Kauppakorkean pääsykoe 2013 / Ratkaisut



Samankaltaiset tiedostot
Kauppakorkean pääsykoe 2015 / Ratkaisut

Pääsykoe 2001/Ratkaisut Hallinto

Kauppakorkean valintakokeen / 2009 ratkaisut (TH /Supermaster Ky)

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

Kauppakorkean pääsykoe 2012 / Ratkaisut

Kauppakorkean pääsykokeen / 2011 ratkaisut

Mikäli kokeen jälkeen kävisi ilmi, että kysymykseen ei edellä todettu vastausohje

Kauppakorkean pääsykoe 2017 / Ratkaisut

Kauppakorkean pääsykoe 2016 / Ratkaisut Johtaminen ja markkinointi

Pääsykoe 2002/Ratkaisut. Hallinto

Pääsykoe / 2010 Ratkaisut

KANSANTALOUSTIETEEN PÄÄSYKOE : MALLIVASTAUKSET

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto

KANSANTALOUSTIETEEN PÄÄSYKOE MALLIVASTAUKSET

Yritystoiminta Pia Niuta HINNOITTELU

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

1 Ensimmäisen asteen polynomifunktio

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

Harjoitust. Harjoitusten sisältö

Matematiikan peruskurssi 2

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille

Taloustieteiden tiedekunta Opiskelijavalinta YHT Henkilötunnus

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: /10000=10

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Pilkeyrityksen liiketoiminnan kehittäminen

,ܾ jaü on annettu niin voidaan hakea funktion

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Pääsykoe 2003/Ratkaisut. Hallinto

4 Kysyntä, tarjonta ja markkinatasapaino

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Kansantalouden kuvioharjoitus

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

a) Kotimaiset yritykset päättävät samanaikaisesti uusista, suurista investoinneista.

Testaa tietosi. 1 c, d 2 a 3 a, c 4 d 5 d

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

LASKENTATOIMEN JA RAHOITUKSEN LUENTOJEN TEHTÄVÄT

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon.

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

1.1. YHDISTETTY FUNKTIO

10.8 Investoinnin sisäinen korkokanta

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

Prof. Marko Terviö Assist. Jan Jääskeläinen

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

Laskentatoimi, digiaineisto. Esittelyaineisto

Tenttiin valmentavia harjoituksia

Matematiikan tukikurssi

Aineiston keskiarvo on , mediaani on 8 ja moodi on myös 8. Näin ollen

Pilkeyrityksen liiketoimintaosaamisen kehittäminen. Timo Värre Jyväskylän ammattikorkeakoulu

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on

TU Kansantaloustieteen perusteet Syksy 2016

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

2 Pistejoukko koordinaatistossa

KANSANTALOUSTIETEEN PÄÄSYKOE MALLIVASTAUKSET

3d) Yes, they could: net exports are negative when imports exceed exports. Answer: 2182.


MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

Taloustieteen perusteet 31A Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

Opetusapteekkiharjoittelun taloustehtävät Esittäjän nimi 1

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

ENNAKKOHARJOITTELUTEHTÄVÄT 2010 LASKENTATOIMI

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

3 Yleinen toisen asteen yhtälö ja epäyhtälö

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT

Polynomi ja yhtälö Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x. Ratkaisu a) 7a b) 12x c) 6x + 6

Valtiotieteellinen tiedekunta Talous- ja tilastotieteen valintakoe Arvosteluperusteet Kesä 2015

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

k-kantaisen eksponenttifunktion ominaisuuksia

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Transkriptio:

Kauppakorkean pääsykoe 2013 / Ratkaisut Johtaminen ja markkinointi: 1. Osio 1 / Epätosi, sillä kirjassa todetaan, että organisaatioiden toimintaa tarkasteltiin organisaatioiden sisäisten toimintojen tehokkuuden perusteella (s.1). Osio 2 / Tosi; Vertaa sivun 2 toiseen kappaleeseen. Osio 3 / Tosi; Kirjan sivuilla 29 ja 30 viitataan näkökulman muutokseen, joka johtamisteorioissa on tapahtunut klassisista teorioista alkaen. Osio 4 / Tosi; Näin voidaan päätellä ottaen luvussa 1 esitetyt asiat huomioon kokonaisuutena. 2. Osio 1 / Tosi, sillä näkökulma tutkimusasetelman taustalla oli tayloristinen (s.7). Osio 2 / Tosi; Vertaa sivut 8-9. Osio 3 / Epätosi; Ei, vaan tutkimusten tuloksia selitti sosiaalisten työolojen kehittyminen (s.9). Osio 4 / Tosi; Kirjan mukaan koehenkilöihin kiinnitetty huomio ja heistä huolehtiminen auttoivat osaltaan kohottamaan työsuoritusta (s.9). 3. Osio 1 / Epätosi, Ei, vaan kyseistä neuvotteluvoimaa vahvistavat pikemminkin matalat tavarantoimittajan vaihtokustannukset (s.47). Osio 2 / Epätosi; Ei, vaan kyseisten tuotteiden lisääntyminen heikentää nykyisten kilpailijoiden neuvotteluvoimaa (s.48). Osio 3 / Epätosi; Ei, vaan kyseiset kilpailun determinantit on tunnistettavissa toimialasta riippumatta (s.46). Osio 4 / Tosi; Näin todetaan sivulla 48.

4. Osio 1 / Tosi (s.64). Osio 2 / Tosi (s.64). Osio 3 / Epätosi, sillä perhekoko ja koulutustausta kuuluvat demografisiin tekijöihin (s.65). Osio 4 / Tosi; Näin on, joskin hieman eri sanoin (vertaa s.65-66). 5. Osio 1 / Epätosi; Ei, vaan tällöin yritysjohto voi tarkastella yrityksensä ja liiketoimintansa tilaa riippumatta siitä, millä alalla yritys toimii (s.78). Osio 2 / Tosi, sillä mikäli strategia on emergenttiä eli itsekseen kehkeytyvää, se on tietysti myös tilannekohtaista eli kontekstisidonnaista (s.79). Osio 3 / Epätosi; Ei, vaan kyseinen koulukunta pyrkii tarkastelemaan sitä, kuinka kunkin organisaation tulisi löytää oma suotuisa paikkansa toimialansa kilpaillulla areenalla (s.83). Osio 4 / Epätosi; Kirjan mukaan strategian ydinkysymyksiä on ylläpitää kilpailukykyä ja estää sen eroosiota (s.85). 6. Osio 1 / Epätosi; Ei, vaan käytännössä muutoksen toteuttamisprosessi on kaikkea muuta kuin rationaalisesti ja ennustettavasti etenevä (s.93). Osio 2 / Tosi; Kirjan mukaan organisaatiomuutokseen sekä muutoksen ja kehittämisen johtamiseen on olemassa lukuisia näkökulmia (s.93). Osio 3 / Epätosi, sillä tällä muutoksella on emergentin strategian ominaisuuksia, eikä muutoksen etenemistä pystytä varsinaisesti kontrolloimaan (s.94). Osio 4 / Epätosi; Ei, vaan toteutuvan muutoslähestymistavan mukaan suunniteltu muutos ei sellaisenaan sovellu vastaamaan ympäristön epävakauteen (s.94). 7. Osio 1 / Tosi (s.25). Osio 2 / Tosi (s.103). Osio 3 / Epätosi; Ei, vaan markkinahinta ei ole kustannusperusteinen. Se vaihtelee suhteessa kysyntään ja tarjontaan (s.107). Osio 4 / Tosi (s.115).

8. Osio 1 / Epätosi; Ei, vaan CIT-tekniikka tarkoittaa, että asiakasta pyydetään kuvailemaan palvelukohtaamista, jonka hän on kokenut erityisen onnistuneeksi tai epäonnistuneeksi (s.136). Osio 2 / Epätosi; Näin ei todeta kirjassa, vertaa s.136. Osio 3 / Tosi; Tämä liittyy CIT-tekniikkaan (s.136). Osio 4 / Epätosi; Näin ei todeta kirjassa, vertaa s.136. 9. Osio 1 / Tosi (s.154). Osio 2 / Epätosi; Näin ei todeta kirjassa, vertaa s.146-151. Osio 3 / Epätosi; Ei, vaan tällainen ostoprosessi liittyy yritysmarkkinoihin (s.158). Osio 4 / Epätosi; Ei, vaan kyseinen vaihtokustannus on yleensä B2B-markkinoilla korkea (s.157). 10. Osio 1 / Epätosi; Ei, vaan kirjan mukaan prosessijohtamista on ryhdytty hyödyntämään laajasti myös monissa palvelualan organisaatioissa (s.176). Osio 2 / Tosi; Näin annetaan ymmärtää sivulla 175. Osio 3 / Tosi; Kirjan mukaan prosessijohtamisella pyritään ensisijaisesti vaikuttamaan asiakkaan kokemaan arvoon, vertaa s.175. Osio 4 / Tosi; Kirjassa todetaan, että asiakas arvioi organisaation toimintaa niin sanottujen horisontaalisten ydinprosessien perusteella. Vaikka osiosta puuttuu sana horisontaalisten, se on kuitenkin selkeästi enemmän oikein kuin väärin, vertaa s.178. 11. Osio 1 / Tosi (s.192). Osio 2 / Tosi (s.185). Osio 3 / Tosi (s.192). Osio 4 / Epätosi; Ei, vaan tämä koskee brändin yhteisönäkökulmaa (s.199-200).

12. Osio 2 / Epätosi; Ei, vaan nämä tutkijat käyttivät tutkimuksessaan erilaistuneisuuden ja integraation käsitteitä (s.12). 13. Osio 2 / Epätosi; Ei, vaan merkitysjärjestelmiksi, jotka ovat sekä kulttuurin tuotteita että kulttuurin tuottajia, joiden ydin perustuu arvoihin (s.18). 14. Osio 2 / Epätosi; Eivät ole (s.234). 15. Osio 2 / Epätosi; Alaistaidot (mikä on laaja kokonaisuus) ei tarkoita samaa kuin psykologinen sopimus, vertaa s.237. Laskentatoimi: 16. Osio 1 / Tosi (s.89). Osio 2 / Epätosi; Ei, vaan tässä tilanteessa oppimisprosentin sanotaan olevan 80 % (s.88). Osio 3 / Tosi (s.91). Osio 4 / Tosi (s.92). 17. Osio 1 / Epätosi; Ei voida (s.158). Osiot 2, 3 ja 4 / Tosia (s.158-159). 18. Osiot 1, 2 ja 4 / Tosia; Asiat ilmenevät Kilan yleisohjeen mukaisesta tuloslaskelmakaavasta (s.25). Osio 3 / Epätosi; Ei, vaan tällöin varsinaisen toiminnan myyntituotoista on vähennetty myönnetyt alennukset sekä arvonlisävero ja muut välittömästi myynnin määrään perustuvat verot (s.24).

19. Osio 1 / Tosi (s.157). Osio 2 / Ratk: Kun annettuja arvoja sijoitetaan yhtälöön WACC = r e (V e / V c ) + r d (V d / V c ), saadaan yhtälö: 13 % 0,60 + r d 0,40 = 10 %. Tästä r d = (10 % - 7,8 %) / 0,40 = 5,5 %. Osio 2 on siis tosi. Osio 3 / Ratk: Nyt saadaan WACC = 12 % 0,35 + 8 % 0,65 = 9,4 %. Osio 3 on siis epätosi. Osio 4 / Tosi, sillä kirjassa ei todeta, että optimaalinen pääomarakenne voitaisiin määrittää velan vipuvaikutuksen simuloinnilla. 20. Osio 1 / Tosi (s.39). Osio 2 / Tosi (s.39). Osio 3 / Tosi (s.38). Osio 4 / Epätosi; Ei, vaan toimintakertomuksessa vaaditaan kirjanpitolain mukaan selvitys tutkimus- ja kehitystoiminnan laajuudesta (s.39). 21. Osio 1 / Epätosi; Ei, vaan taseen vastaavaa-puoli muodostuu pysyvistä vastaavista ja vaihtuvista vastaavista (s.29). Osio 2 / Epätosi; Ei, vaan vaihto-omaisuus koostuu myytäväksi tarkoituista hyödykkeistä (s.30). Osio 3 / Epätosi; Ei, vaan liikearvoa syntyy lähes jokaisessa yrityskaupassa (s.28). Osio 4 / Tosi (s.28). 22. Osio 1 / Tosi; Näin todetaan sivuilla 163-164. Osio 2 / Epätosi; Ei, vaan koko osakemarkkinoiden beta-kerroin on yksi (s.151). Osio 3 / Epätosi; Ei, vaan muutos High Yield luokkaan merkitsee korkeampaa riskiä ja samalla korkeampaa tuottovaatimusta. Tämä nostaa lainarahan hintaa (s.147). Osio 4 / Epätosi; Ei, vaan osakeannin kautta hankittu pääoma on ulkoista omaa pääomaa (s.152).

23. Osio 1 / Tosi (s.15). Osio 2 / Tosi, sillä rahan tai saatavan vähennykset merkitään raha- ja saatavatilin kredit-puolelle (s.17). Osio 3 / Tosi, sillä rahan tai saatavan lisäykset merkitään raha- ja saatavatilin debet-puolelle (s.17). Osio 4 / Epätosi; Ei, vaan tällöin kirjataan: per Kassatili an Myynnit 100 euroa (s.18). 24. Ratk: Gordonin kasvumallin mukaan osakkeen arvo on = D 1 / (r g) = 0,80 / (0,13 0,05) = 10,00 (euroa). Osio 3 on siis tosi (s.57). 25. Osio 1 / Tosi (s.69). Osio 2 / Tosi; vaihto-omaisuus kuuluu Current ration osoittajaan, mutta ei kuulu Quick ration osoittajaan (s.74-75). Osio 3 / Tosi (s.70). Osio 4 / Epätosi; Ei, vaan liikevoittoprosentin avulla tarkastellaan liikevoittoa suhteessa liikevaihtoon (s.64). 26. Osio 1 / Ratk: Katetuottoasetelma (s.111) saa muodon Myyntituotot 5000 x 20 = 100.000 - Muuttuvat kustannukset 5000 x 16 = 80.000 Katetuotto 20.000 - Kiinteät kustannukset 23.000 Tulos - 3.000 Osio 1 on siis epätosi.

Osio 2 / Ratk: Kriittinen piste = kiinteät kustannukset / yksikkökate = 20997 / (25 16) = 2333 (kpl). Kriittisessä pisteessä myyntitulot saavat siis arvon 2333 x 25 = 58.325 (euroa), joten osio 2 on epätosi. Osio 3 / Ratk: Saadaan: Myyntituotot 5000 x 25 = 125.000 - Muuttuvat kustannukset 5000 x 16 = 80.000 Katetuotto 45.000 - Kiinteät kustannukset 20.977 Tulos 24.023 Osio 3 on siis epätosi. Osio 4 / Ratk: Olkoon tavoitetulosta 26.253 euroa vastaava myyntimäärä = q kpl. Saadaan yhtälö: 25q 16w 20.997 = 26.523, josta 9q = 47.250 ja q = 5250 (kpl). Osio 4 on siis tosi. 27. Ratk: Voittolisähinnoittelun mukaan (s.120) saadaan asetelma: Tuotteen muuttuva yksikkökustannus 191 + Tuotteen kiinteä yksikkökustannus 8000/400 = 20 Tuotteen omakustannusarvo (OKA) 211 + Tavoitteeksi asetettu voittolisä 35 = Tuotteen nettomyyntihinta 246 Siis osiot 1 ja 3 ovat epätosia, mutta osio 2 on tosi.

Osio 4 / Ratk: Jos tuotteen kiinteät kustannukset olisivat 12.000 euroa, saataisiin asetelma: Vast: Osio 2. 28. Osio 1 / Ratk: Tuotteen muuttuva yksikkökustannus 191 + Tuotteen kiinteä yksikkökustannus 12.000/400 = 30 Tuotteen omakustannusarvo (OKA) 221 + Tavoitteeksi asetettu voittolisä 35 = Tuotteen nettomyyntihinta 256 Siis osio 4 on epätosi. Vuosi Kone B/Nettotulo Disk.tekijä Diskontattu nettotulo 1 50.000 0,9091 45.455 2 50.000 0,8264 41.320 3 20.000 0,7513 15.026 4 15.000 0,6830 10.245 5 10.000 0,6209 6.830 Diskontattujen nettotulojen summa 118.876 Hankintameno 120.000 Investoinnin nettonykyarvo - 1.124 (euroa) Koska nettonykyarvo 1.124 euroa on < 0, niin investointi B olisi 10 %:n laskentakorkokannalla kannattamaton. Osio 1 on siis epätosi.

Osio 2 / Ratk: Diskontaamattomista nettotuloista kertyy koneen A osalta 3 vuodessa 125.000 euroa ja koneen B osalta 120.000 euroa. Molempien takaisinmaksuaika on siis 3 vuotta (vuoden tarkkuudella). Osio 2 on näin ollen epätosi. Osio 3 / Ratk: Lasketaan koneen A nettonykyarvo 10 %:n laskentakorkokannalla: Osio 4 / Ratk: Vuosi Kone A / Nettotulos Disk.tekijä Diskontattu nettotulo 1 60.000 0,9091 54.546 2 45.000 0,8264 37.188 3 20.000 0,7513 15.026 4 20.000 0,6830 13.660 5 10.000 0,6209 6.209 Diskontattujen nettotulojen summa 126.629 Hankintameno 120.000 Investoinnin nettonykyarvo 6.629 (euroa) Koska koneen A nettonykyarvo on korkokannalla 10 % positiivinen, niin voidaan päätellä, että koneen A sisäinen korkokanta on yli 10 %. Osio 3 on siis tosi. Osion 12 mukaan koneen B nettonykyarvoksi saatiin 10 %:n laskentakorkokannalla negatiivinen luku. Tämä merkitsee, että sisäinen korkokanta on tällöin pienempi kuin 10 %, eli osio 4 on epätosi.

Kansantalous: 29. Osiot 1, 2 ja 3 / Nämä tekijät vaikuttavat tarjontapäätökseen (s.55). Osio 4 / Kuluttajien tarpeet eivät (ainakaan suoraan) vaikuta. 30. Ratk: Olkoon kysyntäkäyrän yhtälö muotoa P = a bq (missä a, b > 0). Arvolla Q = 0 hinta P = 10, joten vakio a = 10. Edelleen P = 4, kun Q = 6. Siis 4 = 10 - b 6, josta vakio b = 1. Tämä merkitsee, että rajatulosuoran kulmakerroin = - 2 (sivu 81). Rajatulosuoran yhtälö on siis muotoa: P = 10 2Q. Syntyvä monopoli maksimoi voittonsa ehdolla rajatulo = rajakustannus. Saadaan siis yhtälö: 10 2Q = 4, josta voiton maksimoivaksi määräksi tulee Q = 3. Vast: Osio 1. 31. Ratk: Hyödykeveron vaikutuksesta tarjontakäyrä siirtyy veron verran (eli 3 euron verran) ylöspäin. Piirrä kuvio, vertaa sivuun 110. Uusi tarjontakäyrä leikkaa siis kysyntäkäyrän pisteessä, jossa hinta on 9 euroa ja määrä on 6 kpl. Myyjät saavat tällöin 6 euroa per kpl ja valtio saa 3 euroa per kpl. Ostajat maksavat 9 euroa per kpl. Ennen veron asettamista tasapaino oli ollut kohdassa, missä määrä oli 8 kpl, ja hinta 8 euroa per kpl. Ostajat joutuvat siis veron johdosta maksamaan 1 euron verran enemmän per kpl, ja myyjät saavat veron vuoksi 2 euroa vähemmän per kpl. Vast: Osio 3. 32. Ratk: Kokonaistuotannon määrän muutos saadaan selvittämällä reaalisen bruttokansantuotteen muutos. Vuoden 2012 reaalinen BKT vuoden 2011 hinnoin oli = (100 194,5) / 102,8 = 189,2 (mrd. euroa). Reaalinen BKT muuttui siis vuodesta 2011 vuoteen 2012 prosentuaalisesti määrän [100 (189,2 189,5)] / 189,5 = - 0,158 % - 0,2 %. Kokonaistuotanto siis supistui noin 0,2 %.

33. Ratk: Vast: Osio 2 (sivut 136-137). Huom: Kansantalouden kokonaistarjonnan arvoja ei ratkaisussa tarvita. Kirjan sivulla 153 annetun kuvion 9.3 perusteella nähdään, että tehtyjen työtuntien määrä asukasta kohden ei ole noussut sadan vuoden aikana. Sen sijaan talouskasvun todetaan perustuvan lähinnä työn tuottavuuden kasvuun. Teknologia taas on tärkein työn tuottavuuden kasvuun vaikuttava tekijä. Edelleen uusien tuotteiden ja toimintatapojen syntyminen on osa teknologian kehitystä (s.152-156). Vast: Osio 4. 34. Ratk: Työn tarjontakäyrä on muotoa w = 0,4 L S, joten minimipalkalla w = 30 euroa työn tarjonta L S = w / 0,4 = 30 / 0,4 = 75 (henkilöä). Kysyntäkäyrän yhtälö w = 40 0,4 L D saa minimipalkalla w = 30 euroa muodon: 30 = 40 0,4 L D, josta työn kysyntä L D = (40 30) / 0,4 = 25 (henkilöä). Työvoiman määrä on esimerkin mukaan 80 henkilöä. Minimipalkalla 75 henkilöä haluaisi siis tarjota työpanostaan, mutta työnantajat suostuvat palkkaamaan vain 25 henkilöä. Siten vapaaehtoista työttömyyttä on määrä 80 75 = 5 henkilöä, ja vastaavasti tahatonta työttömyyttä on määrä 75 25 = 50 henkilöä. Vast: Osio 3 (sivu 173). 35. Osio 1 / Epätosi; Tässä tilanteessa euron valuuttakurssi ei muutu (s.239-240). Osio 2 / Tosi; Sisäinen devalvaatio viittaa esimerkiksi palkkatason alenemiseen, jolloin yritysten kustannusten pienentyessä lyhyen ajan kokonaistarjonta SAS vahvistuu. Näin päästään siirtymään pisteestä b pisteeseen c (s.240). Osio 3 / Epätosi; Ei, vaan EKP reagoi rahapolitiikallaan vain sellaisiin häiriöihin, jotka ovat yhteisiä kaikille talous- ja rahaliiton jäsenmaille (s.240).

Osio 4 / Epätosi; Ei, vaan yksittäisen euromaan harjoittama ekspansiivinen finanssipolitiikka on tehokasta. Euroalueen korkotaso on nimittäin valmiiksi päätetty, jolloin finanssipolitiikan syrjäytysvaikutusta ei esiinny (s.242). Matematiikka: 36. Osio 1 / Tunnetusti eksponenttifunktion f(x) = e kx arvot ovat aina positiivisia. Näin on myös silloin, kun k < 0. Osio 1 on siis tosi. Osio 2 / Epätosi, sillä funktio f(x) = ln kx voi saada myös negatiivisia arvoja. Vertaa kuvaajaa funktioon y = ln x (x > 0). Osio 3 / Epätosi, sillä jotta x = x o olisi ääriarvokohta, derivaatan f (x) pitäisi vaihtaa tätä kohtaa ohitettaessa merkkinsä. Osio 4 / Ratk: Jos f(x) = ln 2x (x > 0), niin f (x) = (1/2x) 2 = 1/x = x -1 ja f (x) = - x -2 = - 1/x 2 < 0. Funktio f on siis aidosti konkaavi, joten osio 4 on epätosi. 37. Osio 1 / Nyt e lnx = x (x > 0) logaritmin määritelmän nojalla. Osio 2 / Edelleen ln e x = x ln e = x 1 = x. Osio 3 / Lauseke e ln x (x > 0) ei sievene. Osio 4 / Lopuksi x lne = x 1 = x. Vast: Osio 3. 38. Osio 1 / Epätosi; Voidaan tutkia. Osio 2 / Epätosi, sillä tilastotieteessä perimmäisen kiinnostuksen kohteena ovat perusjoukon alkiot (s.68). Osio 3 / Tosi (s.68). Osio 4 / Epätosi; Ei, vaan tällöin mittauksen reliabiliteetti on korkea (s.74).

39. Osio 1 / Epätosi; Puppua. Osio 2 / Epätosi; Ei, vaan ristiintaulukointi koskee kaksiulotteista jakaumaa. Osio 3 / Epätosi, sillä keskipoikkeama on hajontaluku. Osio 4 / Tosi. 40. Ratk: Satunnaismuuttujan arvoa 1 (eli tapausta, että heitto on kruuna) vastaa todennäköisyys 1 p. Satunnaismuuttujan arvoa 0 (eli tapausta, että heitto on klaava) vastaa todennäköisyys p. Kysytty odotusarvo E x = Sigma (p i x i ) = (1-p) 1 + p 0 = 1 p. Vast: Osio 4. 41. Ratk: Ratkaistaan tehtävä kokeilemalla, sillä suora lasku on melko hankala. Osio 1 / Jos y = 0, niin keskiarvo = (0 + 20 +0)/3 = 20/3. Edelleen varianssi s 2 = [(Sigma) (x i x:ien keskiarvo) 2 ]/(n-1). Tämä saa nyt muodon s 2 = [(0 20/3) 2 + (20 20/3) 2 + (0 20/3) 2 ] / 2, mikä sievenee luvuksi s 2 = 400/3. Siis keskihajonta s = 20 / neliöjuuri 3. Tämä on keskiarvo 20/3, joten osio 1 on epätosi. Osio 2 / Jos y = 10, niin keskiarvo = 30/3 = 10. Tässä tapauksessa varianssi s 2 = [(0-10) 2 + (20-10) 2 + (10-10) 2 ] / 2 = 100. Siis keskihajonta s = 10, mikä on sama kuin keskiarvo 10. Osio 2 on siis tosi. Osiot 3 ja 4 / Arvoilla y = 15 ja y = 30 aritmeettinen keskiarvo ja keskihajonta ovat selvästi erisuuria. Siis nämä osiot ovat epätosia. Vast: Osio 2. 42. Osio 1 / Tosi, sillä piste A ei ole Pareto-piste, koska sitä dominoi piste B.