12. Hessen matriisi. Ääriarvoteoriaa

Samankaltaiset tiedostot
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

2 Osittaisderivaattojen sovelluksia

Matematiikan tukikurssi

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Vektorilaskenta, tentti

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Luento 9: Yhtälörajoitukset optimoinnissa

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Taustatietoja ja perusteita

1 Rajoittamaton optimointi

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Matematiikka B1 - TUDI

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Matematiikka B1 - avoin yliopisto

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

Matriisit ja optimointi kauppatieteilijöille P

Matriisit ja optimointi kauppatieteilijöille P

Matematiikan tukikurssi

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Likimääräisratkaisut ja regularisaatio

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

x = (1 t)x 1 + tx 2 x 1 x 2

b 1. b m ) + ( 2b Ax) + (b b)

Johdatus tekoälyn taustalla olevaan matematiikkaan

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Matematiikan tukikurssi

Harjoitus 7: vastausvihjeet

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

1 Rajoitettu optimointi I

Funktion suurin ja pienin arvo DERIVAATTA,

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Matemaattinen Analyysi

Viikon aiheet. Funktion lineaarinen approksimointi

Derivaatan sovellukset (ääriarvotehtävät ym.)

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Numeeriset menetelmät

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

Kanta ja Kannan-vaihto

Matemaattinen Analyysi / kertaus

5 Differentiaaliyhtälöryhmät

r > y x z x = z y + y x z y + y x = r y x + y x = r

BM20A0300, Matematiikka KoTiB1

(a) avoin, yhtenäinen, rajoitettu, alue.

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Matematiikan tukikurssi, kurssikerta 3

Malliratkaisut Demo 4

Pienimmän Neliösumman menetelmä (PNS)

Mat Dynaaminen optimointi, mallivastaukset, kierros 5

Piiri K 1 K 2 K 3 K 4 R R

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

Pienimmän neliösumman menetelmä

YLE11, MATEMATIIKKAA TALOUSTIETEILIJÖILLE

Malliratkaisut Demot

lnx x 1 = = lim x = = lim lim 10 = x x0

Insinöörimatematiikka D

5 Usean muuttujan differentiaalilaskentaa

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

Lineaarikuvauksen R n R m matriisi

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

MATEMATIIKAN ALKEET II (YE19B), SYKSY 2011

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

Matematiikan tukikurssi

Matematiikan perusteet taloustieteilij oille I

2. Teoriaharjoitukset

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Transkriptio:

179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä unktiolla (osittaisderivaatat jatkuvia) on silloin lineaarinen eli ensimmäisen kertaluvun approksimaatio ( x) = ( x ) + ( x )( x x ) + ε( h) h. 0 0 0 Tämä on silloin myös unktion 1. asteen Taylorin polynomi pisteessä x. 0 Tarkempi approksimaatio saadaan 2. asteen Taylorin polynomilla ( x) = ( x ) + ( x )( x x ) + ( x x ) ( x )( x x ) + ε( h) h 2, 1 T 0 0 0 2 0 0 0 missä ( x 0) on unktion toinen derivaatta, ns. Hessen matriisi: Jos unktiolla on toisen kertaluvun osittaisderivaatat olemassa, niin niistä koostuva Hessen matriisi H on H = D11 D12 D1 n D21 D22 D2n D D D n1 n2 nn, missä on merkitty D ij 2 =. x x i j Pisteessä x lasketun Hessen matriisin H (x) (i,j)-alkio on siis D ij (x) = 2 x x i j ( x ).

180 Jatkossa oletamme, että unktion kaikki toisenkin kertaluvun derivaatat ovat jatkuvia. Silloin sekaderivaatat voidaan laskea missä järjestyksessä hyvänsä, joten D ij = D ji eli Hessen matriisi on symmetrinen. Hessen matriisin avulla unktiolle saadaan siis kvadraattinen approksimaatio eli toisen kertaluvun approksimaatio: (x+h) - (x) = (x) T h + 21 h T H (x)h + ε( h) h 2. Yhteenvetona derivaatoista reaaliarvoiselle unktiolle saadaan näin: unktion gradientti on transponoituna derivaatta ja Hessen matriisi toinen derivaatta eli: '(x) = (x) T ''(x) = H (x), jotka ovat 1 n ja n n matriiseja. Sovellamme sitten ensimmäisen ja toisen kertaluvun approksimaatioita unktion ääriarvojen tutkimiseen. Ääriarvotehtävien yleistä teoriaa, ratkaisumenetelmiä ja soveltamista sanotaan myös optimoinniksi, joka on yksi sovelletun matematiikan osaalueista. Näiden tehtävien yleinen muoto on min (x) x S R n,

181 jossa minimoinnin sijasta voidaan myös maksimoida. Minimoitava tai maksimoitava unktio on ns. kohdeunktio ja muuttujaa x sitovat joukon S määrittelevät ehdot ovat rajoitusehtoja. Muuttujat, jotka toteuttavat rajoitusehdot, ovat käypiä ratkaisuja ja joukko S käypä joukko. Jos rajoitusehtoja ei ole, muuttuja x saa vapaasti liikkua koko avaruudessa R n, josta syystä näitä ongelmia kutsutaan vapaiksi optimointitehtäviksi. Ne ovat helpompia käsitellä, kuin rajoitusehdoilla varustetut, koska rajoitusehtojen noudattaminen vaatii oman työnsä. Optimointiprobleemoissa haetaan kohdeunktion minimi- tai maksimikohtia. Nämä ovat globaaleja tai lokaaleja sen mukaan, antavatko ne kohdeunktiolle pienimmän (suurimman) arvon verrattuna kaikkiin käypiin muuttujiin vai vain jossakin ympäristössä oleviin. Vapaat ääriarvotehtävät Oletamme, että reaaliarvoinen kohdeunktio on määritelty koko avaruudessa R n ja on siellä ensimmäisen kertaluvun osittaisderivaattoineen jatkuva ja siis dierentioituva. Silloin sille on voimassa lineaarinen approksimaatio eli ensimmäisen kertaluvun approksimaatio: (x+h) - (x) = (x) T h + ε( h) h. Jos x on unktion lokaali minimikohta, niin riittävän lähellä 0:aa olevilla h on voimassa (x+h) - (x) 0. Tällöin on välttämättä oltava (x) = 0, koska muuten saisimme sijoittamalla yllä olevaan approksimaatioyhtälöön h = -t (x), t>0, ja jakamalla luvulla h yhtälön, jossa vasemmalla puolella on einegatiivinen luku ja oikealla negatiivinen (t riittävän pieni). Sama todetaan lokaalille maksimikohdalle.

182 Välttämätön ensimmäisen kertaluvun ehto lokaalille ääriarvolle. Jos x on jatkuvasti dierentioituvan unktion : R n R lokaali minimi- tai maksimikohta, niin (x) = 0. Tämä ehto on sama minimille ja maksimille. Niiden erottamiseksi tarvitaan toisen kertaluvun derivaattoja. Yhden muuttujan unktioista muistettaneen, että lokaalin minimin välttämätön ehto kahdesti jatkuvasti derivoituvalle unktiolle on '(x) = 0 ja ''(x) 0. Tämä ehto yleistyy Hessen matriisia käyttäen n:n muuttujan unktioille. Jos x on :n lokaali minimikohta, niin :n Hessen matriisin on oltava positiivisesti semideiniitti. Jos nimittäin on jokin v, jolla v T H (x)v < 0, niin valitsemalla h = tv, t>0, saadaan :n kvadraattisen approksimaation yhtälöstä puolittain h 2 :lla jakamalla ja ottamalla t riittävän pieneksi vasemmalle puolelle ei-negatiivinen luku ja oikealle puolelle aidosti negatiivinen (lineaarinen termi (x) T h =0, koska :n gradientti on 0). Välttämätön toisen kertaluvun ehto lokaalille ääriarvolle. Olkoot unktio : R n R ja sen osittaisderivaatat toiseen kertalukuun asti jatkuvia. Jos x on :n lokaali minimikohta, niin :n gradientti kohdassa x häviää ja Hessen matriisi on siinä positiivisesti semideiniitti: (x) = 0 ja H (x) 0. Jos x on :n lokaali maksimikohta, niin :n gradientti kohdassa x häviää ja Hessen matriisi on siinä negatiivisesti semideiniitti: (x) = 0 ja H (x) 0.

183 Käyttämällä derivaattamerkintöjä saadaan ehdot tutun näköisiksi ehdoiksi '(x) = 0 ja ''(x) 0 lokaalissa minimikohdassa x '(x) = 0 ja ''(x) 0 lokaalissa maksimikohdassa x. Nämä ehdot ovat siis välttämättömiä, eli niiden on pakko olla voimassa jokaisessa lokaalissa minimi/maksimikohdassa. Mutta ne eivät ole riittäviä, eli niiden voimassaolo ei takaa sitä, että kyseinen piste x on optimikohta. Siis voi olla olemassa pisteitä, joissa välttämättömät ehdot ovat voimassa, mutta jotka eivät ole optimikohtia. Sanomme unktion kriittisiksi pisteiksi kaikkia niitä pisteitä x, joissa unktion gradientti on nolla. Joskus myös mahdolliset unktion tai sen osittaisderivaattojen epäjatkuvuuskohdat otetaan mukaan kriittisiin pisteisiin (niissähän eivät ääriarvoehdot ole voimassa). Ne kriittiset pisteet, joissa gradientti on nolla, mutta jotka eivät ole lokaaleja minimejä tai maksimeja, ovat satulapisteitä. Optimiratkaisuja haetaan etsimällä ensin kaikki kriittiset pisteet, jotka sitten tutkitaan kukin erikseen. Kriittisten pisteiden "laadun" tutkimiseksi (eli ovatko lokaaleja minimejä, maksimeja jne.) voidaan käyttää riittäviä ehtoja. Näistä tunnetuin on yhden muuttujan unktioiden ehdon '(x)=0 & ''(x)>0 x lokaali minimikohta yleistävä ehto: (todistus perustuu kvadraattiseen approksimaatioon, jossa oikealla puolella oleva neliömuoto on positiivisen deiniittisyyden voimassa ollessa positiivinen; yksityiskohdat sivuutetaan)

184 Riittävä ehto lokaalille minimille ja maksimille. Olkoot unktio : R n R ja sen osittaisderivaatat toiseen kertalukuun asti jatkuvia sekä (x) = 0. Jos lisäksi :n Hessen matriisi H (x) on positiivisesti deiniitti, niin x on lokaali minimikohta, ja jos negatiivisesti deiniitti, niin x on lokaali maksimikohta: ''(x) > 0 x lokaali minimikohta ''(x) < 0 x lokaali maksimikohta. 2 2 2 Esim. 1 ( xyz,, ) = x + 4xy y + z 8x 6y+ z (x,y,z)=[2x+4y-8, 4x-2y-6, 2z+1] T =0, josta ratkeaa z=-½ ja yhtälöparista x:lle ja y:lle x=2, y=1. Siis vain yksi kriittinen piste: (x,y,z)=(2,1,-½). 2 4 0 Hessen matriisi: H ( x, y, z) = 4 2 0, jossa 2>0, mutta 2 4 0 4 2 <, joten 0 0 2 indeiniitti. Kyseessä satulapiste. 3 3 Esim. 2 ( xy, ) = x y 2xy (x,y)=[3x 2-2y,-3y 2-2x] T =0, josta saadaan y=3x 2 /2 ja se sijoittamalla toiseen yhtälö 2x=-3(3x 2 /2) 2 = -27x 4 /4. Tästä seuraa x=0 tai x 3 =-8/27 eli x=-2/3. Sijoittamalla nämä y:n lausekkeeseen y=3x 2 /2 saadaan y=0 tai y=2/3. Siis kriittisiä pisteitä on kaksi: (0,0) ja (-2/3,2/3). Hessen matriisi on nyt

185 H 6x 2 ( x, y) = 2 6y Pisteessä (0,0) ominaisarvot ovat 2 ja-2, joten Hessen matriisi on indeiniitti, kyseessä satulapiste. Pisteessä (-2/3,2/3) ominaisarvot ovat -2 ja-6, joten Hessen matriisi on negatiivisesti deiniitti, kyseessä lokaali maksimikohta. Rajoitusehdoilla varustetut ääriarvotehtävät Jos käypä joukko S on avoin eli reuna ei kuulu siihen, niin edellä mainitut lauseet soveltuvat sellaisenaan. Samoin on, jos pisteen x tiedetään olevan sisäpiste. (Avoimessa joukossa kaikki pisteet ovat sisäpisteitä.) Tämä johtuu siitä, että sisäpisteellä on ympäristö (avoin x-keskinen kiekko tai yleisemmin kuula), joka kokonaan sisältyy joukkoon S. Tällöin lokaalisti tilanne on sama kuin rajoitusehtoja ei olisikaan. Jos piste x sen sijaan on käyvän joukon reunapiste, asia on paljon monimutkaisempi. Tällä kurssilla tarkastelemme vain yhtälömuotoisia rajoitusehtoja, eli joukko S on määritelty yhtälörajoituksilla g 1 (x) = 0,, g m (x) = 0 missä unktiot g i ovat jatkuvasti dierentioituvia. Silloin tehtävä voidaan palauttaa vapaaksi tehtäväksi ottamalla käyttöön Lagrangen unktio L(x, λ) = (x) -λ 1 g 1 (x) - -λ m g m (x) missä vektori λ koostuu Lagrangen kertoimista λ 1,, λ m. Jos x on unktion lokaali minimi- tai maksimikohta joukossa S, on silloin välttämättä

186 x L(x, λ) = 0. Silloin siis on voimassa yhtälöryhmä (x) = λ 1 g 1 (x) + +λ m g m (x) g 1 (x) = 0 g m (x) = 0 josta yritetään ratkaista x ja Lagrangen kertoimet λ 1,, λ m. Tässä on siis n+m tuntematonta, ja yleensä yhtälöryhmä on epälineaarinen ja sellaisena vaikea ratkaista. Esim. 3 Haettava ympyrän 2 2 ( xy, ) x y y x + y = 1 kehältä ne pisteet, joissa unktio 2 2 = saa maksiminsa. L(x,y)=x 2 -y 2 -y-λ(x 2 +y 2-1). Silloin L x =2x-2λx=0, L y =-2y-1-2λy=0. Näistä ja ympyrän yhtälöstä ratkaistaan x, y ja λ. Jos x=0, niin y=±1, jolloin λ=-3/2 tai λ=-1/2. Jos x 0, niin λ=1, jolloin y=-1/4 ja ympyrän yhtälöstä siis x=± 15 /4. Siis kriittiset pisteet ovat (0, ±1) ja (± 15 /4,-1/4). Laskemalla :n arvot näissä todetaan, että suurimman arvon se saa pisteissä (± 15 /4,-1/4), jolloin (± 15 /4,-1/4)=5/4.