Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %. Kuinka monta prosenttia pitää kurssin iltapäivällä vielä nousta, jotta päivän päätöskurssi olisi avauskurssin tasolla? b) Määritä funktion f ( x) = cosx+ kaikki nollakohdat.. a) Olkoon x f ( x) = e + e. Laske funktion derivaatan arvo kohdassa x =. b) Laske määrätty integraali tarkkuudella. π cos x dx. Tarkka arvo ja likiarvo kahden desimaalin 4. Suunnikkaan ABCD kärkipisteet ovat A = ( 6,), B = (, 4) ja C = (4, ). Määritä suunnikkaan kärkipiste D ja laske lävistäjien pituudet. 5. Mimmiliigan mestaruusottelu päättyy rangaistuspotkukilpailuun, jossa joukkueen A kärkipelaajat Tuuli, Iida ja Suvi laukovat kukin yhden potkun. Heidän maalitodennäköisyytensä ovat valmentajan mukaan 78 %, 77 % ja 76 %. Laske todennäköisyys, että joukkueen A kokonaismaalimäärä on vähintään kaksi. 6. Osoita, että kaikki paraabelit y a= x ( a ) x, missä vakio a R, kulkevat saman pisteen kautta. Mikä tämä piste on? Määritä tästä paraabeliparvesta ne paraabelit, joka sivuavat suoraa y =. 7. Tasakylkisen kolmion kanta on a ja kylki. Mihin osiin kantakulmanpuolittaja jakaa kyljen? Määritä kantakulmanpuolittajasta kolmion sisään jäävän osan pituus. 8. Plutoniumin puoliintumisaika on noin 4 vuotta. Kuinka monta prosenttia plutoniumista hajoaa vuodessa. Missä ajassa plutoniumista hajoaa 5 %? KÄÄNNÄ! Sivu / MAA preliminääri 9
9. Yksikkösäteisen pallon sisään piirretään suora ympyräpohjainen kartio. Olkoon kartion pohjan etäisyys pallon keskipisteestä = x. Osoita, että tällöin kartion vaipan A alaa kuvaa funktio A( x) = π ( + x) ( x), missä x <. Määritä kartion korkeus, kun kartion vaipan pinta-ala on suurin mahdollinen.. Käyrän y = 4 x kuvaajan ja koordinaattiakselien rajoittama alue pyörähtää x -akselin sekä y akselin ympäri. Laske syntyneiden pyörähdyskappeleiden tilavuuksien suhde.. a) Esitä kymmenjärjestelmän luku binäärilukuna. b) Muunna binääriluku heksadesimaalijärjestelmän luvuksi. ln x. Jyrkkää rinnettä kuvaa likimäärin funktio f ( x) = x välillä x. Arvioi rinteen kaltevuuskulmaa asteen tarkkuudella kohdassa x = 5 soveltaen numeerisia derivoimismenetelmiä. Käytä muutoksen h arvoa,.. Määritä lausekkeen n + 4 + 6 +... + n k+ lg( ) lg( ) raja-arvo, kun n kasvaa rajatta. n n k = k *4. Funktio f toteuttaa seuraavat ehdot: f ( a+ b) = f( a) + f( b), kun ab, R. f( a ) >, kun a >. f () = 5. 4 funktio on määritelty kaikkialla. a) Määritä f (). ( p ) b) Miten määritellään pariton funktio, entä aidosti kasvava funktio? ( p ) c) Osoita, että funktio f on pariton ja aidosti kasvava. ( p ) d) Määritä f ( 4). ( p ) *5. a) Osoita, että x + y, dx < y kun. x + y > ( 4p ) b) Ratkaise yhtälö t x dt =, kun x. ( 5p ) Sivu / MAA preliminääri 9
Ratkaisut ja pistesuositus. Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b). 8 a) Kertomalla ristiin saadaan 4( x ) = x, josta 7 x = 8 eli x = =. 7 7 ++p b) Saadaan x( x) >, josta paraabelin nollakohdat x = tai x =. p Paraabelikuvion nojalla < x <. +p c) Saadaan + = + p ( a b) (a b)(a b) ( a 4ab 4 b ) (4a 9 b ) = a 4ab + b. +p Vastaus: a) x = b) < x < c) 7 a 4ab + b. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %. Kuinka monta prosenttia pitää kurssin iltapäivällä nousta, jotta päivän päätöskurssi olisi avauskurssin tasolla? b) Määritä funktion f ( x) = cosx+ kaikki nollakohdat. a) Olkoon osakkeen alkukurssi a. Tällöin tilanne on kurssilaskujen jälkeen (,4)(,56) a =,994a. p Tulkoon kurssi iltapäivällä k-kertaiseksi, jolloin asetetaan yhtälö k,994a = a, +p k = =,966666 9,7%. Siten kurssinousun on oltava noin 9,7 %. +p,994 Ratkaisut Sivu / MAA Preliminääri 9
π b) Saadaan cos x = cos x = cos p π x = ± + n π, n on kokonaisluku. p+p Vastaus: a) 9,7 % π b) x = ± + n π, n on kokonaisluku. a) Olkoon x f ( x) = e + e. Laske funktion derivaatan arvo kohdassa x =. b) Laske määrätty integraali tarkkuudella. a) Derivaatta b) π π cos x dx. Tarkka arvo ja likiarvo kahden desimaalin ( ) x x = + =. p+p f x e e ( ) f ( ) = e = e = e 5,4. +p π cos x dx = / ( sin x) p = (sin π sin 4) = sin 4 =,784...,8. p+p Vastaus: a) e 5,4 b) x = sin 4, 8 4. Suunnikkaan ABCD kärkipisteet ovat A = ( 6,), B = (, 4) ja C = (4, ). Määritä suunnikkaan kärkipiste D ja laske lävistäjien pituudet. Suunnikkaan lävistäjät puolittavat toisensa, joten lävistäjien leikkauspiste E on janan AC 6+ 4 + ( ) keskipiste. Pisteen E koordinaatit ovat siten E = (, ) = (, ). p Ratkaisut Sivu / MAA Preliminääri 9
Olkoon D= ( x, y). Koska piste E on myös janan BD keskipiste, niin saadaan yhtälöpari +p x + =. y + 4 = Täten x = ja y = eli D = (, ) +p Lävistäjävektori AC = (4 + 6) i + ( ) j = i j, josta pituus AC = + ( ) = 9,4. Vastaavasti lävistäjävektori DB = ( + ) i + (4 + ) j = 4i + 7 j, josta pituus DB = 4 + 7 = 65 8,. ++p Vastaus: Piste D = (, ) ja pituudet AC = 9,4 ja BD = 65 8, +p 5. Mimmiliigan mestaruusottelu päättyy rangaistuspotkukilpailuun, jossa joukkueen A kärkipelaajat Tuuli, Iida ja Suvi laukovat kukin yhden potkun. Heidän maalitodennäköisyytensä ovat valmentajan mukaan 78 %, 77 % ja 76 %. Laske todennäköisyys, että joukkueen A kokonaismaalimäärä on vähintään kaksi. P("vähintään kaksi") = P("kaksi tai kolme ") +p Vastaus: 87 % = P(" T ja I ja ei S tai T ja ei I ja S tai ei T ja I ja S") + P (" T ja I ja S ") +p = [,78,77,4+,78,,76+,,77,76] +,78,77,76 =,865688,87. +p 6. Osoita, että kaikki paraabelit y a= x ( a ) x, missä vakio a R, kulkevat saman pisteen kautta. Mikä tämä piste on? Määritä tästä paraabeliparvesta ne paraabelit, joka sivuavat suoraa y =. Valitaan paraabeliparvesta jotkut edustajat, vaikkapa a = ja a =. Tällöin saadaan paraabelit y = x + x ja y = x +. Niiden leikkauspiste saadaan yhtälöparista y = x + x + = + = x x x x. y = x + Parven ainoa ehdokaspiste on siten (, ). Tällöin y =. p Osoitetaan, että tämä piste on jokaisella paraabelilla Saadaan a ( a ) a a. y a x ( a ) x =. = = = Tämä on aina identtisesti tosi. +p Ratkaisut Sivu / MAA Preliminääri 9
y a= x ( a ) x Asetetaan yhtälöpari x + ( a) x+ ( a ) =. Tämän yhtälön y = diskriminantin pitää olla nolla, jotta saadaan vain yksi ratkaisu. +p Saadaan yhtälö ( a ) 4 ( a ) ( a )[( a ) 4] a = = = tai a = 5. +p Vastaavat paraabelit ovat y = x + tai y x x = 4 + 5. +p Vastaus: Piste on (, ). Paraabelit ovat y = x + tai y x x = 4 + 5 7. Tasakylkisen kolmion kanta on a ja kylki. Mihin osiin kantakulmanpuolittaja jakaa kyljen? Määritä kantakulmanpuolittajasta kolmion sisään jäävän osan pituus. Kulmanpuolittaja jakaa vastaisen sivun viereisten suhteessa. +kuvio p Olkoon osan DC pituus x, jolloin CB osa on x. Kulmanpuolittajalauseen nojalla saadaan x verranto =. + p x a Täten xa = x x( a + ) = x =, jolloin toinen osa a + a x = =. a+ a+ a Osat ovat siten ja. +p a + a + Kolmiosta ABD saadaan kosinilauseen nojalla yhtälö a = + cosα ja kolmiosta ACD vastaavasti d = + ( ) cos α. Ensimmäisen yhtälön nojalla a+ a+ a cos α =. +p Täten d a ( a+ ) + ( a+ )( a ) a ( a+ ) = + = =. ( a+ ) a+ ( a+ ) ( a+ ) a Täten kysytty pituus d = a+. a + Vastaus: Osien pituudet ovat a + a a ja. Kysytty pituus d = a+ a + a + +p Ratkaisut Sivu 4 / MAA Preliminääri 9
8. Plutoniumin puoliintumisaika on noin 4 vuotta. Kuinka monta prosenttia plutoniumista hajoaa vuodessa. Missä ajassa plutoniumista hajoaa 5 %? Olkoon Plutoniumin alkumäärä a ja Plutoniumin määrä tulkoon vuodessa k-kertaiseksi. 4 Tällöin puoliintumistiedon nojalla saadaan yhtälö a k = a, josta k = =,999979. +p 4 Plutoniumin määrään ajan funktiona kuvaa siten malli 4 t 4 t Nt () = a ( ) = a. +p 4 Täten vuoden kuluttua määrä on N() = a =,78... a 7,8 % alkumäärästä, joten Plutoniumista on hajonnut noin 9, %. +p x lg,85 4 Asetetaan yhtälö a k =,85a x =, missä k =. lg k Vastaus: 9, % ja 5 7 vuodessa = 565,6... 5 7 vuotta. +p 9. Yksikkösäteisen pallon sisään piirretään suora ympyräpohjainen kartio. Olkoon kartion pohjan etäisyys pallon keskipisteestä = x. Osoita, että tällöin kartion vaipan A alaa kuvaa funktio Ax ( ) = π ( + x) ( x) missä x <. Määritä kartion korkeus, kun kartion vaipan pintaala on suurin mahdollinen. Ratkaisut Sivu 5 / MAA Preliminääri 9
Oheisen kuvion merkinnöillä olkoon kartion pohjaympyrän säde r = AB, OA = x, ja kartion korkeus h= AC = OA + OC = x+. Olkoon vielä sivujana BC = s. Suorakulmaisista kolmioista OBA ja BAC saadaan Pythagoraan lauseella r + x = ja r ( x ) s s r ( x ) ( r x ) x + + = = + + = + + + p Edelleen saadaan s = + + x = + x = + x +p Vaipan ala A rs x x x x = π = π + = π ( + ) ( ), x. < +p Koska luku π on positiivinen vakio ja neliöjuurifunktio on aidosti kasvava, niin voidaan rajoittua tutkimaan vain sisäfunktiota f x x x x ( ) = ( + ) ( ), <. Derivaatta ( ) = ( + ) ( ) + ( )( + ) = ( + )( ) = ( + )( ), < x <. f x x x x x x x x x Derivaatan ainoa tällä välillä oleva nollakohta on x =. +p+p 7 Derivaatan arvoista f ( ) = > ja f ( ) = < päätellään, että kohta x = antaa siten 6 4 sekä funktion f ( x ) että funktion A( x ) absoluuttinen maksimiarvon. Tällöin kartion korkeus 4 on h = + =. +p Vastaus: h =. Käyrän y = 4 x kuvaajan ja koordinaattiakselien rajoittama alue pyörähtää x -akselin sekä y akselin ympäri. Laske syntyneiden pyörähdyskappeleiden tilavuuksien suhde. Yhtälöstä y = 4 x saadaan y = 4, kun x = ja x = 6, kun y =. 6 6 6 Vx = A( x) dx= π rx dx= π y dx p 6 6 6 8 (6 8 x x) dx / (6 x x x ). = π + = π + = π ++p Ratkaisut Sivu 6 / MAA Preliminääri 9
4 4 4 4 4 5 (4 y) 4 Vy = A y dy = r dy = x dy = y dy = = 5 5 4 ( ) π y π π (4 ) π / π. ++p Täten kysytty suhde Vx Vastaus: 5:4 V = y V V x y 8 π 5 = =. +p 4 π 4 5. a) Esitä kymmenjärjestelmän luku binäärilukuna. b) Muunna binääriluku heksadesimaalijärjestelmän luvuksi. a) Kymmenjärjestelmän luku = 64 + + 6 + 8 + + p 6 5 4 = + + + + + + +p = binäärijärjestelmässä. +p b) Paikan numero on järjestysluvun eksponentti. 7 6 5 4 Täten = + + + + + + + kymmenjärjestelmässä +p Vastaus: a) b) ED 6 = 8 + 64 + + 8 + 4 + = 7 = 4 6 + = 4 6 + 6 +p = ED. 6 Tämä on siis heksadesimaalijärjestelmän luku ED. +p ln x. Jyrkkää rinnettä kuvaa likimäärin funktio f ( x) = x välillä x. Arvioi rinteen kaltevuuskulmaa asteen tarkkuudella kohdassa x = 5 soveltaen numeerisia derivoimismenetelmiä. Käytä muutoksen h arvoa,. Derivaatan approksimaatio keskeisdifferenssin avulla f ( x+ h) f( x h) f ( x) p h Täten f (5) f(5 +,) f(5,), +p ln5, ln 4,999 5, 4,999 = +p, = 8,588... Tämä on siis approksimaatio kohtaan x = 5 piirretylle tangentin kulmakertoimelle. +p Ratkaisut Sivu 7 / MAA Preliminääri 9
Kaltevuuskulma saadaan yhtälöstä tanα = 8,588..., josta α = tan (8,588...) = 8,55... 8. +p Vastaus: 8. Määritä lausekkeen n + 4 + 6 +... + n k+ lg( ) lg( ) raja-arvo, kun n kasvaa rajatta. n n = k k Summa + 4 + 6 +... + n= ( + + +... + n) on aritmeettinen p + n = ( n ) = n( n+ ). +p Summa n k = k+ 4 n n+ lg( ) = lg + lg + lg +...lg + lg k n n 4 n n+ = lg[... ] n n +p = lg( n + ). +p Siten saadaan nn ( + ) ( n+ ) lg lg( n+ ) = lg lg( n+ ) n n n ( n + ) = lg lg ( n + ) n ( n+ ) n+ n = lg = lg = lg ( + ) lg =. n( n+ ) n n +p+p Vastaus: *4. Funktio f toteuttaa seuraavat ehdot: f ( a+ b) = f( a) + f( b), kun ab, R. f( a ) >, kun a >. f () = 5. 4 funktio on määritelty kaikkialla. a) Määritä f (). ( p ) b) Miten määritellään pariton funktio, entä aidosti kasvava funktio? ( p ) c) Osoita, että funktio f on pariton ja aidosti kasvava. ( p ) d) Määritä f ( 4). ( p ) Ratkaisut Sivu 8 / MAA Preliminääri 9
a) f() = f( + ) = f() + f() = f() f() =. p b) Parittoman funktion kuvaaja on symmetrinen origon suhteen ts. kaikilla muuttujan x arvoilla pätee f ( x) = f( x). +p Aidosti kasvavan funktion arvot suurenevat, kun muuttujan x arvot kasvavat ts. jos h >, niin myös f ( x) < f( x+ h) kaikilla muuttujan x arvoilla. +p c) ) = f () = f( x+ ( x)) = f( x) + f( x), joten f ( x) = f( x). +p ) Olkoon muutos h>. Tällöin f( x+ h) = f( x) + f( h) > f( x) ominaisuuden nojalla +p d) f (4) = f( + ) = f() + f() = f() + f(+ ) = f() + f() = f() + f() + f() = 4 f(). +p Toisaalta funktio f ( x ) on pariton, joten f( 4) = f(4) = 4 f() = 4 5 =. +p Vastaus: a) f () = b) f ( 4) = *5. a) Osoita, että x + y, dx < y kun. x + y > ( 4p ) b) Ratkaise yhtälö t x dt =, kun x. ( 5p ) a) Olkoon y > vakio, jolloin voidaan tutkia yhden muuttujan funktiota x + y f( x) = suljetulla välillä [,]. +p x + Ratkaisut Sivu 9 / MAA Preliminääri 9
Derivaatta ( ) ( ) ( ) xx + xx + y x y f ( x) = = <, ( x + ) ( x + ) sillä y > ja < x <. Täten funktio on aidosti vähenevä koko suljetulla välillä [,]. +p Siten + y f x f y + ( ) () = =. Täten pätee arvio f ( x ) dx y dx = / y x = y. +p Integraalin pinta-ala tulkinnan nojalla saadaan tarkempi arvio f ( x) dx< y, sillä funktio on aidosti vähenevä tarkasteluvälillä. +p b) Integroimismuuttuja t on välillä [,], joten on erotettava tapaukset ) x > ) x. z z ) t x dt = ( t+ x) dt = /( t + xt) = + x. Saadaan yhtälö + x =, josta x =. +p+p z zx z x x ) t x dt = ( t + x) dt + ( t x) dt = /( t + xt) + /( t xt) = x x +. x Saadaan yhtälö x x+ = eli ( x- ) =, josta x = ±. Näistä kumpikaan ei ole välillä x. Täten annetun yhtälön ainoa ratkaisu on x =. +p+p Vastaus: x = Ratkaisut Sivu / MAA Preliminääri 9