Lämmöneristeiden merkitys kosteus ja homeongelmien kannalta



Samankaltaiset tiedostot
Energiatehokkaiden puurakenteiden lämpö-, kosteusja tiiviystekninen toimivuus

RAKENNUSTEN MIKROBILAJISTON DIVERSITEETTI, MONIULOTTEINEN TUTKIMUSKOHDE

Betonin ja siihen liittyvien materiaalien homehtumisen kriittiset olosuhteet - betonin homeenkesto

Kosteus-, home- ja laho-ongelmien

Puutuoteteollisuus Standardisointiseminaari. Miksi homeongelmat usein liitetään puuhun. Homeen kasvun olot ja mallinnus.

RAKENNUSVALVONTA. Krista Niemi

SISÄILMAN LAATU. Mika Korpi

Kosteus- ja mikrobivauriot koulurakennuksissa TTY:n suorittamien kosteusteknisten kuntotutkimusten perusteella

Betonikoulutus

Tekijä: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo

Rakenteiden kosteustekniikka ja FUTBEMS -hanke FInZEB Työpaja Tuomo Ojanen Erikoistutkija, VTT

Massiivirakenteiden sisäpuolinen lämmöneristäminen

Kosteus- ja mikrobivauriot kuntien rakennuksissa. Petri Annila

Puun kosteuskäyttäytyminen

ENERSIS. hanke.. Hannu Viitanen

CLT-rakenteiden rakennusfysikaalinen toimivuus

Miksi rakennukset homehtuvat? Sirkku Häkkilä Aerobiologian yksikkö Biodiversiteettiyksikkö

Betonin kuivuminen. Rudus Betoniakatemia. Hannu Timonen-Nissi

FRAME-PROJEKTI Tutk.joht. Juha Vinha TTY, Rakennustekniikan laitos

TUTKIMUSSELOSTUS ULKOSEINÄRAKENTEEN LÄMPÖ- JA KOSTEUSTEKNINEN TARKASTELU HÖYRYNSULKUKALVON KIERTÄESSÄ PUURUNGON ULKOPUOLELTA 31.7.

Palvelurakennusten kosteus- ja mikrobivaurioituminen Laatija: Petri Annila, TTY

Eri ikäisten kuntarakennusten korjaustarpeet. Petri Annila

Raportti. Yhteystiedot: Isännöitsijä Jyri Nieminen p Tarkastaja/pvm: Janne Mikkonen p /

TUTKIMUSSELOSTUS Nro VTT-S Termex Zero -seinärakenteen lämmönläpäisykerroin

KOSTEUSTURVALLINEN LÄMMÖNERISTE. Pekka Reijonen, Paroc Oy Ab, Puupäivä

KOSTEUDENHALLINTA ENERGIATEHOKKAASSA RAKENTAMISESSA

466111S Rakennusfysiikka RAKENNUSKOSTEUS. Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto

Kirkkokadun koulu Nurmes Sisäilmaongelmat & mikrobit Minna Laurinen, Rakennusterveysasiantuntija Marika Raatikainen, Sisäilma-asiantuntija

Kosteusturvalliset matalaenergia- ja. Jyri Nieminen VTT

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet

Rakennuksen painesuhteiden ja rakenneliittymien tiiveyden merkitys sisäilman laatuun

ENSIRAPORTTI. Työ A Läntinen Valoisenlähteentie 50 A Raportointi pvm: A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus:

RAKENNUSTEN HOMEVAURIOIDEN TUTKIMINEN. Laboratoriopäivät Juhani Pirinen, TkT

Uuden Termex Zero -seinärakenteen lämmönläpäisykerroin

Raportti Työnumero:

Kosteus- ja mikrobivaurioiden varhainen tunnistaminen. Tohtorikoulutettava Petri Annila

Ennakoiva Laadunohjaus 2016 Kosteudenhallinta. Vaasa Tapani Hahtokari

Ala-aulan välioven kohdalla olevan pilarin ja ulkoseinän liitos.

Tuuletusluukku (vastaava havainto tehtiin 1. krs. kaikkien tuuletusluukkujen osalta).

Energiatehokkuusvaatimukset ja rakennusterveys

Penicillium brevicompactum sienen entsyymiaktiivisuuden säilyminen ympäristönäytteissä

Raportti Työnumero:

Hyvinvointikeskus Kunila

Ilmanvaihtojärjestelmien kunto terveysnäkökohdat

Miten parannan sisäilman laatua?

KOSTEUS. Visamäentie 35 B HML

PROBIOOTIT KODINHOIDOSSA SYVENTÄVÄÄ TIETOA

YLÄASTEEN A-RAKENNUKSEN SOKKELIRAKENTEIDEN LISÄTUTKIMUKSET

RISKIRAKENTEET JA SISÄILMAONGELMAT RTA PÄÄTÖSSEMINAARI KUOPIOSSA

TTS Työtehoseura kouluttaa tutkii kehittää

Kappale 6 sisällysluettelo

Insinööritoimisto AIRKOS Oy Y HYRSYLÄN KOULU RAKENTEIDEN MIKROBINÄYTTEET

Hyvä, paha sisäilma. Merja Järvelä Thermopolis Oy

HIRSIRAKENNUKSEN LÄMPÖ- JA KOSTEUSTEKNINEN TOIMINTA

Raportti Työnumero:

SISÄILMA Rakennusfoorumi. Eila Hämäläinen rakennusterveysasiantuntija Tutkimuspäällikkö, Suomen Sisäilmakeskus Oy

SISÄILMAN MIKROBITUTKIMUS

Finnmap Consulting Oy SSM

ENSIRAPORTTI/MITTAUSRAPORTTI

Fahim Al-Neshawy Aalto yliopisto Insinööritieteiden korkeakoulu Rakennustekniikan laitos

TIILIVERHOTTUJEN BETONISEINIEN KUIVUMINEN

Vakuutusyhtiö: TilPuh1: TilPuh2: Koulurakennus Betonirunko/tiiliverhoiltu Harjakatto. Putkien sijainti

VESIKATON JA YLÄPOHJAN KUNTOTUTKIMUS

TUTKIMUSRAPORTTI VTT-R Renovation Panel Tuuletusuritetun lisälämmöneristerakenteen kosteustekninen toimivuus

Asumisterveysasetuksen soveltamisohje mikrobien mittaaminen

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari

Materiaalinäytteen mikrobianalyysi, suoraviljely MIK7192 Kiwalab,

Uusien rakentamismääräysten vaikutus sisäilmastoon. Sisäilmastoluokitus 2018 julkistamistilaisuus Säätytalo Yli-insinööri Katja Outinen

RIL 249 MATALAENERGIARAKENTAMINEN

Kosteusmittausten haasteet

Metropolia OPS Rakennustekniikka Korjausrakentamisen YAMK -tutkinto Opintojaksokuvaukset

MCF julkisivun korjausmenetelmä. Microbe Control Finland Oy TaloTerveys Lajunen Oy

SISÄILMAN LAATU. Mika Korpi Rakennusterveys- ja sisäilmastopalvelut

Lämmöneristemateriaalin vaikutus suojaustarpeeseen. Betonipäivät 2014 Toni Pakkala, TTY, Rakenteiden elinkaaritekniikka

Lämmöneristäminen. Minä panin ikkunaan pahvisuojan. Dow polyurethane systems

MIKROBITUTKIMUS MATERIAALINÄYTTEISTÄ. Petuliantie Tervajoki

TUTKIMUSRAPORTTI KOSTEUSMITTAUS

RAKENNUSTEN LÄMPÖKUVAUS. 1

KARTOITUSRAPORTTI. Asematie Vantaa 1710/

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.

TUTKIMUSSELOSTUS OLLAKSEN PÄIVÄKOTI, KARHUNIITYN OPETUSTILA ALUSTATILAN SEURANTAMITTAUKSET

Kiinteistöjen sisäilmatutkimukset ennen korjauspäätöstä - Kysymyksiä ja vastauksia

RAKENNUSVALVONTA. Tommi Riippa

Hyvinvointia työstä. Työterveyslaitos Esittäjän Nimi

Olosuhdehallinta, erityiskysymykset Kuvat: Puuinfo Oy ellei toisin mainittu

Kottby lågstadie Pohjolankatu Helsinki. Kattorakenteen kuntotutkimus

Lämpöolojen pysyvyys matalaenergia- ja verrokkipientaloissa

Tuulettuvien yläpohjien toiminta

Ojoisten lastentalo, Hämeenlinna Uusi osa, alapohjan kosteusmittaukset

Kosteuden. Aalto-yliopiston teknillinen korkeakoulu Insinööritieteiden ja arkkitehtuurin tiedekunta Rakenne- ja rakennustuotantotekniikan laitos

Ryömintätilaisten alapohjien toiminta

TUNNISTA JA TUTKI RISKIRAKENNE

Lämmöneristetyypin vaikutus betonirakenteisten sisäkuorielementtien kuivumiseen

As Oy Juhannusrinne. Parolantie ESPOO

Kosteuskartoitusraportti

Kivistön asuntomessualueen puukerrostalon rakenteiden kosteusmittausten tulokset ja johtopäätökset

GESTERBYN SUOMENKIELINEN KOULU. Sisäilma- ja kuntotutkimus

Raportti Työnumero:

TEOLLISUUSRAKENNUSTEN TOIMISTOTILOJEN ILMAN LAATU (INDOOR AIR QUALITY IN OFFICES ADJACENT TO INDUSTRIAL HALLS)

Kosteusmittausyksiköt

Transkriptio:

Liite Lämmöneristeiden merkitys kosteus ja homeongelmien kannalta Johdanto Ympäristössä on monenlaisia mikro-organismeja eli mikrobeja kuten bakteereja, viruksia sekä home- ja lahottajasieniä. Mikrobeja on ihmisissä, ruoka-aineissa, rakennusmateriaaleissa, tekstiileissä jne. Ulkoilman mikrobit voivat olla peräisin muun muassa maaperästä, luonnon hajoamisprosesseista (esim. komposti) tai kasvien pinnoilta. Bakteerit, home- ja lahottajasienet ovat rakennuksia ympäröivässä luonnossa tärkeä osa luonnon aineosien kiertokulkua ja uusiutumista, mutta rakennuksissa ne voivat aiheuttaa eriasteista haittaa tai vauriota itse rakennuksille sekä erilaisia pitkäkestoisiakin sairauksia ihmisille (RIL -). Ulkoilmasta kulkeutuu mikrobeja ilman mukana rakennusten sisäilmaan ilmanvaihtokanavien, ovien ja ikkunoiden kautta sekä vaatteissa ja jalkineissa. Rakennusten ulkopintaan kertyy ajan mittaan erilaista mikrobikasvustoa, joka on osa rakennusten luontaista mikrobikuormitusta. Jos rakennuksen materiaaleihin ja rakenteisiin pääsee liiallista kosteutta, voi muodostua suotuisa kasvualusta mikrobeille ja rakenteisiin voi tietyissä lämpötiloissa ja ajan myötä syntyä mikrobikasvua (esim. homerihmastoja, itiöitä tai jopa lahovaurioita). Tällöin puhutaan kosteus-, mikrobi-, home- tai lahovioista tai -vaurioista riippuen ongelmien luonteesta, laajuudesta ja vakavuudesta (Viitanen et al ). Rakenteissa olevista mikrobivaurioista voi päästä sisäilmaan monenlaisia mikrobiperäisiä epäpuhtauksia ja haitallisia aineita, jotka voivat aiheuttaa tiloissa oleskelevalle erilaisia oireita tai sairauksia. Vaurioista voi erittyä etenkin ärsyttävää hajua, mutta osa näistä aineista voi olla erityisen haitallisia. Kosteusrasitukset aiheutuvat eri syistä: Ulkoiset rasitukset: - vesisade eri muodoissa (normaalisade, rankkasade, myrskysade, viistosade) - lumisade eri muodoissa (räntäsade, hienolumi) - tuuli vesihöyryn, veden tai lumen kuljettajana rakenteisiin tai myös kosteuden kuivaajana - pintavesi (valumavesi), hulevesi - maaperän kosteus (maahuokosten suhteellinen kosteus) - pohjavesi (tai ns. orsivesi) - ulkoilman kosteus. Sisäiset rasitukset: - sisäilman kosteus (ihmiset, pesu, ruoanlaitto, kasvillisuus jne.) - roiskevesi märkätiloissa - mahdolliset putkistovuodot - märkä siivous - talotekniset laitteet, pesukoneet, ilmankostuttajat - rakennusajalta rakenteisiin jäänyt rakennuskosteus - ilmanvaihdon/painesuhteiden vaihtelut. Mikrobien kasvu edellyttää etenkin riittävää kosteutta, lämpöa ja vaikutusaikaa

RH(%) Mikrobit (mm. bakteerit, home- ja lahottajasienet) ovat eläviä organismeja, jotka tarvitsevat elääkseen - vettä - lämpöä - ilmaa (happea) ja - ravinteita sekä otollisten olosuhteiden riittävä kestoaika. Etenkin kosteus ja lämpötila vaikuttavat yhdessä ja niiden vaikutusajalla on ratkaiseva merkitys. Rakenteissa ilma tai happi ei yleensä ole rajoittava tekijä. Tärkeimmät ovat kosteus, lämpötila, tarkasteltavat materiaalit sekä ongelmia aiheuttavat eliöt (mikrobit). Kuvassa on esitetty minkälaisissa olosuhteissa home voi syntyä männyn pintapuussa. Suhteellinen kosteus (RH, yksikkö %) kertoo miten paljon kosteutta ilmassa on verrattuna maksimimäärään ko. lämpötilassa. 9 9 8 8 7 7 Kuva. Homeen kasvun alkamiseen johtavat kriittiset kosteus- ja lämpöolot sekä niiden vaikutusaika pitkään vakiona olevissa oloissa männyn pintapuussa (se on yleensä homeen kasvun kannalta herkin materiaali, jota käytetään mm. puunsuojaukseen tarkoitettujen tuotteiden tehokkuuden testauksessa vertailumateriaalina). Tiivistetysti voidaan esittää seuraavat kriittiset ympäröivän mikroilmaston minimikosteusolot homeen ja lahon kehittymiseksi. Kriittinen kosteus ongelmien kehittymiseski rakennusmateriaalien pinnassa saavutetaan, kun ilman suhteellinen kosteus on pitkään yli RH 7 % (laaja skaala johtuu muista tekijöistä: lämpötila, vaikutusaika, eliötyyppi, materiaali, ongelma- tai vauriotyypi) - Home > RH 7-8 %, - Laho > RH 9 % - Bakteerit > RH 9 99 % - Hyönteiset > RH - 8 % Orgaanisten materiaalin (esim. puun) kosteuspitoisuus (u % kuivapainosta): - Home > u 8 % - Laho > u % Lämpötila + (-) + C Aika(viikkoja) Materiaalien merkitys homeen kehittymiseen Materiaalien vastustuskyky hometta vastaan vaihtelee. Materiaalit voidaan jaotella taulukon mukaisesti (RIL -). C C C C

Homeisuusaste (-) Taulukko. Rakennusmateriaalien jako kestävyys ja herkkyysluokkiin homeen kasvun riskin suhteen. Homehtumisherkkyys / kestävyysluokka suomeksi englanniksi Materiaalit hyvin herkkä käsittelemätön, runsaasti ravinteita sisältävä puu herkkä höylätty puu, paperipintaiset tuotteet ja kalvot, puupohjaiset levyt kohtalaisen kestävä medium sementtipohjaiset materiaalit, muovipohjaiset materiaalit, mineraalivillat kestävä lasi- ja metallimateriaalit, tehokkaita suoja-aineita sisältävät tuotteet Materiaalin homehtuminen pinnaltaan on luonnollisesti suhteellisen kosteuden ja lämpötilan lisäksi myös ajan funktio. Kuvasta nähdään että kuitulevyn ja kipsilevyn pinta homehtuu lämpimissä ja kosteissa olosuhteissa nopeammin kuin betonin pinta. Kasvun alku myös alkaa nopeammin. Kuvassa on esitetty kaavamainen kuva erilaisten materiaalien homehtumisesta eri kosteusoloissa ajan suhteen laboratoriooloissa. Tulosten mukaan kaikkien materiaalien pinnassa voi kasvaa hometta, jos pinnalla on orgaanista homeiden kasvulle tarvittavaa materiaalia, esim puupurua tai vastaavaa orgaanista materiaalia. RH 88-9 %, T C RH 98 - %, T C Betoni K Bet. K + Sahanpuru Valupaperi Kuitulevy EPS EPS + Sahanpuru Lasivilla Lasivilla + Sahanpuru 8 Aika (kk) 8 Aika (kk) Kivivilla Kivivilla + Sahanpuru Kuva. Erilaisten materiaalien homehtuminen RH 88-9 ja 98 - %:n kosteusoloissa ajan suhteen, T = o C laboratorio-oloissa, /Viitanen /). Homeen kasvua kuvataan homeindeksin avulla: = ensimmäiset merkit homekasvun käynnistymisestä on havaittavissa mikroskooppisesti = tilanne, jossa kasvu alkaa näkyä paljain silmin tai sitä on runsaasti mikroskooppisella tasolla = kasvua näkyy selvästi ja on paljon = runsasta kasvua, yli puolet tarkasteltavasta alasta = koko ala on runsaan kasvun peitossa. Kun materiaaliin kertyy orgaanista materiaalia, varsinaisen perusmateriaalin merkitys vähenee. Esim. mikrobit kasvavat materiaalien pintaan kertyvässä liassa ja pinta homehtuu, vaikka itse materiaali ei vioitu. Tyypillinen tällainen tilanne ilmenee esim betonilaatalle koolatussa puulattiassa, jossa eristeen ja betonin väliin usein jää puupölyä tai purua. Ajan mittaan kosteusolot saattavat olla rajapinnassa sellaiset, että mikrobikasvu voi käynnistyä aika ajoin rakenteen iän karttuessa. Tällöin mikrobikasvu voi aiheuttaa hajuahaittaa esim. tai vuoden kuluttua rakenteen valmistumisesta, riippuen siis toteutuneista kosteusja lämpöoloista ja niiden vaikutusajasta.

Lämmöneristeiden toimivuus riippuu eristeen ilman läpäisevydestä. Mineraalivillat ovat tunnetusti ilmaa läpäisevia. kovat muovieristeet taas ilmaa läpäisemättömiä. Tämä vaikuttaa suoraan myös rakenneperiaatteeseen: mineraalivilla edellyttävät sisäpinnan riittävää ilmantiiveyttä, jotta sisäilman kosteus ei pääse tunketumaan rakenteisiin ja aiheuttamaan kosteuden tiivistymistä ja siitä seuraavaa mikrobikasvua rakenteissa. Käytännön rakenteissa on usein ilmavuotoja, etenkin ulkoilmasta, jos tuulensulku ei ole ilmanpitävä. Mineraalivillan kuituverkkoon voi ajan mittaan tarttua ympäristöstä ilmavuotojen kautta tulevia partikkeleita ja likaa, jotka sitten liiallisen kosteuden vaikutuksesta voivat aiheuttaa mikrobien kasvua, ellei materiaaliin ole lisätty mikrobien kasvua estäviä biosideja. Eristeeseen kertyvä lika ei sellaisenaan aiheuta ongelmia, jos rakenteisiin ei pääse kosteutta. Vanhoissa rakennuksissa voivat villat olla mustuneita ilmavuotokohdissa, ja niistä voidaan viljelemällä saada suuria mikrobitoisuuksia, vaikka mitään mikrobikasvua ei niissä olisikaan. Tällöin mikrobiresponsi kuvaa vain materiaalin puhtautta, ei mahdollista mikrobikasvua tai vauriota. Tätä ei riittävästi käytännön tarkasteluissa ole otettu huomioon, jolloin normaalit rakenteet on voitu leimata ongelmarakenteiksi. Usein kuulee myös väitettävän, että jos mineraalivilla kostuu, sitä ei voi millään kuivata. VTT:ssa tutkittiin aikoinaan lämmöeristeiden merkitystä biologisten vaurioiden syntyyn (Paajanen et al. 99). Kostuneiden materiaalien osalta voitiin todeta, että mineraalivillat kuivuivat nopeasti, sellukuitua ja puupurua sisältävät eristeet taas selvästi hitaammin. Sama ilmiö on havaittu myös käytännön kosteusvaurioiden kuivauksessa: ilmaa läpäisvät materiaalit on yleensä helppo kuivata, tiiviimmät eristeet (esim puru ja turve) huomattavasti vaikeammin, ja usein niitä ei pysty kuivaamaan riittävästi, vaan kostuneet materiaalit joudutaan vaihtamaan. Tällöin on tietysti otettava huomioon rakenteiden kosteustekniset olot: viileän betonilaatan yläpinta kuivuu hitaasti sinne kertyneestä kosteudesta, koska siihen ei kohdistuu kosteutta siirtävää kuivattavaa voimaa (Kokko et al. 999). Jos eristeisiin lisätään mikrobien kasvua estäviä aineita, eristeet toimivat aktiivisesti mikrobikasvua estävästi. Esim selluvillaan lisätyt keimikaalit (mm booriyhdisteet) estävät homeen ja lahon kehittymistä eristeessä ja siihen liittyvissä rakenteissa (Paajanen et al. 999). Homeen kasvun mallintaminen Homeen kehittyminen riippuu olennaisesti materiaalista, kosteudesta, lämpötilasta sekä vaikutusajasta. Kuvassa esitetty mallitulos perustuu TTY:ssa ja VTT:ssa totetutuneen tutkimushankkeen Homemalli tuloksiin (Viitanen et al ). Hyvin herkkiä homeen kasvulle ovat eräät puupohjaiset materiaalit (männyn pintapuu), herkkiä ovat paperi- ja puupuupohjaiset tuotteet, kohtalaisen kestäviä ovat useimmat kivipohjaiset tuotteet ja vastustuskykyisiä ovat tuotteet, joihin on lisätty homeen kasvua estäviä aineita. Alle 9 % ilman suhteellisessa kosteudessa homeen kasvu kaikissa materiaaleissa on huomattavan hidasta, lämpötilasta riippuen, ja minimikosteus mikrobiongelmien kehittymiselle on RH 7 8 %, tosin lämpötilasta, vaikutusajasta ja materiaalista riippuen. Kuvassa on esitetty kaavamainen kuva materiaalien herkkyydestä tai vastustuskyvystä homekasvua vastaan. Kuvasta näkyy, että homeen kasvu vaihtelee hyvin laajasti materiaalista riippuen, eikä esim. männyn pintapuulla saatuja tuloksia tai sille kehitettyä mallia voida suoraan soveltaa eri materiaaleille. Tulokset on mallinnettu eri materiaalityypeille niin, että on voitu arvioida erilaisten materiaalien herkkyys homeen kasvulle.

97% RH & o C medium 98% RH & o C medium 8 8 9% RH & o C medium 9% RH & o C medium 8 8 Kuva. Homeen kehittyminen riippuen materiaalin herkkyydestä, kosteudesta, lämpötilasta sekä vaikutusajasta (Viitanen et al ). Kuvassa esitetty malli perustuu pitkään tasaisena pysyviin olosuhteisiin. Kun olosuhteet vaihtelevat, homesienten kasvu on huomattavasti hitaampaa ja syntynyt kasvusto vähäisempää kuin korkeampaa kosteutta vastaavissa vakio-oloissa. Mahdollinen kasvu riippuu tällöin kosteiden ja kuivien jaksojen pituudesta, kosteustasosta ja lämpötilasta. Kirjallisuus Kokko, E; Ojanen, T; Salonvaara, Ml; Hukka, A; Viitanen, H. 999. Puurakenteiden kosteustekninen toiminta. Espoo, VTT. s. VTT Tiedotteita - Meddelanden - Research Notes; 99 Paajanen, L; Ritschkoff, A-C; Viitanen, H. 99. Lämmöneristeiden merkitys rakennusten biologisissa vaurioissa. Espoo, VTT. s. + liitt. 8 s. VTT Julkaisuja - Publikationer; 79 RIL - Kosteudenhallinta ja homevaurioiden estäminen. Suomen Rakennusinsinöörien Liitto RIL. Viitanen, H.. Betonin ja siihen liittyvien materiaalien homehtumisen kriittiset olosuhteet - betonin homeenkesto. Espoo, VTT. s. VTT Working Papers; Viitanen, H; Vinha, J.; Salminen, K.; Ojanen, T.; Peuhkuri, R; Paajanen, L.; Lähdesmäki, K... Moisture and bio-deterioration risk of building materials and structures. Journal of Building Physics, vol.,, ss. -. Viitanen, H; Ojanen, T; Peuhkuri, R; Vinha, J; Lähdesmäki, K; Salminen, K.. Mould growth modelling to evaluate durability of materials. XII International Conference on Durability of Building Materials and Components. Porto, Portugal, - April, ss. 9-.