Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},



Samankaltaiset tiedostot
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

VEKTORIT paikkavektori OA

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Suora. Hannu Lehto. Lahden Lyseon lukio

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

Ominaisvektoreiden lineaarinen riippumattomuus

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Kertausta: avaruuden R n vektoreiden pistetulo

Insinöörimatematiikka D

Suorista ja tasoista LaMa 1 syksyllä 2009

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Lineaarialgebra MATH.1040 / voima

Juuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Vektorit, suorat ja tasot

Yleistä vektoreista GeoGebralla

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Pythagoraan polku

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

3 Skalaari ja vektori

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3

Muodonmuutostila hum

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Lineaarialgebra ja matriisilaskenta I

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

Johdatus lineaarialgebraan

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Ristitulo ja skalaarikolmitulo

Geometriset avaruudet Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

Ortogonaalinen ja ortonormaali kanta

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

Koontitehtäviä luvuista 1 9

3 Yhtälöryhmä ja pistetulo

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

PRELIMINÄÄRIKOE. Pitkä Matematiikka

Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

Taso. Hannu Lehto. Lahden Lyseon lukio

Determinantti 1 / 30

b 4i j k ovat yhdensuuntaiset.

Kuvaus. Määritelmä. LM2, Kesä /160

Matematiikan tukikurssi

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

2 Vektorit koordinaatistossa

2 Vektorit koordinaatistossa

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Kertausta: avaruuden R n vektoreiden pistetulo

Pistetulo eli skalaaritulo

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi.

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Preliminäärikoe Pitkä Matematiikka

Vektorien virittämä aliavaruus

PRO GRADU -TUTKIELMA. Salla Jokinen. Vektorialgebran kouluopetus Suomessa

c) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d.

2.3 Voiman jakaminen komponentteihin

Preliminäärikoe Tehtävät Pitkä matematiikka / 3

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

Ratkaisuja, Tehtävät

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Lineaarialgebra MATH.1040 / trigonometriaa

Transkriptio:

Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1, Kesä 2012 41/218

Olkoon S avaruuden R n suora (n = 2). Tämä tarkoittaa, että missä p, v R n ja v 0. S = { p + t v t R}, Oletetaan, että a, b R. Jos (a, b) S, niin sanotaan, että piste (a, b) on suoralla S tai että suora S kulkee pisteen (a, b) kautta. t v (a, b) p Vastaavasti avaruudessa R 3. LM1, Kesä 2012 42/218

Huom. Sama suora voidaan kirjoittaa joukkona { p + t v t R} usealla eri tavalla: vektoriksi p voidaan valita suoran minkä tahansa pisteen paikkavektori; vektoriksi v voidaan valita mikä tahansa suoran suuntainen vektori. v v p p LM1, Kesä 2012 43/218

Esimerkki 5 (a) Määritä pisteiden A = (2, 3, 5) ja B = (4, 1, 7) kautta kulkeva suora S. (b) Määritä pisteen C = (4, 1, 9) etäisyys suorasta S. C B A LM1, Kesä 2012 44/218

(a) Suoran jonkin pisteen paikkavektori; esim. OA = (2, 3, 5). Jokin suoran suuntainen vektori; esim. Näin AB = OB OA = (2, 4, 2). S = { OA + t AB t R } = { (2, 3, 5) + t(2, 4, 2) t R }. LM1, Kesä 2012 45/218

Pisteen etäisyys suorasta Oletetaan, että n = 2 tai n = 3. Pisteen Q etäisyys suorasta S = { p + t v t R}, missä p, v R n ja v 0, saadaan projektion avulla: Q ā proj v (ā) v ā P proj v (ā) LM1, Kesä 2012 46/218

(b) Vektori jostakin suoran pisteestä tutkittavaan pisteeseen; esim. AC = OC OA = (2, 2, 4). Jokin suoran suuntainen vektori; esim. AB = (2, 4, 2). Vektorin AC projektio suoralle S: Erotus proj AB ( AC) = AC AB AB AB AB = 20 AB = 5 AB. 24 6 AC proj AB ( AC) = AC 5 AB = 6 6 6 (2, 2, 4) 5 (2, 4, 2) 6 Erotuksen normi = 1 6 (12 10, 12 20, 24 10) = 1 (1, 4, 7). 3 AC proj AB ( AC) = 1 3 (1, 4, 7) = 1 1 1 + 16 + 49 = 66. 3 3 LM1, Kesä 2012 47/218

Taso Määritelmä Avaruuden R 3 taso on joukko { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Tässä p on tason jonkin pisteen paikkavektori ja v sekä w ovat kaksi tason suuntaista vektoria. w v p O LM1, Kesä 2012 48/218

Olkoon T avaruuden R 3 taso. Tämä tarkoittaa, että T = { p + s w + t v s, t R}, missä p, w, v R 3, w 0 v ja w v. Oletetaan, että a, b, c R. Jos (a, b, c) T, niin sanotaan, että piste (a, b, c) on tasossa T tai että taso T kulkee pisteen (a, b, c) kautta. t v s w (a, b, c) p O LM1, Kesä 2012 49/218

Huom. Sama taso voidaan kirjoittaa joukkona { p + s w + t v s, t R} usealla eri tavalla: vektoriksi p voidaan valita tason minkä tahansa pisteen paikkavektori; vektoreiksi w ja v voidaan valita mitkä tahansa tason suuntaisen vektorit, kunhan w v. w v w v p O p O LM1, Kesä 2012 50/218

Esimerkki 6 Määritä pisteiden A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1) kautta kulkeva taso T. C A B LM1, Kesä 2012 51/218

Tason jonkin pisteen paikkavektori; esim. OA = (0, 1, 0). Jotkin tason suuntaiset vektorit; esim. AB = OB OA = ( 1, 2, 2) ja AC = OC OA = ( 2, 1, 1). Huomaa, että nämä eivät ole yhdensuuntaiset; ts. AB t AC kaikilla t R {0}. Näin T = { OA + s AB + t AC s, t R } = { (0, 1, 0) + s( 1, 2, 2) + t( 2, 1, 1) s, t R }. LM1, Kesä 2012 52/218

Määritelmä Ristitulo Oletetaan, että v, w R 3. Vektorien v = (v 1, v 2, v 3 ) ja w = (w 1, w 2, w 3 ) ristitulo on vektori v w = (v 2 w 3 v 3 w 2, v 3 w 1 v 1 w 3, v 1 w 2 v 2 w 1 ). Muistisääntö ristitulon laskemiseen: yhtenäisellä viivalla yhdistettyjen komponenttien tulosta vähennetään katkoviivalla yhdistettyjen komponenttien tulo. v 1 v 2 v 3 v 1 v 2 w 1 w 2 w 3 w 1 w 2 LM1, Kesä 2012 53/218

Ristitulo Esimerkki 7 Merkitään ā = (2, 1, 2) ja b = (3, 1, 3). Lasketaan ā b. ā b = ( 3 ( 2), 6 ( 6), 2 3) = ( 1, 12, 5). 2 1 2 2 1 3 1 3 3 1 LM1, Kesä 2012 54/218

Ristitulon ominaisuuksia Lause 11 Oletetaan, että ū, v, w R 3 ja c R. Tällöin (a) v w = ( w v) (antikommutointi) (b) ū ( v + w) = ū v + ū w (osittelulaki) (c) ( v + w) ū = v ū + w ū (osittelulaki) (d) c( v w) = (c v) w = v (c w) (e) v v = 0 (f) 0 v = 0 ja v 0 = 0 (g) ū ( v w) = (ū v) w Paina mieleesi erikoiset ominaisuudet (a), (e) ja (g)! v w w v LM1, Kesä 2012 55/218

Ristitulon ominaisuuksia Lause 12 Oletetaan, että ū, v, w R 3. Tällöin (h) (ū v) w = (ū w) v ( v w)ū (i) ū ( v w) = (ū w) v (ū v) w (j) v w 2 = v 2 w 2 ( v w) 2 (Lagrangen identiteetti) Lagrangen identiteetti voidaan perustella kohtien (g) ja (h) avulla. Muut kohdat lauseissa 11 ja 12 voidaan perustella ristitulon määritelmään nojautuen. LM1, Kesä 2012 56/218

Ristitulon ominaisuuksia Lause 13 Oletetaan, että v, w R 3. Tällöin (a) ( v w) v ja ( v w) w; v w (b) jos v 0 ja w 0, niin v w = v w sin α, missä α on vektorien v ja w välinen kulma. w v w sin Ristitulovektorin v w pituus on yhtä suuri kuin vektorien v ja w määräämän suunnikkaan ala! LM1, Kesä 2012 57/218

Suuntaissärmiön tilavuus Suuntaissärmiön tilavuus on pohjan pinta-alan v w ja korkeuden h tulo. cos β = cos(180 β), joten h = ū cos β. Siis tilavuus on v w ū cos β = v w ū cos β = ( v w) ū h ū v v w w Tilavuus on ns. skalaarikolmitulon itseisarvo! LM1, Kesä 2012 58/218

Pisteen etäisyys tasosta Pisteen Q etäisyys tasosta T saadaan ristitulon ja projektion avulla: v w P proj v w (ā) w ā v Q LM1, Kesä 2012 59/218

Tason normaalimuotoinen yhtälö Piste Q = (x, y, z) on tasossa T, jos ja vain jos n ( q p) = 0, missä n on jokin tasoa T vastaan kohtisuora vektori (ns. tason T normaali). n q p Q P p q Huom. jos T = { p + s w + t v s, t R}, voidaan valita n = v w. O LM1, Kesä 2012 60/218

Tason normaalimuotoinen yhtälö Esimerkki 8 Merkitään A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1). Taso T kulkee pisteiden A, B ja C kautta. Määritä (a) tason T normaalimuotoinen yhtälö; (b) pisteen D = (1, 2, 3) etäisyys tasosta T. D C A B LM1, Kesä 2012 61/218

(a) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen Q = (x, y, z); esim. AQ = OQ OA = (x, y 1, z). Tason normaalimuotoinen yhtälö on näin ( AB AC) AQ = 0 eli (4, 3, 5) (x, y 1, z) = 0 4x 3(y 1) + 5z = 0 4x 3y + 5z + 3 = 0. LM1, Kesä 2012 62/218

(b) Jokin tason normaali; esim. tason suuntaisten vektoreiden AB = ( 1, 2, 2) ja AC = ( 2, 1, 1) ristitulo AB AC = (4, 3, 5). Vektori jostakin tason pisteestä pisteeseen D = (1, 2, 3); esim. AD = OD OA = (1, 1, 3). Vektorin AD projektio normaalin n = AB AC määräämälle suoralle proj n ( AD n 16 8 AD) = n = (4, 3, 5) = (4, 3, 5). n n 50 25 Projektion normi eli pituus proj n ( AD) = 8 25 (4, 3, 5) = 8 8 16 + 9 + 25 = 50 25 25 = 8 5 2. LM1, Kesä 2012 63/218