ±a, a > { 3x + v = 3x + v = x :n ja x :n oltava saman merkkisiä, muutoin rajoitteesta () seuraisi = Siis x = x = f(x) = x3 + x3 on konveksi, kun x, x > Lisäksi 6x f(x) = 6x

min 3x + x x 3 x + x + x 3 x + x + x 3 = a) b) 3 x 3 + u u(x + x + x 3 ) = u + v (CS) x 3 =, { { u v = 3 u = 5 u + v = 3 v = 4 3 x 3 + 5 3 8 3 x 3 = x 3 = 5 4 { x + x + 5 4 (CS)+käypyys = { x + x + ( ) 5 = x = 5 588 x 4 = 95 588 Eli piste (x x x 3 ) toteuttaa välttämättömät KKT-ehdot, mutta se ei ole kuitenkaan optimipiste Voidaan todeta, että rajoitusyhtälöt toteutuvat käyrällä x x x 3 = t + 3 3 t = t 3 3 t = t ja alkuperäisen kohdefunktion arvo kasvaa rajatta: f(x(t)), kun t : optimia ei ole 3 Tuotteen i tuotantokulut : k i Tuotteen i myyntihinta : S i Raaka-ainetarve per kilo tuotetta i : a i Välttämättömän raaka-aineen määrä : R Tehtävä on muotoa min 4 ki x i S ix i k= 4 i= a ix i R x i, i =,,4

f(x) = g 3 (x) = k x S k x S k 3 x 3 S 3 k 4 x 4 S 4 g (x) = g 4 (x) = a a a 3 a 4 g (x) = g 5(x) = k i x i S i + a i u u i+ =, i =,, 4 u 4 i= a ix i R = u i+ x i = u i 4 Optimointimalli: min x,y KKT ehdot olettaen, että x, y : px a y b + c x + c y se x + y = x, y apx a y b + c v = bpx a y b + c + v = x = y Nyt sijoittamalla alin yhtälö keskimmäiseen saadaan, että v = bpx a+b c, joka voidaan sijoittaa KKT-ehdoissa ylimpään yhdessä ehdon x = y kanssa, jolloin josta saadaan optimikandidaatiksi apx a+b c + bpx a+b c =, x = ( ) c + c a+b = ȳ p(a + b) Todetaan vielä, että näin saatu ratkaisu on todellakin optimi Tämä nähdään helpoiten, kun sijoitetaan tehtävän kohdefunktioon rajoitusehto x = y Tällöin saamme, että f(x) = px a+b + (c + c )x, joka on konveksi, koska f (x) = p(a + b)(a + b )x a+b, 3

koska a + b ja p > Siis kohdefunktio on konveksi tehtävän käyvässä joukossa, joka myös on selvästi konveksi, jolloin KKT-ehdot ovat riittävät Tarkasteltaessa sopivan lahjuksen suuruutta käytetään hyväksi Lagrangen kertoimen herkkyystulkintaa, jonka karakterisoi seuraava lause Olkoon optimointitehtävänä min x f(x) se h(x) = c Olkoon x (c) tehtävän ratkaisu parametrin c funktiona Tällöin v = df(x(c)), eli Lagrangen kerroin on kohdefunktion optimiarvon derivaatta parametrin c dc suhteen Sijoittamalla saatu ratkaisu x v:n lausekkeeseen saadaan, että v = bp c + c p(a + b) c = b(c + c ) c (a + b) a + b = bc ac a + b Nyt siis oletetaan, että lahjonnalla saadaan alkuperäinen rajoite-ehto muutettua muotoon x+y = ǫ < Jos v <, niin kustannukset pienenevät jauhoja lisäämällä, koska tällöin df(x(c)) > Näin käy jos bc dc ac <, minkä tulkinta on se että lihasta saatava myynnin lisäys on liian pieni verrattuna syntyviin kustannuksiin Lahjusta kannattaa maksaa, ja lineaarinen approksimaatio sopivalle lahjukselle on ǫv Jos taas bc ac >, niin jauhojen lisäämisestä ei kustannukset pienene eikä lahjusta kannata maksaa 5 Tyypillinen resurssien allokointitehtävä: halutaan jakaa resurssi x se maksimoidaan esimerkiksi yhteistä hyötyä Olkoon x = (x,, x n ) on optimiratkaisu Merkitään γ j = f j(x) x j Väite: skalaari k se γ j k ja (γ j k)x j =, j =,,n Todistus: Kirjoitetaan f = ( n j=i h = ( f j (x j )) = f i(x i ) n x j x ) = j= g j = ( x j ) = δ ij, missä δ ij on Kronekerin delta (=, kun indeksit samat, ja muulloin =) f(x) + n j= u j g j (x) + v h(x) =, u j g j (x) =, j =,,n u j, j =,,n Olkoon sitten x = (x,,x n ) optimiratkaisu, joka siis toteuttaa KKT-ehdot a) Olkoon x j, jolloin complementary slackness (CS) ehdosta saadaan u j = γ j + v = γ j = v (=vakio) Siis γ j on vakio, jos x j Jos nyt valitaan k = v, niin pätee: γ j k ja (γ j k)x j =, j J = {j : x j } b) Olkoon x =, jolloin optimaalisuusehto voidaan kirjoittaa γ j u j +v =, u j 4

Jos nyt valitaan edellisen kohdan tavoin k = v, pätee: γ j u j + v = γ j = v u j = k u j k, sillä u j Myös (γ j k)x j = Ajatellaan konsernia ja sen tytäryhtiöitä, joiden tuotto on f i (x i ), missä x i on esim raaka-aineen määrä Konserni haluaa jakaa raaka-ainetta määrän x se kokonaistuotto maksimoituu Konsernin johto määrää hinnan c, jolla tytäryhtiöt voivat ostaa raaka-ainetta Tällöin kukin tytäryhtiö: max tuotto-kustannus maxf i (x) cx kertaluvun optimaalisuusehto: f i(x) c = f i(x i ) x = c Tytäryhtiö valitsee x i :n se ehto toteutuu Oletetaan, että f i (x):t ovat esim sopivasti konkaaveja se valitut x i > Huomataan, että jos c = v, niin resurssi x allokoituu optimaalisella tavalla! 6 Implisiittifunktiolause: Jos seuraavat kohdat pätevät f(x,x ) = E l, x E m, x E l f jatkuva 3 x f jatkuva 4 x f(x,x ) niin g : N ε (x) E l, g(x ) = x ja f(x, g(x )) = Jos x f, niin g differentioituva Tutkitaan seuraavan muotoista yhtälösysteemiä f(t,v) = h(x + ty + h(x) T v) =, () missä t parametrisoi käyrän x(t) = x + ty + h(x) T v, y on h(x):n jokin tangenttivektori x:ssa ja Lagrangen kerroin v E l on tuntematon Yhtälösysteemi toteutuu pisteessä t =, v = Systeemin Jakobin matriisi v:n suhteen kyseisessä pisteessä on l l-matriisi v f(,) = h(x) h(x) T Nyt h i :t ovat lineaarisesti riippumattomia, joten v f(,) on ei-singulaarinen Eli yhtälösysteemi toteuttaa implisiittifunktiolauseen kohdan 4 Koska systeemi toteuttaa myös lauseen muut kohdat, niin g se v = g(t), t a, a, f(t, g(t)) = eli h(x(t)) = x(t) kulkee siis rajoitusehtokäyrää h(x) pitkin jonkin matkaa Nyt kun Lagrangen kerroin v saadaan esitettyä parametrisoinnin t avulla, voidaan käyrä kirjoittaa x(t) = x + ty + h(x) T g(t) Koska käyrä x(t) kulkee rajoitusehtokäyrää pitkin, h(t):n derivaatta parametrisoinnin suhteen on nolla Laskemalla systeemin aikaderivaatta pisteessä t = : 5

d dt h(x(t)) t= = = h(x)y + h(x) h(x) T ġ() }{{} = ġ() = ẋ() = y + h(x)ġ() = y 6