Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite



Samankaltaiset tiedostot
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

FYS206/5 Vaihtovirtakomponentit

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Pynnönen Opiskelija: Tarkastaja: Arvio:

FYSP1082/3 Vaihtovirtakomponentit

SMG-2100: SÄHKÖTEKNIIKKA

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Kondensaattori ja vastus piirissä (RC-piiri)

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Kondensaattori ja vastus piirissä (RC-piiri)

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].

SMG-2100: SÄHKÖTEKNIIKKA

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Taitaja2004/Elektroniikka Semifinaali

OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.

RCL-vihtovirtapiiri: resonanssi

Sähkömagnetismi. s. 24. t syyskuuta :01. FY7 Sivu 1

Lineaarialgebra MATH.1040 / Piirianalyysiä 2

4B. Tasasuuntauksen tutkiminen oskilloskoopilla.

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

Taitaja2007/Elektroniikka

41 4h. SÄHKÖISIÄ PERUSMITTAUKSIA. OSKILLOSKOOPPI.

DEE Sähkötekniikan perusteet

Sähkötekniikka ja elektroniikka

Elektroniikan perusteet, Radioamatööritutkintokoulutus

DEE Sähkötekniikan perusteet

YLEISMITTAREIDEN KÄYTTÄMINEN

FYSP105 / K3 RC-SUODATTIMET

SMG-1100: PIIRIANALYYSI I

Luku 13. Vaihtovirrat Sinimuotoinen vaihtojännite

Pynnönen Opiskelija: Tarkastaja: Arvio:

Sähkövirran määrittelylausekkeesta

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

SMG-2100: SÄHKÖTEKNIIKKA

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

FYSA2010 / K1 MUUNTAJA

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

YLEISMITTAREIDEN KÄYTTÄMINEN

6. Kertaustehtävien ratkaisut

MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

Pynnönen Opiskelija: Tarkastaja: Arvio:

ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla

l s, c p T = l v = l l s c p. Z L + Z 0

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Elektroniikan perusteet, Radioamatööritutkintokoulutus

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Työ 41B28. SÄHKÖISIÄ PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA

VASTUSMITTAUKSIA. 1 Työn tavoitteet

Fysiikka 7. Sähkövaraukset. Varaukset. Kondensaattori. Sähkökenttä. Sähkö-opin pikakertaus. Sähkömagnetismi

Tietoliikennesignaalit & spektri

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

FYSA1110/K1 (FYSP1082/K5) OSKILLOSKOOPIN PERUSKÄYTTÖ

SÄHKÖSUUREIDEN MITTAAMINEN

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

RESISTANSSIMITTAUKSIA

1 Yleismittarin käyttäminen

Ongelmia mittauksissa Ulkoiset häiriöt

S1. SÄHKÖISIÄ PERUSMITTAUKSIA Osa A: Yleismittarit.

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

Fysiikka 7 muistiinpanot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

Perusmittalaitteiden käyttö mittauksissa

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 2004

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

TOROIDIN MAGNEETTIKENTTÄ

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

Luku 7 Lenzin laki kertoo induktioilmiön suunnan

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Elektroniikan kaavoja 1 Elektroniikan Perusteet I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

MT , Sähkökemialliset tutkimusmenetelmät

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

Kapasitiivinen ja induktiivinen kytkeytyminen

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

RAIDETESTERIN KÄYTTÖOHJE

Transkriptio:

TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori. Lisäksi tutkitaan L-piirin sarjaresonanssia. Kaksoiskanavaoskilloskooppi KENWOOD S-45 (0 MHz), vaihtojännitelähde (500), vastus 0 Ω (säätövastus Phywe), vastus kω (esim. Phywe tai 305), käämejä, esim.(600r, 300r, 00r) sekä rautasydän + ies, kondensaattoreita, esim.( µf, nf ja, nf), yleismittari (DT-830B), virtamittari (0), äänitaajuusgeneraattori (3300), johtimia. Käämejä ja kondensaattoreita saa olla useita eri arvoisia. Vaihtovirtapiirin peruskomponentteja ovat vastukset käämit ja kondensaattorit (kuva ). Sähkölähteeseen kytketyt laitteet voidaan tulkita näiden erilaisiksi yhdistelmiksi. Kuva. Vastus (), kondensaattori () ja käämi (L). Sinimuotoinen vaihtojännite u = û sinω t synnyttää laitteeseen sinimuotoisen vaihtovirran i = î sin( ω t -ϕ). Suureet u ja i ovat jännitteen ja virran hetkelliset arvot, û ja î huippuarvot, ω= πf on vaihtojännitteen kulmanopeus ja f vaihtojännitteen taajuus (F4, s. 79-8 (59-6)). Käämin ja kondensaattorin ominaisuuksista johtuu, että jännitteen ja virran välillä on yleisessä tapauksessa vaihe-ero ϕ. Vaihtosähkömittarit osoittavat yleensä ns. tehollisarvoja, jota sinijännitteen tapauksessa ovat û tehollinen jännite U= î ja tehollinen virta I=. Sähkötekniikassa virrat ja jännitteet ilmoitetaan yleensä tehollisina arvoina (F4, s. 97-04 (77-84)). Sinimuotoista vaihtojännitettä tai virtaa, jonka taajuus on f, voidaan esittää kulmanopeudella ω= πf pyörivällä vektorilla eli osoittimella. Osoitinkuvio voidaan piirtää joko huippuarvoille û ja î tai tehollisarvoille U ja I.

Kuvassa on sinijännite u = û sinω t on esitetty huippuarvoosoittimen avulla. Osoitin (tasovektori) pyörii origon O ympäri. Osoittimen pituus on jännitteen huippuarvo û. Osoitin pyörii vastapäivään kulmanopeudella ω= πf. Hetkellinen arvo u on osoittimen y-komponentti. Jännitteen vaihekulma α= ω t on osoittimen kulmakoordinaatti vektorisuuntaan nähden. Tarkastelun alkuhetkellä t = 0 ja vaihekulma α= ω t = 0. (F4, s. 03-04 (83-84)). Kuva. Sinimuotoisen vaihtojännitteen osoitindiagrammin avulla. u = û sinω t kuvaaminen Jännitteen ja virran välinen vaihe-ero ϕ eri peruskomponenttien tapauksessa: -piiri: ϕ = 0, ts. puhtaasti resistiivisen kuorman tapauksessa virta ja jännite ovat aina samassa vaiheessa. Tehollisarvolle pätee U = I, jossa on vastuksen resistanssi. L-piiri: ϕ = +π/, ts. puhtaasti induktiivisen kuorman tapauksessa virta on 90 o jännitettä jäljessä (ks. kuva 3). Tehollisarvolle pätee U L = ωli, jossa ωl on käämin induktiivinen reaktanssi -piiri: ϕ = -π/, ts. puhtaasti kapasitiivisen kuorman tapauksessa virta on 90 o jännitettä edellä (ks. kuva 3). Tehollisarvolle pätee U = I, jossa ω ω on kondensaattorin kapasitiivinen reaktanssi. (F4, s. 99-0 (79-8), 05-6 (85-94)). Kuva 3. Vaihe-eron kaksi lajia käämissä ja kondensaattorissa.

Käämin induktiivinen reaktanssi X L = ωl ja kondensaattorin kapasitiivinen reaktanssi X = ω. Kulmanopeus ω= πf. Suure X = ωl - ω on piirin reaktanssi eli näennäisvastus. Kuva 4 esittää virtapiiriä, jossa vastus, ideaalinen käämi ja kondensaattori on kytketty sarjaan vaihtojännitelähteeseen. Kuva 4. L-piiri eli vastus, käämi, kondensaattori ja vaihtojännitelähde sarjassa. Kirchhoffin. lain mukaan hetkellinen jännite on u = u + u L + u. Koska komponenttien jännitteet ovat erivaiheisia, tehollisarvot on laskettava yhteen vektoriaalisesti. Tämä suoritetaan mukavammin kuvan 5 mukaisen osoitindiagrammin avulla. Koska hetkellinen virta on sama kaikkialla piirissä, valitaan virtaosoitin perussuunnaksi ja piirretään eri komponenttien jännitteet siihen nähden. Kuva 5. L-piirin a) jännitediagrammi ja b) impedanssidiagrammi. Kuviosta saadaan ( U U ) U = U +. L Sijoittamalla U = I, U L = IωL ja U = I saadaan ω U = I + ω L = IZ. ω Suure Z L = + ω on piirin impedanssi. ω Impedanssi on vaihtovirtapiirin sähkövirtaa rajoittava suure, vaihtovirtavastus. (U = ZI, vrt. Ohmin laki: U = I). (ks. F4, s. 8- (96-99)).

Myös impedanssi voidaan esittää osoitindiagrammina, joka saadaan jakamalla jännitediagrammin osoittimet virralla I (kuva 5b). Osoitinkuviosta saadaan edelleen vaihe-erolle ϕ lauseke ω L - U L U ω ϕ = arctan = arctan. U Piirin impedanssilla Z on minimiarvo, kun X L X = 0 eli ω L=. ω U Tällöin Z = ja sähkövirta I= saa suurimman arvonsa; I = I max = Z U. Tällöin vaihe-ero ϕ = 0 ja ω o L=, josta saadaan edelleen ω o=. ω o L Koska kulmanopeus ω o = πf o, niin maksimivirtaa vastaava piirin resonanssitaajuus f o =. π L Piiri on resonanssissa siihen kytketyn vaihtojännitteen kanssa, jos jännitteen taajuus on sama kuin resonanssitaajuus f o. (ks. F4, s. 4-30 (0-08)). adion tai television kanavanvalitsinpiiri on esimerkki L-piiristä. Antenni ottaa vastaan useiden lähiasemien lähettämää taajuutta. Muuttamalla piirissä kapasitanssia muutetaan piirin resonanssitaajuus samaksi kuin etsityn kanavan taajuus. On syntynyt (virta)resonanssi. Näin piiri värähtelee vain tämän halutun taajuuden mukaisesti ja vastaanottimesta kuuluu ja näkyy kyseisen kanavan ohjelmaa. (ks. Ohanian: Physics, second., ed., exp. p. 83-843). Suoritusohjeita Työssä mitataan jännitteiden vaihe-ero vaihtovirtapiirissä, jossa on a) kaksi vastusta (-piiri) b) käämi ja vastus (L-piiri) c) kondensaattori ja vastus (-piiri) Lisäksi tutustutaan resonanssiin.

Oskilloskoopin lämmettyä asetetaan kaikki kolme VAIABLE-säädintä asentoon: AL. Säädetään intensiteetti ja fokusointi sopivaksi (INTENSITY- ja FOUS säätimet). Säädetään kuvapisteen paikka (XY: ON) origoon POSITION-näppäimillä. Sitten asetetaan XY: OFF. Aseta A-GND-D näppäimet ( kpl) asentoon: A ja x0mag: OFF. Oskilloskoopin VETIAL MODE-kytkin käännetään ALT-asentoon, niin että kumpikin kanava on käytössä. Kummatkin näytöllä olevat signaalit kannattaa asettaa POSITION-säädöllä sopivaan kohtaan kuvaruutua. Tutkimuksessa seurataan oskilloskoopin kuvaruudulta kahta jännitettä ajan funktiona (ty - ja ty -koordinaatistot). Tutkimuksessa luetaan oskilloskoopin näytöltä jännitteiden vaihe-ero ϕ, joten oskilloskoopin aikasäätökytkimestä SWEEP TIME/DIV valitaan tarkasteltavan ilmiön kannalta tarkoituksenmukainen jakoväli ajalle (esim. ms). Pystyakseleille valitaan tarkoituksenmukainen jakoväli jännitteelle VOLTS/DIV-kiertokytkimestä (esim. V). Oskilloskoopin näytöllä oleva kuva näkyy tu-koordinaatistossa (ks. kuva 6). TIGGEING MODE näppäin asetetaan asentoon FIX (tai TV FAME tai TV LINE) ja variable-säätimet ovat asennossa cal. Koska tutkimuksessa maadoitetaan oskilloskoopin mittauskanavat samasta pisteestä komponenttien välistä, täytyy kanavaan (H) tuleva signaali invertoida (kertoa luvulla ). H INV: ON. Tällöin jännitehäviöt ovat kummassakin komponentissa samansuuntaiset. Oskilloskoopin kanavalta (H) luettavan jännitteen vaihe-ero kanavalta (H) luettavaan jännitteeseen verrattuna saadaan selville mittaamalla, kuinka paljon myöhemmin jännite kanavassa (H) on nolla. Tarkastellaan esimerkkinä kuvan 6 esimerkkiä. Kuva 6. Jännitteiden vaihe-eron mittaus oskilloskoopilla. Kuvan 6 tilanteessa jännite on nolla noin 5 ms:n kuluttua siitä, kun -kanavan (H) jännite on nolla. Koska T = 0 ms, niin 5 ms vastaa vaihe-eroa (5/0) π = π/. Kanavan (H) jännite on siis vaiheen π/ verran jäljessä kanavan (H) jännitettä. Oskilloskooppi voidaan kytkeä myös XY-asentoon, jolloin vaihtojännitesignaalin vaihe-ero voidaan määrittää ns. vaihe-ellipsistä (ks. kuva 7). Tällöin vaakasuuntaisena poikkeuttajana on taajuudeltaan tunnettu vaihtojännitesignaali. Jännitteiden vaihe-ero voidaan tällöin laskea lausekkeesta; ϕ = arcsin(a/b). Kuva 7. Vaihe-eroellipsi. Vaihe-ero ϕ = arcsin(a/b ).

Mittauspöytäkirja / työohjeet Tutkimus. Kaksi vastusta vaihtovirtapiirissä (-piiri) Tehdään kuvan 8 mukainen kytkentäkaavio, jossa mitataan kahden vaihtovirtapiirissä olevan vastuksen ja jännitehäviöiden vaihe-ero ϕ. Kummankin vastuksen ja resistanssi on 0 Ω. Vastuksina voidaan käyttää esim. säätövastuksia (Phywe), joiden resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6). Jännitteenä on 5,0 V A. Etsi sopivat oskilloskoopin säädöt. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME). Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: V, y : VOLTS/DIV: V. Aseta oskilloskoopin XY-näppäin asentoon: ON ja tutki oskilloskoopissa näkyvää kuvaajaa.. Millainen kuvaaja nyt saatiin? JÄNNITEHÄVIÖIDEN U =U (t) ja U =U (t) VÄLINEN VAIHE-EO - PIIISSÄ ON ϕ =. Kuva 8. Kaksi vastusta ja vaihtovirtapiirissä. Mitä vastuksen resistanssien kasvattaminen (kuva 8) vaikuttaa jännitteen kuvaajiin?

Tutkimus. Käämi ja vastus vaihtovirtapiirissä (L-piiri) Tehdään kuvan 9 mukainen kytkentäkaavio, jossa mitataan vaihtovirtapiirissä olevan käämin L ja vastuksen jännitehäviöiden vaihe-ero ϕ. Vastuksen resistanssi on 0 Ω. Vastuksena voidaan käyttää esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Kääminä voidaan käyttää esimerkiksi käämiä, jonka kierrosluku on 600r (0 Ω) tai vastaavaa. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6) ja vaihe-eroellipsistä (kuva 7). Vaihe-eroellipsi saadaan kuvaruudulle asetta oskilloskoopin XY-näppäin asentoon: ON. Jännitteenä 5,0 V A. Etsi sopivat oskilloskoopin säädöt. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME). Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: V, y : VOLTS/DIV: V. Kuva 9. Käämi L ja vastus vaihtovirtapiirissä. JÄNNITEHÄVIÖIDEN U L =U L (t) ja U =U (t) VÄLINEN VAIHE-EO L- PIIISSÄ ON ϕ =. Mitä jännitteen kuvaajiin vaikuttavat: a) vastuksen resistanssin lisääminen b) käämin kierrosluvun vähentäminen c) käämin rautasydämen ieksen liikuttaminen?

Tutkimus 3. Kondensaattori ja vastus vaihtovirtapiirissä (-piiri) Tehdään kuvan 0 mukainen kytkentäkaavio, jossa mitataan vaihtovirtapiirissä olevan kondensaattorin ja vastuksen jännitehäviöiden vaihe-ero ϕ. Vastuksen resistanssi on 0 Ω. Vastuksena voidaan käyttää esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6). Aseta oskilloskoopissa XY-näppäin asentoon: ON ja tutki myös vaihe-ellipsiä (kuva 7). Jännitteenä 5,0 V A. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME) Etsi sopivat oskilloskoopin säädöt. Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: 5 mv, y : VOLTS/DIV: V. Kuva 0. Vastus kondensaattori ja vastus vaihtovirtapiirissä. JÄNNITEHÄVIÖIDEN U =U (t) ja U =U (t) VÄLINEN VAIHE-EO - PIIISSÄ ON ϕ =. Miten vastuksen resistanssin lisääminen vaikuttaa jännitteen kuvaajiin? Miten kondensaattorin kapasitanssin muuttaminen vaikuttaa jännitekäyriin? Miten vaihe-ero muuttuu edellisissä tapauksissa?

Tutkimus 4. Vastus, kondensaattori ja käämi vaihtovirtapiirissä (L-piiri) Tehdään kuvan mukainen kytkentäkaavio, jossa määritetään L-piirin resonanssitaajuus ja tutkitaan oskilloskoopilla piirin jännitehäviöitä. Vastuksena on kω: vastus, 0,5 W (335) tai esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Funktiogeneraattorina (FG) on äänitaajuusgeneraattori (3300) ja virtamittarina esim. Is-vetin 0. Äänitaajuusgeneraattori (FG) kytketään piiriin amp. output:ista. Etsi sopivat frekvenssialueet (ANGE) ja amplitudit (AMPLITUDE). Työssä käytetään siniaaltoa frekvenssimodulointia (modulation: f.m). (Osc.out amplifier d.c level - -ei merkitystä tässä työssä). Käämi (300r) + rautasydän ja ies. Virtamittari (0); 0,05 A. Katso oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Etsi sopivat oskilloskoopin säädöt. Vrt. työ 3. Sarja- ja rinnakkaisresonanssi. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME) Esim. SWEEP TIME/DIV: 0, ms, y : VOLTS/DIV: mv, y : VOLTS/DIV: V. Muuta äänitaajuusgeneraattorin taajuutta ja etsi se taajuuden arvo, jolla sähkövirta on suurimmillaan ja jännitteiden vaihe-ero on nolla. Tutki oskilloskoopin jännitehäviöiden kuvaajia taajuutta muutettaessa. Kuva. Vastus, kondensaattori ja käämi L vaihtovirtapiirissä (L-piiri). Äänitaajuusgeneraattori; FG: amp. output, - siniaalto, - modulation: f.m ESONANSSITAAJUUS f o.