Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa



Samankaltaiset tiedostot
OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s

Gaussin ja Jordanin eliminointimenetelmä

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

HYPERSTAATTISET RAKENTEET

Lineaarinen yhtälöryhmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

5 OMINAISARVOT JA OMINAISVEKTORIT

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Matematiikka B2 - TUDI

5 Differentiaaliyhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät

Matematiikan tukikurssi

Tasokehät. Kuva. Sauvojen alapuolet merkittyinä.

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

1 Rajoittamaton optimointi

Matematiikka B2 - Avoin yliopisto

Insinöörimatematiikka D

5 DIFFERENTIAALIYHTÄLÖRYHMÄT

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Paikannuksen matematiikka MAT

7 Vapaus. 7.1 Vapauden määritelmä

BM20A0700, Matematiikka KoTiB2

12. Hessen matriisi. Ääriarvoteoriaa

Matemaattinen Analyysi / kertaus

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Numeeriset menetelmät

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaariset kongruenssiyhtälöryhmät

802118P Lineaarialgebra I (4 op)

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

4 Korkeamman kertaluvun differentiaaliyhtälöt

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Insinöörimatematiikka D

Ominaisarvo ja ominaisvektori

Numeeriset menetelmät

KJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

2 Osittaisderivaattojen sovelluksia

Luento 8: Epälineaarinen optimointi

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

MUODONMUUTOKSET. Lähtöotaksumat:

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

Ominaisarvo ja ominaisvektori

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

5 Ominaisarvot ja ominaisvektorit

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

KJR-C2002 Kontinuumimekaniikan perusteet

Insinöörimatematiikka D

T STATIIKKA 2 (3 OP.) OAMK

1 Di erentiaaliyhtälöt

MS-A0004/A0006 Matriisilaskenta

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko.

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Laskuharjoitus 2 Ratkaisut

Johdatus tekoälyn taustalla olevaan matematiikkaan

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

1 Peruskäsitteet. Dierentiaaliyhtälöt

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

Insinöörimatematiikka D

6 MATRIISIN DIAGONALISOINTI

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Konjugaattigradienttimenetelmä

Vektorilaskenta, tentti

Insinöörimatematiikka D

2 SUORA SAUVA ja PALKKI Suoran sauvan puhdas veto tai puristus Suoran palkin taivutus Harjoitustehtäviä 71

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Iteratiiviset ratkaisumenetelmät

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

Transkriptio:

Rakenteiden Mekaniikka Vol. 42, Nro 2, 2009, s. 75 82 Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Reijo Kouhia Tiivistelmä. Momenttimenetelmä on käyttökelpoinen ratkaisutapa sivusiirtymättömien staattisesti määräämättömien geometrisesti ja fysikaalisesti lineaaristen kehärakenteiden analysoinnissa. Se on yleisen voimamenetelmän erikoistapaus, joten staattisesti määräämättömien suureiden ratkaisemiseksi syntyvän lineaarisen yhtälösysteemin kerroinmatriisin on oltava symmetrinen ja positiivisesti definiitti. Tässä artikkelissa tarkastellaan miten tuntemattomat sauvanpäämomentit on valittava, jotta syntyvä kerroinmatriisi olisi symmetrinen sekä pohditaan miten rakenteen stabiiliusehto tulisi ilmaista. isäksi tarkastellaan toisesta päästään jäykästi tai kimmoisesti kiinnitetyn sauvan tukimomentin eliminointia ennen varsinaisen yhtälösysteemin muodostamista. Avainsanat: momenttimenetelmä, symmetrinen joustomatriisi, stabiiliusanalyysi Johdanto Yleisessä voimamenetelmässä tuntemattomina perussuureina ovat hyperstaattiset voimasuureet X i, i = 1,...,n s, missä n s on hypertaattisuuden, eli staattisen määräämättömyyden aste. Tarvittavat ratkaisuyhtälöt saadaan yhteensopivuusehdoista, joilla taataan ratkaisun geometrinen luvallisuus. Yhteensopivuusehdoista saatu yhtälöryhmä voidaan kirjoittaa muodossa Ax = b, (1) jossa A on symmetrinen ja positiivisesti definiitti joustomatriisi, x on ratkaistavista hyperstattisista voimasuureista X i koostuva vektori ja b on ulkoisista kuormituksista staattiseen perusmuotoon aiheutuvista yleistetyistä siirtymistä koostuva vektori. Momenttimenetelmä on erityisesti jatkuvia palkkeja ja kehärakenteita silmälläpitäen kehitetty yleisen voimamenetelmän virtaviivaistus, jossa ratkaistavan rakenteen sauvat otaksutaan aksiaalisesti venymättömiksi ja leikkauksen suhteen äärettömän jäykiksi. Tällöin ratkaistaviksi hyperstaattisiksi suureiksi jäävät ainoastaan sauvanpäämomentit. Momenttimenetelmän perusyhtälöt Momenttimenetelmän perusyhtälöt ovat sauvan päätepisteiden kiertymien lausekkeet ϕ i,j = α i,j M i,j β i,j M j,i + ψ i,j + α 0 i,j, (2) jossa α i,j ja β i,j ovat sauvavakioita, ψ i,j sauvakiertymä, eli sauvan päätepisteiden välisen janan kiertymä ja α 0 i,j on staattisen perusmuotosauvan, eli niveltuetun sauvan nurkan i 75

j + K 1 S j+k 1,i j S j,i i S j+3,i j + 3 S j+1,i S j+2,i j + 1 j + 2 Kuva 1. Nurkka i ja siihen liittyvät sauvat. kiertymä ulkoisesta kuormituksesta. Suureet M i,j ja M j,i ovat sauvanpäämomentit sauvan päätepisteissä i ja j, jotka määritellään positiivisiksi myötäpäivään kiertävinä. Sivusiirtymättömän kehän kaikki sauvakiertymät häviävät, eli ψ i,j 0. Sauvavakioiden fysikaalinen tulkinta on ilmeinen. Maxwellin säännön perusteella β i,j = β j,i, mutta yhteys α i,j = α j,i pätee ainoastaan jäykkyysjakaumaltaan symmetrisille sauvoille. Yhteensopivuusehdot Tarkastellaan kuvan 1 mukaista kehärakenteen monoliittista nurkkaa i johon yhtyy K- kappaletta sauvoja S i,j+k, k = 0,..., K 1. Monoliittisen nurkan i yhteensopivuusehot, K 1 kappaletta, voidaan kirjoittaa muodossa ϕ i,j = ϕ i,j+1 = = ϕ i,j+k 1, (3) jossa ϕ i,j on sauvan S i,j pään i kiertymä. Sauvanpäämomentit M i,j+k, k = 0,..., K 1 eivät ole toisistaan riippumattomia, vaan niitä sitoo nurkan i momenttitasapainoehto K 1 k=0 M i,j+k = 0, (4) mikäli nurkkaan i ei vaikuta ulkoisia momenttirasituksia. Täten yksi sauvanpäämomenteista M i,j voidaan eliminoida. Se, mikä sauvanpäämomenteista eliminoidaan, vaikuttaa syntyvän ratkaisuyhtälön kerroinmatriisin muotoon; kaikki valinnat eivät tuota symmetristä kerroinmatriisia mikäli nurkkaan liittyy enemmän kuin kaksi sauvaa. On varsin erikoista, että tätä kysymystä ei ole kirjoittajan tietämän mukaan käsitelty alan oppikirjoissa [1]-[3]. ähteen [3] esimerkissä 9.3 (sivuilla 125-128) esitetty joustomatriisi on epäsymmetrinen. Ratkaisu tähän ongelmaan on yksinkertainen. Valitaan yksi nurkan sauvanpääkiertymistä ja asetetaan tämä vuoron perään yhtäsuureksi nurkkaan liittyvien muiden sauvanpääkiertymien kanssa. Tätä yhteistä sauvanpäätä vastaava momentti eliminoidaan. Mikäli nurkan i yhteensopivuusehdot (3) kirjoitetaan muodossa ϕ i,j+1 = ϕ i,j ϕ i,j+2 = ϕ i,j, (5). ϕ i,j+k 1 = ϕ i,j 76

tällöin on syytä eliminoida sauvanpäämomentti M i,j, jolloin päädytään symmetriseen joustomatriisiin, ja nurkkaan i liittyvä diagonaalilohko on muotoa α i,j + α i,j+1 α i,j... α i,j α i,j α i,j + α i,j+2... α i,j..... αi,j. (6) α i,j α i,j... α i,j + α i,j+k 1 Tukimomenttien eliminointi ratkaisuyhtälöistä Momenttimenetelmässä tuntemattomien lukumäärää kasvattavat momenttijäykät tuennat. Tilanne on analoginen siirtymämenetelmän niveltuennan kanssa. Tälle tapaukselle on kuitenkin usein johdettu omat sauvavakiot, jotka eliminoivat nivelpään kiertymän tuntemattomien joukosta. Vastaavalla tavalla voidaan momenttimenetelmässä eliminoida momenttijäykän tuennan tuottama sauvanpäämomentti. Tätä yksinkertaista eliminointia ei yleensä ole esitetty alan kirjallisuudessa. Tarkastellaan tapausta, jossa sauvanpää j on kimmoisesti kiinnitetty. Kimmoisesti kiinnitettyä nurkkaa vastaava sauvanpäämomentti voidaan eliminoida käyttäen hyväksi tuen yhteensopivuusehtoa ϕ j,i = ϕ jousi. (7) Otaksumalla jousen konstitutiiviseksi yhteydeksi ϕ jousi = α jousi M j,i, (8) voidaan yhteensopivuusehdon (7) avulla sauvanpään j momentti eliminoida: M j,i = 1 (β j,i M i,j ψ j,i αj,i 0 ). (9) α j,i + α jousi Sijoittamalla tämä sauvanpään i kiertymän lausekkeeseen saadaan jossa ᾱ i,j = α i,j ϕ i,j = ᾱ i,j M i,j + γ i,j ψ i,j + ᾱ 0 i,j, (10) β i,jβ j,i β i,j, γ i,j = 1 +, ᾱi,j 0 α j,i + α jousi α j,i + α = α0 i,j + β i,j αj,i 0 jousi α j,i + α. (11) jousi Jäykän tuennan tapauksessa sen joustavuus häviää, eli α jousi = 0. Tasajäykän sauvan ja pään j jäykän tuennan tapauksessa nämä saavat yksinkertaisen muodon Stabiiliusanalyysi momenttimenetelmällä ᾱ i,j = i,j 4EI i,j, γ i,j = 3 2. (12) Yleisen voimamenetelmän soveltamista rakenteiden stabiiliusanalyysiin on käsitelty Przemienieckin klassikkoteoksessa [4] luvussa 15.4. Stabiiliusehto (yhtälö 15.54, lähteen [4] sivulla 395) johdetaan kuitenkin yhtälösysteemille, jossa muuttujina ovat siirtymät. 77

q 1 q 2 1 EI 2 EI 3 ηei ηei 4 5 H Kuva 2. Esimerkkikehärakenne. Ottamalla momenttimenetelmässä huomioon puristavan voiman vaikutus sauvan joustavuuteen, joustokertoimien α ij ja β ij lausekkeet tasajäykälle sauvalle ovat muotoa α ij = 3EI ψ(k), β ij = φ(k), (13) 6EI ja Berryn-funktiot ψ ja φ määritellään sauvassa vaikuttavan puristavan voiman N i,j funktioina seuraavasti (yhtälöt (1-27) ja (1-28) sivulla 13 lähteessä [5]) ψ(k) = 3 ( 1 k k 1 ), (14) tank φ(k) = 6 ( 1 k sin k 1 ), (15) k jossa k 2 = N i,j /EI i,j ja on sauvan pituus. Systeemin liiketila on stabiili, mikäli potentiaalienergian toinen variaatio on positiivinen kaikkien kinemaattisesti luvallisten variaatioiden joukossa. Analysoitaessa rakennetta siirtymämenetelmällä, tämä ehto on ekvivalentti jäykkyysmatriisin positiivisen definiittiyden kanssa. Voimamenetelmän tapauksessa rakennemallin stabiiliutta ei voida määrittää tilana, jossa joustomatriisi muuttuu positiivisesti definiitistä matriisista indefiniittiseksi, kuten jäljempänä esitettävästä esimerkistä havaitaan. Esimerkkejä Joustomatriisin symmetrisyys Tarkastellaan oheista kuvan 2 mukaista rakennetta. Yhteensopivuusehdot ovat nyt ϕ 1,2 = ϕ 1,4 ϕ 1,2 = ϕ 1,4 ϕ 2,3 = ϕ 2,1 ϕ 2,1 = ϕ 2,3 = ϕ 2,5, (16) ϕ 2,5 = ϕ 2,1 ϕ 3,2 = 0 ϕ 3,2 = 0 jolloin on syytä eliminoida sauvanpäämomentti M 2,1, jotta päädyttäisiin symmetriseen joustomatriisiin. Tuntemattomiksi sauvanpäämomenteiksi jää siten M 1,2, M 2,3, ja M 3,2. Yhteensopivuusyhtälöistä (16) saadaan yhtälöryhmä α 1,2 + α 1,4 β 1,2 β 1,2 0 β 2,1 α 2,1 + α 2,3 α 2,1 β 2,3 β 2,1 α 2,1 α 2,1 + α 2,5 0 0 β 3,2 0 α 3,2 78 M 1,2 M 2,3 M 3,2 = α 0 1,4 α0 1,2 α 0 2,1 α0 2,3 α 0 2,1 α0 2,5 α 0 3,2. (17)

Tasajäykän sauvan vakiot ovat: α i,j = 1 3 i,j/ei i,j, β i,j = 1 6 i,j/ei i,j. Määritellään myös pituusuhde ξ = H/ sekä palkkien ja pilareiden jäykkyyssuhde seuraavasti: EI 1,2 = EI 2,3 = EI, ja EI 1,4 = EI 2,5 = ηei. Tällöin yhtälösysteemi voidaan kirjoittaa muodossa 6EI 2(1 + ξ/η) 1 1 0 1 4 2 1 1 2 2(1 + ξ/η) 0 0 1 0 2 M 1,2 M 2,3 M 3,2 = α 0 1,4 α0 1,2 α 0 2,1 α0 2,3 α 0 2,1 α 0 2,5 α 0 3,2. (18) Jos suhteiden ξ, η arvoiksi valitaan ξ = 1 ja η = 1, sekä q 2 4 1 = q 2 = q saadaan systeemi 6 1 1 0 M 1,2 1 1 4 2 1 M 2,3 6EI 1 2 6 0 = q3 2, (19) 24EI 1 0 1 0 2 M 3,2 1 jonka ratkaisu on M 1,2 M 2,3 M 3,2 = 19 772 75 772 1 193 59 772 q 2 0, 02461 0, 09715 0, 05181 0, 07642 Nurkan 2 tasapainoyhtälöstä seuraa sauvanpäämomentin M 2,1 arvoksi q 2. (20) M 2,1 = 79 772 q2 0, 10233q 2. (21) Mikäli ratkaistaviksi sauvanpäämomenteiksi olisi valittu M 1,2, M 2,1, ja M 3,2 saataisiin epäsymmetrinen yhtälösysteemi α 1,2 + α 1,4 β 1,2 0 0 M 1,2 α1,4 β 1,2 α 2,1 + α 2,3 α 2,3 β 2,3 0 α1,2 0 M 2,1 α2,3 β 2,1 α 2,1 α 2,5 0 = 0 α0 2,1 α2,1 0. (22) α0 2,5 0 β 3,2 β 3,2 α 3,2 M 3,2 α3,2 0 uonnollisesti systeemin (22) ratkaisu on yhtenevä ratkaisun (20) ja (21) kanssa. Tukimomenttien eliminointi Käsinlaskussa päästään hieman helpommalla kun käytetään yhtälöitä (9) ja (10) tukimomentin M 3,2 eliminoimiseksi ja korvataan pystypilari 1-4 kimmoisalla jousella, jonka joustavuuskerroin on α jousi = 1 H/ηEI. Tällöin tuntemattomiksi jäävät vain nurkan 2 3 sauvanpäämomentit M 2,3 ja, jotka voidaan ratkaista yhteensopivuusehdoista { ϕ 2,3 = ϕ 2,1, (23) ϕ 2,5 = ϕ 2,1 jotka johtavat yhtälösysteemiin [ ᾱ2,1 + ᾱ 2,3 ᾱ 2,1 ᾱ 2,1 ᾱ 2,1 + α 2,5 ]{ M2,3 } = { ᾱ0 2,1 ᾱ 0 2,3 ᾱ 0 2,1 }. (24) 79

P 2 EI 3 1 EI Kuva 3. Kulmakehän nurjahdus. Sauvavakiot ovat β 2 2,1 ᾱ 2,1 = α 2,1 = 11 α 2,1 + α jousi 36 EI, ᾱ 2,3 = 1 4 EI. (25) [ 20 11 36EI 11 35 ]{ M2,3 } { = q3 8 144EI 5 }. (26) Ratkaisu on tietenkin yhtenevä tuloksen (20) kanssa. Muut sauvanpäämomentit M 1,2 ja M 3,2 voidaan laskea yhtälön (9) avulla. Stabiiliustehtävä Ratkaistaan kuvan 3 esittämän kulmakehän nurjahduskuorma. Nurkkien 2 ja 3 yhteensopivuusehdoista seuraa homogeeninen yhtälösysteemi [ ]{ } { } 2(1 + ψ) 1 M2,3 0 =, (27) 6EI 1 2 M 3,2 0 missä funktio ψ on yhtälön (14) mukainen ja nyt k 2 = P/EI. Homogeenisella yhtälösysteemillä (27) on ei-triviaali ratkaisu vain jos kerroinmatriisi on singulaarinen, ts. sillä on vähintään yksi nolla ominaisarvo ja täten sen determinantti on myös nolla. Kyseessä on siten epälineaarinen ominaisarvotehtävä kriittisen kuormaparametrin k löytämiseksi. Yhtälössä (27) esiintyvän dimensiottoman kerroinmatrisin [ ] 2(1 + ψ) 1 Ã = (28) 1 2 ominaisarvot ja determinatti ovat λ 1 = 2 + ψ 1 + ψ 2, λ 2 = 2 + ψ + 1 + ψ 2, det = λ 1 λ 2 = 4ψ + 3, (29) joiden kuvaajat on piirretty kuvaan 4. Kuvasta havaitaan, että ominaisarvo λ 1 on negatiivinen välillä π < k < 3, 829, muulloin positiivinen, ja λ 2 on kaikkialla positiivinen, lukuunottamatta pistettä k = π, jossa funktio ψ on määrittelemätön. Täten voimamenetelmän tuottaman yhtälösysteemin kerroinmatriisin positiivisen definiittisyyden perusteella ei voi tehdä päätelmiä rakenteen tasapainotilan stabiiliudesta. Kriittinen kuorma saadaan yhtälön (27) kerroinmatriisin singulaarisuusehdosta, ja se on 80

20 15 10 det λ 1 λ 2 5 0-5 -10-15 -20 0 1 2 k 3 4 5 Kuva 4. Matriisin à ominaisarvot ja determinantti. P kr (3, 829) 2 EI/ 2 1, 485π 2 EI/ 2. Tällöin ominaisarvolla λ 1 on nolla-arvo, katso kuvaa 4. Joustomatriisi menettää positiivisen definiittiyden, kun kuorma ylittää arvon π 2 EI/ 2. Tällöin sauvan 1-2 joustokertoimien arvot muuttuvat positiivisista negatiivisiksi seuraavalla tavalla: lim (α ij, β ij ) = +, kl π lim (α ij, β ij ) =. (30) kl π+ Staattisen perusmuotosauvan joustavuus kasvaa rajatta kun puristava normaalivoima lähestyy Eulerin nurjahduskuormaa. Täten momenttimenetelmän mukainen stabiiliusmatriisi muuttuu positiivisesti definiitistä matrisiista indefiniitiksi, kun jonkin rakenneosan staattisen perusmuotosauvan nurjahduskuorma ylittyy. Matriisin definiittiyttä voidaan tutkia myös sen pääalideterminanttien avulla. Matriisi on positiivisesti definiitti jos kaikki sen pääalideterminantit ovat positiivisia. Sovellettuna matriisiin (28), tämä tarkoittaa ehtoja opuksi 2(1 + ψ) > 0 ja 2(1 + ψ) 1 1 2 > 0. (31) Artikkelissa kuvataan tapa, miten momenttimenetelmän tuntemattomat eli stattisesti määräämättömät sauvanpäämomentit on valittava, jotta syntyvä rakenteen joustomatriisi olisi symmetrinen. isäksi johdetaan toisesta päästään jäykästi tai kimmoisesti kiinnitetyn sauvan joustokertoimet, joita käyttämällä voidaan ratkaistavan yhtälösysteemin kokoa pienentää. isäksi huomautetaan, että rakenteen tasapainotilan stabiiliuden menettämiskohtaa ei voida määrittää pisteenä, jossa rakenteen joustomatriisi muuttuu positiivisesti definiitistä indefiniitiksi. 81

Viitteet [1] A. Ghali, A.M. Neville, Structural analysis - A unified classical and matrix approach. Chapman and Hall, 3. painos, ondon, New York, 1989. [2] R. Guldan, Rahmentragwerke und Durchlaufträger. Springer-Verlag, 6. painos, Wien, 1959. [3] P. oikkanen, Rakenteiden statiikka 2. Otava, Helsinki, 1975. [4] J.S. Przemieniecki, Theory of matrix structural analysis. Dover, 1985. [5] S.P. Timoshenko, J.M. Gere, Theory of elastic stability. McGraw-Hill, International student edition, 2. painos, 1963. Reijo Kouhia TKK, Rakenne- ja rakennustuotantotekniikan laitos P 2100, 02015 TKK s-posti: reijo.kouhia@tkk.fi 82