4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

Samankaltaiset tiedostot
ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

Ominaisarvo-hajoitelma ja diagonalisointi

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 2015

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

Matemaattinen Analyysi / kertaus

Matematiikka B2 - TUDI

Matriisialgebra harjoitukset, syksy 2016

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

5 Differentiaaliyhtälöryhmät

. Mitä olisivat y 1 ja y 2, jos tahdottaisiin y 1 (0) = 2 ja y 2 (0) = 0? x (1) = 0,x (2) = 1,x (3) = 0. Ratkaise DY-ryhmä y = Ay.

5 OMINAISARVOT JA OMINAISVEKTORIT

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

6 MATRIISIN DIAGONALISOINTI

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

Lineaarialgebra, kertausta aiheita

1 Ominaisarvot ja ominaisvektorit

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

1 Matriisit ja lineaariset yhtälöryhmät

Insinöörimatematiikka D

Matematiikka B2 - Avoin yliopisto

Ortogonaaliset matriisit, määritelmä 1

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I

Insinöörimatematiikka D

Käänteismatriisi 1 / 14

Lineaarialgebra ja matriisilaskenta I

5 Ominaisarvot ja ominaisvektorit

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

Ominaisarvot ja ominaisvektorit 140 / 170

Similaarisuus. Määritelmä. Huom.

Insinöörimatematiikka D

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

MS-A0004/A0006 Matriisilaskenta

Insinöörimatematiikka D

Ratkaisuehdotukset LH 7 / vko 47

MS-C1340 Lineaarialgebra ja

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

ominaisvektorit. Nyt 2 3 6

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Ominaisarvo ja ominaisvektori

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Kanta ja Kannan-vaihto

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

1 Kannat ja kannanvaihto

Insinöörimatematiikka D

(1.1) Ae j = a k,j e k.

Insinöörimatematiikka D

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Ratkaisuehdotukset LH 3 / alkuvko 45

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5

Alkeismuunnokset matriisille, sivu 57

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Ominaisvektoreiden lineaarinen riippumattomuus

Oppimistavoitematriisi

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Insinöörimatematiikka D

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

MS-C1340 Lineaarialgebra ja

1 Singulaariarvohajoitelma

Paikannuksen matematiikka MAT

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Talousmatematiikan perusteet

5 DIFFERENTIAALIYHTÄLÖRYHMÄT

Jouni Sampo. 4. maaliskuuta 2013

Oppimistavoitematriisi

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Valintakoe

Ennakkotehtävän ratkaisu

Käänteismatriisin ominaisuuksia

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

Lineaarialgebra ja matriisilaskenta I

3.2.2 Tikhonovin regularisaatio

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017

Transkriptio:

BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B ei ole reaalisia ominaisarvoja. Vastaussivulla on mielenkiinnon vuoksi annettu myös B:n ominaisarvot ja ominaisvektorit, jos kompleksiluvut sattuvat olemaan lukiosta tuttuja niin mikään ei näidenkään määrittämistä estäisi mutta nyt sitä ei vaadita).. Määritellään matriisit A = [ 4, B = 8 Laske kullekin matriisille seuraavat laskut: (a) Laske matriisin determinantti. (b) Määritä matriisin rank ja nullity. [ 3, C = 4 4 3 (c) Tutki ovatko matriisin sarakkeet toisistaan lineaarisesti riippumattomia. (d) Jos mahdollista, etsi matriisin käänteismatriisi. 3. Käytännön tilanteissa joissa ratkotaan lineaarialgebran ongelmia ei (juuri) koskaan vatkata Gauss- Jordan -eliminaatiota kynällä ja paperilla, vaan se tehdään tietokoneella. Ongelman lopullinen ratkaisu ei kuitenkaan ole vielä siinä vaiheessa käsillä, vaan tietokoneen antama syöte pitää vielä osata tulkita oikealla tavalla. Oletetaan nyt, että meillä on jokin ongelma, joka on puettu matriisiyhtälön muotoon ja ratkaistu tietokoneella. Alla on erinäisiä ratkaistuja matriiseja, jotka ovat siis muodosta à = [A b Gauss-Jordan eliminaatiolla redusoituja matriiseja. A ja b ovat tietysti tutun muodon Ax = b kerroinmatriisi ja epähomogeenisuusosa. Tulkitse näiden matriisien antama ratkaisu. Mieti ratkaisun seuraavia aspekteja (niitä ei tarvitse kirjoittaa ratkaisuun): Mikä on ratkaisuavaruuden dimensio? Mitkä x i saivat kiinteän arvon (kuten x = )? Onko sellaisia x i joiden arvojen muuttaminen ei vaikuta minkään muun muuttujan arvoihin? (a) [ 3 4 3 6 (b) 5 3 3 4 4 (d) 5 3 3 4 (c) 3 3 4 5 (e) 3 3 4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = 3, R =, R = 3 5 ja L =. Tälläinen piiri noudattaa yhtälöä [ [ [ d I = I dt V 3 5. V [ I Merkitään = x ja sijoitetaan yrite x = e V λt v, missä λ ja v ovat vakioita joiden arvot pitää selvittää. Nyt siis systeemillä on ratkaisu jos ja vain jos λe λt v = [ 3 5 e λt v, eli λv = [ 3 5 v.

(a) Laske systeemin virta ja jännite ajan funktiona. Eli: laske yllä annetun matriisin ominaisarvot ja ominaisvektorit, jotka ovat tietenkin yhtälössä näkyvät λ ja v. Kun ne on laskettu, ne voidaan sijoittaa suoraan yritteen lausekkeeseen x = e λt v. Tullaan siis saamaan kaksi tämänmuotoista termiä, ja piirin lopullinen ratkaisu on näiden kahden termin summa. Huomaa että vastaukseen jää vapaita parametreja koska ominaisvektorit eivät ole yksikäsitteisiä. (b) Heitetään vielä tehtävään mukaan alkuarvo, jotta kaikkien vakioiden arvot voidaan kiinnittää ja saada yksikäsitteinen ratkaisu: Ajanhetkellä t = pätee I() = ja V () =. Tämä tarkoittaa siis sitä, että alussa piirissä ei kulje virtaa, ja kondensaattoriin on varautuneena voltin jännite. Voimme olettaa, että systeemissä on katkaisija, joka käännetään päälle ajanhetkellä t =. C R R L 5. Olkoon A ja B ei-singulaarisia 3 3 matriiseja. (a) Ratkaise vektori x kun Ay = Bx + y (b) Ratkaise matriisi X yhtälöstä AXB = A, (c) Olkoon a = [ ja b = [ 3. Määritä ne yksikkövektorit c jolle kulmat a:n että b:n kanssa ovat yhtäsuuret. 6. Lineaarialgebralla on paikkansa ekonomiassakin. Kuuluisassa Leontiefin mallissa mietitään minkä verran erilaisten tuotantosektoreiden pitäisi tuottaa resursseja jotta tuotantosektoreiden ulkopuolinen kysyntä saataisiin tyydytettyä. Erilaisia tuotantosektoreita/resurssitarpeita on reaalimaailmassa paljon mutta yksinkertaistetaan ja otetaan tähän tehtävään vain kolme tuotantosektoria: Teollisuus, maatalous ja palvelut. Olkoon teollisuuden tuotantomäärä x, maatalouden tuotantomäärä x ja palvelujen tuotantomäärä x 3. Yksiköillä ei tule olemaan oikeastaan suurempaa väliä tulevassa mallissamme. Vastaavasti merkitään sektoreiden tuotteiden ulkopuolisen kysynnän määriä symboleilla d, d ja d 3. Jos v vektori sisältää tuotantokoneiston itsensä pyörittämisen vaatimien resurssien määrän niin kysynnän tarjonnan tasapainoyhtälö on x = d + v () Jos tiedämme määrät, jonka verran tietty tuottava sektori vaatii muilta sektoreilta yhtä itse tuottamaansa yksikköä kohden, voimme kirjoittaa tämän tiedon sarakevektoriksi c i, jolloin saadaan v = x c + + x n c n = Cx, missä C = [ c c n. Tarkoituksena on löytää tuotantovektori x joka toteuttaa yhtälön (). Kyseinen vektori edustaa siis tilannetta jossa miltään tuotantosektorilta ei tule ylimääräistä tuotantoa, eikä myöskään mikään sektori joudu kärsimään pulaa tarvitsemistaan raaka-aineista (tai palveluista). Alla olevan taulukko esittää nyt matriisia C. Tulkinta menisi siten että esimerkiksi yhden maatalousresurssiyksikön tuottaminen kuluttaa.4 yksikköä teollisuusresursseja,.3 yksikköä maatalouden omia resursseja ja. yksikköä palveluresursseja. Teollisuuden kysyntä Maatalouden kysyntä Palvelujen kysyntä Teollisuus.5.4. Maatalous..3. Palvelut...3 (a) Jos teollisuussektori aikoisi tuottaa yksikköä omaa tuotettaan, minkä verran se loisi kysyntää kullekin kolmesta sektorista?

(b) Jos ulkopuolinen kysyntä on 5 yksikköä teollisuudelta, 3 yksikköä maataloudelta ja yksikköä palveluilta, mikä silloin on optimaalinen tuotantovektori x? (c) Oletetaan että talous on tasapainossa, eli tuotanto vastaa täysin kysyntää. Tuotantovektori x = [ 5 T. Mikä on silloin kysyntä d? Huom. Tämä malli ei ottanut nyt kantaa siihen miten kunkin sektorin tuotannot pitäisi hinnotellla että homma olisi rahallisesti tasapainossa. Tälläinen tasapainohintojen etsiminen on varsin samantyyppinen ongelma kuin tehtävässä käsitelty tuotannon määrien optimointi. 7. (a) Olkoon v = [ T, v = [ T, v3 = [ T ja b = [ 3 3 T. Määritä kertoimet c, c ja c 3 siten että b = c v + c v + c 3 v 3. (b) Jos vektorit v i ovat matriisin B R 3 3 ominaisvektoreita joihin liittyvät ominaisarvot ovat λ =., λ = ja λ 3 =, määritä Bb. Huomaa ettei matriisia B tarvitse määrittää. 8. Olkoon matriisi B kuten edellisessä tehtävässä. Prosessissa alkutuotteista x, x ja x 3 tuotetaan lopputuotteita y, y ja y 3 kaavan Bx = y mukaisesti. Ratkaise seuraavat ongelmat jokaiselle i =,,3: (a) Jos alkutuotteiden määrä laskee määrästä [,, T määrään [,, T v i niin kuinka paljon muuttuu lopputuotteiden määrä? (b) Jos lopputuotteiden määrän on noustava määrästä [,, T määrään [,, T + v i, niin paljonko on alkutuotteiden määrän noustava?

Vastauksia: Teht.#: [ [ [ 8 A: 4,,c, c R,c, c R B: 3 ± 4i,c [ [ i C: 6,,c, c R,c, c R, c R,c [ i Teht.#: A: det(a) =, rank(a)=, null(a)=, lineaarisesti riippuvaisia, ei käänteismatriisia [ B: det(b) =, rank(b)=, null(b)=, lineaarisesti riippumattomat, 3 3 4 C: det(c) =, rank(c)=3, null(c)=, lineaarisesti riippumattomat, 3, c R Teht.#3: 6 4 3 3 (a) x = 3 + x 3, x 3 R (b) x = 4 + x 5 4 3 + x 5, x 4, x 5 R 4 6 5 (c) x = + x 3 + x 6 5 5 3, x 3, x 5 R (d) x = 3 + x 3 + x 6, x 3, x 6 R 3 (e) Sama kuin kohdassa (d). Teht.#4: [ [ (a) x = c e t + c e t [ [ 3 (b) x = e t e t 3 Teht.#5: (a) x = B (A I)y (b) X = B (c) c = c [ v v T, missä c = ± ( v v ) +, v = 5 3 ja v = 5. Teht.#6: (a) (5,,). (b) (35.85, 73.48, 58.333) (c) (, 45, 35) Teht.#7: (a) c = (,,) (b) (.,,.)

Teht.#8: (a) Lopputuotteet vähenevät λ i v i :n verran. (b) Alkutuotteiden määrän on noustava λ i v i verran.