Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille ja tehtävien 3-4 toiselle konseptille. 1. Tarkastellaan kahta identtistä palloa, jotka on kiinnitetty 90 cm pitkien, ohuiden eristelankojen päihin alla olevan kuvan mukaisesti. Palloihin tuodaan yhtä suuret positiiviset sähkövaraukset. Kummankin pallon massa on 3,0 10 3 kg ja säde 10 cm. Eristelangat ovat niin kevyitä, että niiden massa voidaan jättää 1 C huomioimatta. Tyhjiön permittiivisyys ǫ 0 =8,85419 10 ja kuivan ilman Nm suhteellinen permittiivisyys ǫ r =1,0006. (a) Mitä voimia palloihin kohdistuu? Piirrä vapaakappalekuva. (5p) () Määrää pallojen varaukset, kun eristelankojen välinen kulma α = 10,0. (10p). (a) Selitä, mitä tarkoittaa valosähköinen ilmiö. Mihin valosähköinen ilmiö perustuu? (4p) () Valosähköisessä ilmiössä elektronin suurin mahdollinen energia on E max k = hf W 0. Mitä yllä olevassa yhtälössä esiintyvät suureet ovat? (3p) (c) Kuinka valokennoa käyttäen voidaan määrittää Planckin vakio? Piirrä kytkentäkaavio. (4p) (d) Esitä edellisen kohdan valokennomittaukseen liittyvä yhtälö, josta Planckin vakio saadaan laskettua tarvittavien alkutietojen ja mittaamalla saatavien suureiden avulla. (4p)
3. Kun kappaletta liikutetaan vakiovoimalla F (F = mg, missä g = 9,81m/s ja m on kappaleen massa) matkan d verran, niin tehdään työtä W kaavan W = Fd mukaisesti. Jos voima ei ole vakio, niin tehty työ saadaan määrättynä integraalina W = missä on siirrytty pisteestä a pisteesen. a F(x)dx, Halutaan nostaa vakionopeudella 30 litran (1 l = 1 kg) vesisaavi 10 metrin korkeuteen (tyhjän saavin ja köyden massaa ei tarvitse huomioida). a) Paljonko työtä tarvitaan suoritukseen edellä kuvatussa tilanteessa? (5p) ) Saavin noston jälkeen havaittiin saavin vuotaneen vakionopeudella siten, että saavi tyhjeni juuri saapuessaan ylös. Paljonko työtä tehtiin vuotaneen saavin tapauksessa? (10p) 4. Tarkastellaan kuvan mukaista tilannetta, missä metrin mittaisen vesikourun poikkileikkaus A on 15,0dm ja α = 45. Virtausvastuksen pienentämiseksi pohjan ja seinien pinta-alan on oltava mahdollisimman pieni. Määrää mittojen a ja tarkat arvot siten, että pinta-ala minimoituu. A α α a (15p)
Sovelletun fysiikan pääsykoe, 7.6.016 Ratkaisut 3. Kun kappaletta liikutetaan vakiovoimalla F (F = mg, missä g = 9,81m/s ja m on kappaleen massa) matkan d verran tehdään työtä W kaavan W = Fd mukaisesti. Jos voima ei ole vakio, niin tehty työ saadaan määrättynä integraalina W = missä on siirrytty pisteestä a pisteesen. a F(x)dx, Halutaan nostaa vakionopeudella 30 litran (1 l = 1 kg) vesisaavi 10 metrin korkeuteen (tyhjän saavin ja köyden massaa ei tarvitse huomioida). a) Paljonko työtä tarvitaan suoritukseen edellä kuvatussa tilanteessa? (5p) ) Saavin noston jälkeen havaittiin saavin vuotaneen vakionopeudella siten, että saavi tyhjeni juuri saapuessaan ylös. Paljonko työtä tehtiin vuotaneen saavin tapauksessa? (10p) Ratk. a) Nostettava massa pysyy vakiona ja nosto tapahtuu vakionopeudella, joten tarvittava työ saadaan suoraan kaavasta W = Fd. (p) Annetut suureet ovat suoraan SI-yksiköissä, joten saadaan W = 30 kg 9,81m/s 10m = 943J. (p) Vastaus: Työtä tarvitaan noin,9 kj. (1p) ) Jälleen suureet SI-yksiköissä. Nostettava massa pienenee tasaisesti arvosta 30 arvoon 0, joten massa korkeuden x funktiona on m(x) = 30 3x, kun 0 x 10. (6p) Siten tehtävän työn numeerinen arvo on W =. 10 0 m(x)9,81dx = 1471,5. (3p) Vastaus: Työtä tehdään vuotavan saavin tapauksessa noin 1,5 kj. (1p) 1
4. Tarkastellaan kuvan mukaista tilannetta, missä metrin mittaisen vesikourun poikkileikkaus A on 15,0dm ja α = 45. Virtausvastuksen pienentämiseksi pohjan ja seinien pinta-alan on oltava mahdollisimman pieni. Määrää mittojen a ja tarkat arvot siten, että pinta-ala minimoituu. A α α a (15p) Ratk. Vesikourun pohjan ja seinien pinta-alaksi saadaan (a + )l, missä l on vesikourun pituus eli 1 m. Jotta pinta-ala minimoituu, pyritään a + saamaan mahdollisimman pieneksi. (p) Poikkileikkauksen pinta-alaksi saadaan trigonometrian perusteita käyttäen ( a+ ). Toisaalta tiedetään, että poikkileikkaus A on 15,0(dm ). Siis ( a+ ) = 15. (4p) Tästä ratkaistaan a ja saadaan, että Määritellään funktio f asettamalla a = 15. f() = 15 +, 0 < < 30. (3p) Derivoidaan ja saadaan, että Edelleen f () = 0, kun f () = 15 1 +. 15 = ±. 1 Negatiivinen ratkaisu ei kelpaa, sillä vaaditaan, että > 0. Derivaatan merkkitarkastelun perusteella funktion f minimikohta välillä ]0, 30[ on siis 15 =. 1
Täten vesikourun pohjan ja seinien pinta-ala minimoituu, kun 15 = dm 1 ja a = 15 ( ) 1 dm. (6p) 1 3