TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4 = v = 4/3, x = /3, x = /3 Ratkaisu on optimaalinen, koska kohdefunktio ja käypä joukko ovat konvekseja Kyseessä on minimi, sillä sijoittamalla rajoitusehto kohdefunktioon, saadaan f(x ) = ( x ) + x = x + 3x Derivoimalla saadaan f (x ) = 6x = x = /3 ja f (x ) = 6 >, joten kyseessä on minimi min x 3 + x3 x + x = () 3x 3x + v = { x = ± v/3 = ±a x = ± v/3 = ±a, a > { 3x + v = 3x + v = x :n ja x :n oltava saman merkkisiä, muutoin rajoitteesta () seuraisi = Siis x = x = f(x) = x3 + x3 on konveksi, kun x, x > Lisäksi 6x f(x) = 6x
min 3x + x x 3 x + x + x 3 x + x + x 3 = a) b) 3 x 3 + u u(x + x + x 3 ) = u + v (CS) x 3 =, { { u v = 3 u = 5 u + v = 3 v = 4 3 x 3 + 5 3 8 3 x 3 = x 3 = 5 4 { x + x + 5 4 (CS)+käypyys = { x + x + ( ) 5 = x = 5 588 x 4 = 95 588 Eli piste (x x x 3 ) toteuttaa välttämättömät KKT-ehdot, mutta se ei ole kuitenkaan optimipiste Voidaan todeta, että rajoitusyhtälöt toteutuvat käyrällä x x x 3 = t + 3 3 t = t 3 3 t = t ja alkuperäisen kohdefunktion arvo kasvaa rajatta: f(x(t)), kun t : optimia ei ole 3 Tuotteen i tuotantokulut : k i Tuotteen i myyntihinta : S i Raaka-ainetarve per kilo tuotetta i : a i Välttämättömän raaka-aineen määrä : R Tehtävä on muotoa min 4 ki x i S ix i k= 4 i= a ix i R x i, i =,,4
f(x) = g 3 (x) = k x S k x S k 3 x 3 S 3 k 4 x 4 S 4 g (x) = g 4 (x) = a a a 3 a 4 g (x) = g 5(x) = k i x i S i + a i u u i+ =, i =,, 4 u 4 i= a ix i R = u i+ x i = u i 4 Optimointimalli: min x,y KKT ehdot olettaen, että x, y : px a y b + c x + c y se x + y = x, y apx a y b + c v = bpx a y b + c + v = x = y Nyt sijoittamalla alin yhtälö keskimmäiseen saadaan, että v = bpx a+b c, joka voidaan sijoittaa KKT-ehdoissa ylimpään yhdessä ehdon x = y kanssa, jolloin josta saadaan optimikandidaatiksi apx a+b c + bpx a+b c =, x = ( ) c + c a+b = ȳ p(a + b) Todetaan vielä, että näin saatu ratkaisu on todellakin optimi Tämä nähdään helpoiten, kun sijoitetaan tehtävän kohdefunktioon rajoitusehto x = y Tällöin saamme, että f(x) = px a+b + (c + c )x, joka on konveksi, koska f (x) = p(a + b)(a + b )x a+b, 3
koska a + b ja p > Siis kohdefunktio on konveksi tehtävän käyvässä joukossa, joka myös on selvästi konveksi, jolloin KKT-ehdot ovat riittävät Tarkasteltaessa sopivan lahjuksen suuruutta käytetään hyväksi Lagrangen kertoimen herkkyystulkintaa, jonka karakterisoi seuraava lause Olkoon optimointitehtävänä min x f(x) se h(x) = c Olkoon x (c) tehtävän ratkaisu parametrin c funktiona Tällöin v = df(x(c)), eli Lagrangen kerroin on kohdefunktion optimiarvon derivaatta parametrin c dc suhteen Sijoittamalla saatu ratkaisu x v:n lausekkeeseen saadaan, että v = bp c + c p(a + b) c = b(c + c ) c (a + b) a + b = bc ac a + b Nyt siis oletetaan, että lahjonnalla saadaan alkuperäinen rajoite-ehto muutettua muotoon x+y = ǫ < Jos v <, niin kustannukset pienenevät jauhoja lisäämällä, koska tällöin df(x(c)) > Näin käy jos bc dc ac <, minkä tulkinta on se että lihasta saatava myynnin lisäys on liian pieni verrattuna syntyviin kustannuksiin Lahjusta kannattaa maksaa, ja lineaarinen approksimaatio sopivalle lahjukselle on ǫv Jos taas bc ac >, niin jauhojen lisäämisestä ei kustannukset pienene eikä lahjusta kannata maksaa 5 Tyypillinen resurssien allokointitehtävä: halutaan jakaa resurssi x se maksimoidaan esimerkiksi yhteistä hyötyä Olkoon x = (x,, x n ) on optimiratkaisu Merkitään γ j = f j(x) x j Väite: skalaari k se γ j k ja (γ j k)x j =, j =,,n Todistus: Kirjoitetaan f = ( n j=i h = ( f j (x j )) = f i(x i ) n x j x ) = j= g j = ( x j ) = δ ij, missä δ ij on Kronekerin delta (=, kun indeksit samat, ja muulloin =) f(x) + n j= u j g j (x) + v h(x) =, u j g j (x) =, j =,,n u j, j =,,n Olkoon sitten x = (x,,x n ) optimiratkaisu, joka siis toteuttaa KKT-ehdot a) Olkoon x j, jolloin complementary slackness (CS) ehdosta saadaan u j = γ j + v = γ j = v (=vakio) Siis γ j on vakio, jos x j Jos nyt valitaan k = v, niin pätee: γ j k ja (γ j k)x j =, j J = {j : x j } b) Olkoon x =, jolloin optimaalisuusehto voidaan kirjoittaa γ j u j +v =, u j 4
Jos nyt valitaan edellisen kohdan tavoin k = v, pätee: γ j u j + v = γ j = v u j = k u j k, sillä u j Myös (γ j k)x j = Ajatellaan konsernia ja sen tytäryhtiöitä, joiden tuotto on f i (x i ), missä x i on esim raaka-aineen määrä Konserni haluaa jakaa raaka-ainetta määrän x se kokonaistuotto maksimoituu Konsernin johto määrää hinnan c, jolla tytäryhtiöt voivat ostaa raaka-ainetta Tällöin kukin tytäryhtiö: max tuotto-kustannus maxf i (x) cx kertaluvun optimaalisuusehto: f i(x) c = f i(x i ) x = c Tytäryhtiö valitsee x i :n se ehto toteutuu Oletetaan, että f i (x):t ovat esim sopivasti konkaaveja se valitut x i > Huomataan, että jos c = v, niin resurssi x allokoituu optimaalisella tavalla! 6 Implisiittifunktiolause: Jos seuraavat kohdat pätevät f(x,x ) = E l, x E m, x E l f jatkuva 3 x f jatkuva 4 x f(x,x ) niin g : N ε (x) E l, g(x ) = x ja f(x, g(x )) = Jos x f, niin g differentioituva Tutkitaan seuraavan muotoista yhtälösysteemiä f(t,v) = h(x + ty + h(x) T v) =, () missä t parametrisoi käyrän x(t) = x + ty + h(x) T v, y on h(x):n jokin tangenttivektori x:ssa ja Lagrangen kerroin v E l on tuntematon Yhtälösysteemi toteutuu pisteessä t =, v = Systeemin Jakobin matriisi v:n suhteen kyseisessä pisteessä on l l-matriisi v f(,) = h(x) h(x) T Nyt h i :t ovat lineaarisesti riippumattomia, joten v f(,) on ei-singulaarinen Eli yhtälösysteemi toteuttaa implisiittifunktiolauseen kohdan 4 Koska systeemi toteuttaa myös lauseen muut kohdat, niin g se v = g(t), t a, a, f(t, g(t)) = eli h(x(t)) = x(t) kulkee siis rajoitusehtokäyrää h(x) pitkin jonkin matkaa Nyt kun Lagrangen kerroin v saadaan esitettyä parametrisoinnin t avulla, voidaan käyrä kirjoittaa x(t) = x + ty + h(x) T g(t) Koska käyrä x(t) kulkee rajoitusehtokäyrää pitkin, h(t):n derivaatta parametrisoinnin suhteen on nolla Laskemalla systeemin aikaderivaatta pisteessä t = : 5
d dt h(x(t)) t= = = h(x)y + h(x) h(x) T ġ() }{{} = ġ() = ẋ() = y + h(x)ġ() = y 6