L u e n t o Päätösongelmia löytyy joka paikasta Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päästökauppa: vähennetäänkö päästöjä itse vai ostetaanko päästöoikeuksia? TUTA 16-alfa-4 päästöoikeuksien hinta? tulevat päästörajoitukset? Opiskelijan ongelmia: kannattaako kouluttautuminen? keskitynkö opiskeluun vai hankinko samalla työkokemusta? työnsaanti tulevaisuudessa? Päätösongelmia löytyy joka paikasta Tuotantoratkaisut: millaisia tuotteita ja kuinka paljon valmistetaan? kysyntä? Sijoitusstrategiat: mikä sijoitusvaihtoehto on paras? sijoituksen arvo tulevaisuudessa? Päätöksentekotilanteen rakenne Päätöksentekijä Erilaisia toimintavaihtoehtoja eli strategioita Päätöksentekijän epäröinti Ongelman ympäristö, asiantila vaikuttaa toimintavaihtoehtojen tuottamiin tuloksiin ei ole päätöksentekijän kontrolloitavissa TUTA 16-alfa-3 TUTA 16-alfa-5
Päätöksenteko-ongelman ratkaiseminen Valinta ja asiantila vaikuttavat tuottoihin Valitaan paras toimintavaihtoehto Tavoitteena yleensä nettotuoton maksimointi tai kustannusten minimointi jatkossa oletetaan, että tavoitteena on nettotuoton maksimointi (asiat ovat sovellettavissa myös kustannusten minimointiin) (x 1 ) (x 2 ) (x 3 ) p(x 1 ) p(x 2 ) p(x 3 ) 1850 850-650 1300 600 0 12000 10000 150 = 1850 TUTA 16-alfa-6 TUTA 16-alfa-9 Sijoitusesimerkin perustiedot Kolmenlaisia päätöksentekotilanteita Päätöksenteko varmuuden vallitessa Sijoituksen arvo sijoitusjakson lopussa (x 1 ) (x 2 ) (x 3 ) p(x 1 ) p(x 2 ) p(x 3 ) 12000 11000 9500 Päätöksenteko riskin vallitessa Päätöksenteko epävarmuuden vallitessa 11400 10700 10100 TUTA 16-alfa-8 TUTA 16-alfa-10
TUTA 16-alfa-11 Päätöksenteko varmuuden vallitessa Voi sattua vain yksi asiantilał ei epävarmuutta valitaan se toimintavaihtoehto, joka tuottaa parhaan tuloksen Jos tiedetään, että tulossa on korkeasuhdanne Päätösongelma: max(1850; 1300) = 1850 Ł sijoitetaan teollisuusosakkeisiin 1 0 0 1850 850-650 1300 600 0 Päätöksenteko riskin vallitessa: odotusarvo TUTA 16-alfa-13 Mikä on toimintavaihtoehdon keskimääräinen nettotuotto tai kustannus pitkällä aikavälillä? Esim. teollisuusosakkeiden tuotto-odotus: 1850 x 0,3 + 850 x 0,3 + (-650) x 0,4 = 550 tuotto jos korkeasuhdanne tuotto jos tasainen p(korkeasuhdanne) p(tasainen ) tuotto jos lama p(lama) Päätöksenteko riskin vallitessa Vähintään kaksi mahdollista asiantilaa sijoitusesimerkissä kolme mahdollista asiantilaa - korkeasuhdanne - tasainen - lama Asiantilojen todennäköisyydet tunnetaan korkeasuhdanteen todennäköisyys 0,3 tasaisen n todennäköisyys 0,3 laman todennäköisyys 0,4 Päätöksenteossa voidaan käyttää odotusarvokriteeriä paras vaihtoehto: suurin nettotuoton odotusarvo Päätöksenteko riskin vallitessa Päätösongelma: max(550; 570) = 570 Ł sijoitetaan osakerahastoon 0,3 0,3 0,4 Tuoton odotusarvo 1850 850-650 550 1300 600 0 570 TUTA 16-alfa-12 TUTA 16-alfa-14
Täydellisen informaation arvo Kuinka paljon päätöksentekijän kannattaa maksaa tiedosta, joka kertoo varmuudella, mikä asiantila toteutuu? Sovellusalue: päätöksenteko riskin vallitessa 1. Lasketaan tuoton odotusarvo annetuilla todennäköisyyksillä: EV imperfect 2. Lasketaan tuoton odotusarvo, kun tiedetään, mikä asiantila tapahtuu: EV perfect 3. Täydellisen informaation arvo: EV perfect - EV imperfect Päätöksenteko epävarmuuden vallitessa Vähintään kaksi mahdollista asiantilaa sijoitusesimerkissä kolme mahdollista asiantilaa - korkeasuhdanne - tasainen - lama Vähintään kahden asiantilan todennäköisyyksiä ei tunneta korkeasuhdanteen todennäköisyys? tasaisen n todennäköisyys? laman todennäköisyys? Päätöksenteossa käytettävä kuitenkin jotain kriteeriä TUTA 16-alfa-15 TUTA 16-alfa-17 Täydellisen informaation arvo: esimerkki TUTA 16-alfa-16 EV imperfect = max(550; 570) = 570 EV perfect = 1850 x 0,3 + 850 x 0,3 + 0 x 0,4 = 810 Täydellisen informaation arvo: EV perfect - EV imperfect = 810 570 = 240 0,3 0,3 0,4 Odotusarvo 1850 850-650 550 1300 600 0 570 TUTA 16-alfa-18 Päätöksenteon kriteereitä Pessimistin kriteeri eli maximin-kriteeri Optimistin kriteeri eli maximax-kriteeri Laplacen kriteeri Harmin minimointi -kriteeri (minimax)
Pessimistin kriteeri eli maximin Pessimistin oletus: luonto on aina pahansuopa asiantiloista toteutuu aina tehdyn päätöksen kannalta huonoin vaihtoehto Valitaan toimintavaihtoehto, jonka huonoin mahdollinen tulos on mahdollisimman hyvä (maximin) Hyvä kriteeri, jos ei ole varaa olla väärässä Pessimistin kriteeri eli maximin: kritiikkiä Pessimistin lähtöoletus epärealistinen lähtöoletus: asiantiloista toteutuu aina tehdyn päätöksen kannalta huonoin vaihtoehto Saatavissa olevasta informaatiosta käytetään vain pieni osa (vrt. payoff-taulukko) Valituksi tulleen vaihtoehdon järkevyys joissakin tapauksissa kyseenalainen Vaihtoehdot Minimituotto N 1 N 2 N 3 S 1 25 3-1 -1 S 2 20 10 0 0 S 3 4 4 4 4 TUTA 16-alfa-19 TUTA 16-alfa-21 Pessimistin kriteeri eli maximin: esimerkki TUTA 16-alfa-20 Päätösongelma: max(min(1850; 850; -650); min(1300; 600; 0)) = max(-650 ; 0) = 0 Ł sijoitetaan osakerahastoon Minimituotto??? 1850 850-650 -650 1300 600 0 0 TUTA 16-alfa-22 Optimistin kriteeri eli maximax Optimistin oletus: asiat kääntyvät aina parhain päin asiantiloista toteutuu aina tehdyn päätöksen kannalta paras vaihtoehto Valitaan toimintavaihtoehto, jonka paras mahdollinen tulos on mahdollisimman hyvä (maximax) Hyvä kriteeri, jos tavoitellaan mahdollisimman suurta voittoa eikä ole katastrofi, jos voittoa ei tule
Optimistin kriteeri eli maximax: esimerkki TUTA 16-alfa-23 Päätösongelma: max(max(1850; 850; -650); max(1300; 600; 0)) = max(1850 ; 1300) = 1850 Ł sijoitetaan teollisuusosakkeisiin Maksimituotto??? 1850 850-650 1850 1300 600 0 1300 TUTA 16-alfa-25 Laplacen kriteeri Realistinen lähtöoletus koska asiantilojen sattumistodennäköisyyksiä ei tunneta, oletetaan, että kaikki asiantilat voivat sattua yhtä suurella todennäköisyydellä: p(x i ) = 1/N (N = asiantilojen lukumäärä). Valitaan toimintavaihtoehto, jonka odotusarvo on paras Optimistin kriteeri eli maximax: kritiikkiä Optimistin lähtöoletus epärealistinen Lähtöoletus: asiantiloista toteutuu aina tehdyn päätöksen kannalta paras vaihtoehto. Saatavissa olevasta informaatiosta käytetään vain pieni osa (vrt. payoff-taulukko). Valituksi tulleen vaihtoehdon järkevyys joissakin tapauksissa kyseenalainen Vaihtoehdot Maksimituotto N 1 N 2 N 3 S 1 25 3-1 25 S 2 20 10 0 20 S 3 4 4 4 4 Laplacen kriteeri: esimerkki Päätösongelma: max(683,33; 633,33) = 683,33 Ł sijoitetaan teollisuusosakkeisiin 1/3 1/3 1/3 Tuoton odotusarvo 1850 850-650 683,33 1300 600 0 633,33 TUTA 16-alfa-24 TUTA 16-alfa-26
Harmin minimointi -kriteeri (minimax) Vasta jälkeenpäin tiedetään, mikä olisi ollut paras toimintavaihtoehto Päätöksentekijää harmittaa, jos hän valitsi jonkin muun kuin parhaan vaihtoehdon Oletus: harmin määrä on suoraan verrannollinen parhaan ja valitun vaihtoehdon tuottojen erotukseen Harmin minimointi -kriteeri (minimax): esim. Päätösongelma: min(max(0; 0; 650); max(550; 250; 0)) = min(650; 550) = 550 Ł sijoitetaan osakerahastoon Maksimiharmi 0 0 650 650 550 250 0 550 TUTA 16-alfa-27 TUTA 16-alfa-29 Harmin minimointi -kriteeri (minimax): esim. 1850 850-650 1300 600 0 Paras kriteeri? Eri kriteereillä tehdyt valinnat voivat päätyä eri ratkaisuihin Parasta kriteeriä ei ole olemassa kriteerin valinta riippuu päätöstilanteesta ja päätöksentekijästä Harmitaulukko (harmimatriisi) 1850 1300 = 550 0 0 650 550 250 0 TUTA 16-alfa-28 TUTA 16-alfa-30
Yleistä päätöspuista Graafinen apuväline Sovellusalue: päätöksenteko riskin vallitessa Analysointi perustuu useimmiten tuoton tai kustannusten odotusarvoon. Päätöspuiden käyttö on erityisen hyödyllistä, jos on analysoitava useita peräkkäisiä, toisiinsa liittyviä päätöksiä Esimerkki: Päätöspuun piirtäminen 1/5 1. Hahmota päätöstilanne 0,3 0,3 0,4 1850 850-650 1300 600 0 TUTA 16-alfa-32 TUTA 16-alfa-34 Päätöspuun elementit Päätöspuun piirtäminen 2/5 2. Merkitse päätös- ja sattumatilanteet aikajärjestyksessä vasemmalta oikealle päätössolmut 1. Sijoituspäätös lopetussolmut haarat sattumasolmut 2. Sattuma: taloussuhdanne TUTA 16-alfa-35
Päätöspuun piirtäminen 3/5 3. Merkitse sattumasolmujen haarojen todennäköisyydet esim. haarojen yläpuolelle Päätöspuun piirtäminen 5/5 5. Laske jokaisen lopetussolmun kokonaistuotto/kustannus laske yhteen lopetussolmuun johtavien haarojen tuotot ja kustannukset Esim. -10100 + 10100 = 0 TUTA 16-alfa-36 TUTA 16-alfa-38 Päätöspuun piirtäminen 4/5 4. Merkitse haaroihin liittyvät kustannukset ja tuotot esim. haarojen alapuolelle Päätöspuun ratkaiseminen 1/4 1. Laske solmujen odotusarvot lopusta alkuun lopetussolmut: solmun odotusarvo = haaran tuotto/kustannus TUTA 16-alfa-37 TUTA 16-alfa-39
Päätöspuun ratkaiseminen 2/4 sattumasolmut: solmun odotusarvo lasketaan odotusarvon kaavalla. esimerkki: 1850 x 0,3 + 850 x 0,3 + (-650) x 0,4 = 550 Päätöspuun ratkaiseminen 4/4 2. Analysoi optimaalinen toimintastrategia esimerkki: sijoitetaan osakerahastoon, tuotto-odotus 570 TUTA 16-alfa-40 TUTA 16-alfa-42 Päätöspuun ratkaiseminen 3/4 päätössolmut: solmun odotusarvo = parhaan haaran odotusarvo esimerkki: maksimoidaan nettotuottoja: max(550, 570) = 570 TUTA 16-alfa-41 TUTA 16-alfa-43