Reaalilukuvälit, leikkaus ja unioni (1/2)

Samankaltaiset tiedostot
1 Peruslaskuvalmiudet

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

5 Differentiaalilaskentaa

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Matemaattisen analyysin tukikurssi

Toispuoleiset raja-arvot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

4 Yleinen potenssifunktio ja polynomifunktio

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

2 Yhtälöitä ja epäyhtälöitä

Rationaalilauseke ja -funktio

Matematiikan peruskurssi 2

Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!

Funktion. Käänteisfunktio. Testi 3. Kauhava Aiheet. Funktio ja funktion kuvaaja. Funktion kasvaminen ja väheneminen.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

3 Yleinen toisen asteen yhtälö ja epäyhtälö

MAA2.3 Koontitehtävät 2/2, ratkaisut

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Johdatus reaalifunktioihin P, 5op

Matematiikan pohjatietokurssi

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Johdatus matemaattiseen päättelyyn

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

PERUSASIOITA ALGEBRASTA

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

(a) avoin, yhtenäinen, rajoitettu, alue.

Matematiikan peruskurssi 2

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Matematiikan tukikurssi

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

Funktiot, L4. Funktio ja funktion kuvaaja. Funktio ja kuvaus. Yhdistetty funktio. eksponenttifunktio. Logaritmi-funktio. Logaritmikaavat.

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Ratkaisuehdotus 2. kurssikokeeseen

Matematiikan tukikurssi

1.1. YHDISTETTY FUNKTIO

Tenttiin valmentavia harjoituksia

Laskentaa kirjaimilla

Joukot. Georg Cantor ( )

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

Johdatus matematiikkaan

Johdatus matematiikkaan

Matematiikan tukikurssi

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

k-kantaisen eksponenttifunktion ominaisuuksia

Täydellisyysaksiooman kertaus

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Funktioista. Esimerkki 1

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Matematiikan tukikurssi

NELIÖJUURI. Neliöjuuren laskusääntöjä

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Ratkaisuehdotus 2. kurssikoe

MATP153 Approbatur 1B Harjoitus 6 Maanantai

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

11 MATEMAATTINEN ANALYYSI

3.4 Rationaalifunktion kulku ja asymptootit

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

1. Logiikan ja joukko-opin alkeet

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

Luku 2. Jatkuvien funktioiden ominaisuuksia.

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

Matematiikan tukikurssi

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Matematiikan tukikurssi

Derivaatan sovellukset (ääriarvotehtävät ym.)

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

jakokulmassa x 4 x 8 x 3x

H5 Malliratkaisut - Tehtävä 1

Matematiikan tukikurssi

Transkriptio:

Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut Reaaliluvut eli kaikki rationaaliluvut ja irrationaaliluvut yhdessä. Merk. R

Reaalilukuvälit, leikkaus ja unioni (1/2) Määritelmä Olkoon a, b R, a < b. Tällöin voidaan merkitä [a, b] = {x R a x b} suljettu väli ]a, b] = {x R a < x b} [a, b[= {x R a x < b} ]a, b[= {x R a < x < b} (vasemmalta) puoliavoin väli väli (oikealta) puoliavoin väli avoin väli Määritelmä Olkoon A R ja B R. Leikkaus ja unioni määritellään seuraavasti A B = {x x A tai x B} A B = {x x A ja x B}

Reaalilukuvälit, leikkaus ja unioni (2/2) Esimerkki 1 Avoimia ja puoliavoimia välejä: [2, 4[, ] 1, 2[, ], 4] Suljettuja välejä: [4, 7], [ 10, 8] Unioni: [4, 6] [5, 7[= [4, 7[, {7} [5, 7[= [5, 7] Leikkaus: [4, 6] [5, 7[= [5, 6], [4, 6[ [5, 7[= [5, 6[, N [3.4, 6[= {4, 5}

Itseisarvot ja epäyhtälöt (1/2) Määritelmä x = { x, x 0 x, x < 0 Edellisessä x:n tilalle voidaan myös sijoittaa lauseke Esimerkki 2 (x + 3)(x 4) = { (x + 3)(x 4), (x + 3)(x 4) 0 (x + 3)(x 4), (x + 3)(x 4) < 0

Itseisarvot ja epäyhtälöt (2/2) Jos itseisarvoja on useampia, pahimmassa tapauksessa jokainen täytyy käsitellä erikseen ja tarkasteltavien vaihtoehtojen määrä lisääntyy Esimerkki 3 f (x) + g(x), f (x) 0 ja g(x) 0 f (x) + g(x), f (x) < 0 ja g(x) 0 f (x) + g(x) = f (x) g(x), f (x) 0 ja g(x) < 0 f (x) g(x), f (x) < 0 ja g(x) < 0 Esimerkki 4 Poista itseisarvot f (x) g(x) kun f (x) = x 3 ja g(x) = x + 1. Esimerkki 5 Määritä ne kokonaisluvut joille f (x) < g(x), kun f (x) = 2x 1 ja g(x) = 5x + 6.

Polynomit (1/3) Polynomit ovat funktioita jotka voidaan kirjoittaa muodossa f (x) = a 0 + a 1 x + a 2 x 2 + + a n x n = n a i x i, i=0 missä kertoimet a i R ja n N. Luku n on polynomin asteluku (olettaen että a n 0) Esimerkki 6 Olkoon f (x) = 4x 3 + 6 ja g(x) = 6x 4 x 3 + x 2 Määritä polynomien f (x) + g(x) ja f (x)g(x) kertoimet ja asteluvut.

Polynomit (2/3) Polynomilla on enintään astelukunsa verran reaalisia nollakohtia (poikkeuksena triviaalitapaus f (x) = 0). Jos polynomilla f (x), jonka asteluku on n, on nollakohdat x i, i = 1,..., m niin se voidaan kirjoittaa muodossa m f (x) = g(x)(x x 1 )(x x 2 ) (x x m ) = g(x) (x x i ) missä g(x) on polynomi jonka asteluku on n m. Yleisesti korkean asteen polynomin nollakohtien analyyttinen etsintä on hankalaa, jopa mahdotonta. Kuitenkin jos tunnetaan valmiiksi muutama nollakohta niin voidaan esim. jakokulmassa laskemalla etsiä e.m. polynomi g(x), jonka nollakohdat löydetään helposti jos n m 2. Esimerkki 7 Laske polynomin f (x) = x 4 4x 3 + 2x 2 + 4x 3 nollakohdat kun tiedetään että f (1) = f ( 1) = 0. i=1

Polynomit (3/3) Astetta n olevan polynomin kertoimet voidaan määrittää jos tiedetään n + 1 kappaletta pisteitä joiden kautta polynomi kulkee. Esimerkki 8 Määritä sen toisen asteen polynomin kertoimet jonka joka kulkee (x, y) pisteiden (1, 0), (2, 4) ja (3, 16) kautta. Jos polynomin nollakohdat ja korkeimman asteen termin kerroin tiedetään, voidaan epäyhtälö ratkaista näiden avulla Esimerkki 9 Ratkaise epäyhtälö x 4 4x 3 > 2x 2 4x + 3.

Rationaalilausekkeet Rationaalilausekkeet ovat muotoa P(x) Q(x) jossa P(x) ja Q(x) ovat polynomeja. Rationaalilausekkeet eivät ole määriteltyjä pisteissä joissa Q(x) = 0. Näidenkin lausekkeiden sieventämisessä pätevät normaalit laskusäännöt, eli voidaan supistaa ja laventaa kuten reaaliluvuilla laskettaessa yleensäkin. Esimerkki 10 Missä pisteissä lauseke on määritelty? Sievennä lauseke a) x2 1 x 3 6x 2 +9x 5x 2 15x c) x+3 x 2 1 x+1 x 2 x Esimerkki 11 ab b2 d) 2a2 +ab 4a 2 b 2 b a Ratkaise epäyhtälö (x 1)2 (x+1) x 3 0. e) xy 2 x y 2 x+1 b) : xy+x y

Neliöjuuri Määritelmä y = x y 0 ja y 2 = x Ominaisuuksia x määritelty jos ja vain jos x 0. x 2 = x kaikille x ab = a b (jos a 0 ja b 0) a b = a b (jos a 0 ja b > 0) Esimerkki 12 Sievennä a) 0.0225 b) 12a 3a 3 c) d) ( 3 2 ) 7 + 4 3 3 2 3+ 2

Funktio, arvojoukko ja määrittelyjoukko (1/2) Seuraavat määritelmät ovat yleisiä. Tällä kurssilla D = R tai R:n osajoukko ja S = R. Määritelmä Jos jokaiselle alkiolle x D arvo f (x) S on yksikäsitteinen, silloin f on funktio joukosta D joukkoon S. Joukkoa D = D(f ) kutsutaan funktion määrittelyjoukoksi. Joukkoa R(f ) = {f (x) x D} kutsutaan funktion arvojoukoksi. Jollei muuta mainita, voidaan olettaa että D on suurin mahdollinen R:n osajoukko.

Funktio, arvojoukko ja määrittelyjoukko (2/2) Määrittelyjoukon etsintä: a / D(f ) jos jotain lausekkeessa f (x) esiintyvää välitulosta ei voida laskea kun x = a, esim. tapahtuu nollalla jakaminen. Edellinen pätee vaikka raja-arvo lim x a f (x) voitaisiin laskea, tai esim. sopivasti supistamalla vältyttäisiin nollalla jakamiselta. Käytännössä voidaan siis aina kysyä Osaako yksinkertainen taskulaskin laskea tämän vai antaako virheen. Esimerkki 13 Funktioiden a) 1 1 x b) cos 2 (2x) c) e 1/x x ja d) x 1 2x 1 x 1 arvo- ja määrittely joukot?

Yhdistetty funktio (1/2) Käytännön toteutuksen ja suunnittelun monimutkaisuuden välttämiseksi jaetaan prosessit usein pienempiin, toisiaan seuraaviin, vaiheisiin. Siis ensin x:lle tehdään operaatio f ja sitten lopputulokselle operaatio g. Matemaattisesti tämä tarkoittaa arvon g(f (x)) laskentaa. Luonnollisesti kaikkien välivaiheiden laskennan täytyisi onnistua, eli meitä kiinnostaa myös funktion g(f (x)) määrittelyjoukko. Määritelmä Olkoon f ja g funktioita. Yhdistetyn funktion määrittelyjoukko on (g f )(x) = g f (x) = g(f (x)) D(g f ) = {x x D(f ) jaf (x) D(g)}

Yhdistetty funktio (2/2) Esimerkki 14 Olkoon f (x) = x + 5 ja g(x) = x 2 3. Laske f g(0) ja g f ( 5). Esimerkki 15 Määritä f g, g f sekä näiden määrittely- ja arvojoukot kun f (x) = x ja g(x) = x + 1. Esimerkki 16 Määritä f f, D(f f ) ja R(f f ) kun f (x) = 1 x 1+x. Esimerkki 17 Määritä D(h (g f )) ja D((h g) f ) kun f (x) = x + 2, g(x) = x 1 ja h(x) = 1/x.