Composition of group-subgroup subfactors

Samankaltaiset tiedostot
Bounds on non-surjective cellular automata

The Viking Battle - Part Version: Finnish

The CCR Model and Production Correspondence

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Capacity Utilization

Efficiency change over time

16. Allocation Models

Topologies on pseudoinnite paths

Results on the new polydrug use questions in the Finnish TDI data

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Strict singularity of a Volterra-type integral operator on H p

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Alternatives to the DFT

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II

4x4cup Rastikuvien tulkinta

Operatioanalyysi 2011, Harjoitus 4, viikko 40

anna minun kertoa let me tell you

Kvanttilaskenta - 2. tehtävät

Alternative DEA Models

Choose Finland-Helsinki Valitse Finland-Helsinki

Other approaches to restrict multipliers

Travel Getting Around

Käyttöliittymät II. Käyttöliittymät I Kertaus peruskurssilta. Keskeisin kälikurssilla opittu asia?

1. Liikkuvat määreet

AYYE 9/ HOUSING POLICY

Statistical design. Tuomas Selander

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Information on preparing Presentation

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

KMTK lentoestetyöpaja - Osa 2

Operatioanalyysi 2011, Harjoitus 2, viikko 38

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

make and make and make ThinkMath 2017

Capacity utilization

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

EUROOPAN PARLAMENTTI

Returns to Scale Chapters

Integration of Finnish web services in WebLicht Presentation in Freudenstadt by Jussi Piitulainen

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen


Tietorakenteet ja algoritmit

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Topics on Hyperbolic Function Theory in Cl_{n+1,0}

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

Moniston tangenttiavaruus

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Suunnittelumallit (design patterns)

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

Salasanan vaihto uuteen / How to change password

TIETEEN PÄIVÄT OULUSSA

Curriculum. Gym card

Digital Admap Native. Campaign: Kesko supermarket

812336A C++ -kielen perusteet,

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed

Houston Journal of Mathematics. University of Houston Volume, No.,

Gap-filling methods for CH 4 data

Oma sininen meresi (Finnish Edition)

Miksi Suomi on Suomi (Finnish Edition)

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

HARJOITUS- PAKETTI A

Guidebook for Multicultural TUT Users

7.4 Variability management

Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Telecommunication Software

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

4x4cup Rastikuvien tulkinta. 4x4cup Control point picture guidelines

Ohjelmointikielet ja -paradigmat 5op. Markus Norrena

Alueellinen yhteistoiminta

Kvanttilaskenta - 1. tehtävät

Opiskelijat valtaan! TOPIC MASTER menetelmä lukion englannin opetuksessa. Tuija Kae, englannin kielen lehtori Sotungin lukio ja etälukio

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

ENE-C2001 Käytännön energiatekniikkaa. Aloitustapaaminen Osa II: Projekti- ja tiimityö

Co-Design Yhteissuunnittelu

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

C++11 seminaari, kevät Johannes Koskinen

OP1. PreDP StudyPlan

Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi

SIMULINK S-funktiot. SIMULINK S-funktiot

Tutkimusdata ja julkaiseminen Suomen Akatemian ja EU:n H2020 projekteissa

Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi Peter Michelsson Wallstreet Asset Management Oy

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies

LANSEERAUS LÄHESTYY AIKATAULU OMINAISUUDET. Sähköinen jäsenkortti. Yksinkertainen tapa lähettää viestejä jäsenille

Hankkeen toiminnot työsuunnitelman laatiminen

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site

ETELÄESPLANADI HELSINKI

LYTH-CONS CONSISTENCY TRANSMITTER

Sosiaalisen median liiketoimintamallit ja käyttöön oton suunnitelma 9/23/2012

Transkriptio:

Composition of group-subgroup subfactors Richard Burstein Vanderbilt University October 23

Composition of group-subgroup subfactors Planar algebras and subfactors Automorphisms of planar algebras Planar fixed-point subfactors Examples and applications

Definitions: II 1 factor: von Neumann algebra with trivial center, finite trace II 1 subfactor: inclusion of II 1 factors M 0 M 1 Jones index: dimension of L 2 (M 1 )asleftm 0 module Basic construction: M 2 = {M 1, E M0 } B(L 2 (M 1 )) Iterate (with finite index): M 0 M 1 M 2 M 3...

Definitions: II 1 factor: von Neumann algebra with trivial center, finite trace II 1 subfactor: inclusion of II 1 factors M 0 M 1 Jones index: dimension of L 2 (M 1 )asleftm 0 module Basic construction: M 2 = {M 1, E M0 } B(L 2 (M 1 )) Iterate (with finite index): M 0 M 1 M 2 M 3... Standard invariant: M 0 M 0 M 0 M 1 M 0 M 2... M 1 M 1 M 1 M 2...

Definitions: II 1 factor: von Neumann algebra with trivial center, finite trace II 1 subfactor: inclusion of II 1 factors M 0 M 1 Jones index: dimension of L 2 (M 1 )asleftm 0 module Basic construction: M 2 = {M 1, E M0 } B(L 2 (M 1 )) Iterate (with finite index): M 0 M 1 M 2 M 3... Standard invariant: M 0 M 0 M 0 M 1 M 0 M 2... M 1 M 1 M 1 M 2... Standard invariant planar algebra (Jones) Planar algebra standard invariant (Popa) Today: Construct planar algebras abstractly, obtain new subfactors.

Planar algebra: Graded vector space V ± n, n 0 Associative action of the planar operad

Planar algebra: Graded vector space V n ±, n 0 Associative action of the planar operad Planar operad: Planar tangles Labelled internal disks Checkerboard shading Distinguished boundary region Composition via gluing

Subfactor planar algebra: dimv 0 ± =1 dimv n ± < n Involution Positive definite trace Spherical

Subfactor planar algebra: dimv ± 0 =1 dimv n ± < n Involution Positive definite trace Spherical The standard invariant of an (extremal, finite index) II 1 subfactor is a subfactor planar algebra (Jones) V + n = M 0 M n Vn = M 1 M n+1 action of planar operad from Jones 99

Subfactor planar algebra: dimv ± 0 =1 dimv n ± < n Involution Positive definite trace Spherical The standard invariant of an (extremal, finite index) II 1 subfactor is a subfactor planar algebra (Jones) V + n = M 0 M n Vn = M 1 M n+1 action of planar operad from Jones 99 A subfactor planar algebra is the standard invariant of an (extremal, finite-index) subfactor(popa, GJS, JSW, KS).

Subfactor planar algebra: dimv ± 0 =1 dimv n ± < n Involution Positive definite trace Spherical The standard invariant of an (extremal, finite index) II 1 subfactor is a subfactor planar algebra (Jones) V + n = M 0 M n Vn = M 1 M n+1 action of planar operad from Jones 99 A subfactor planar algebra is the standard invariant of an (extremal, finite-index) subfactor(popa, GJS, JSW, KS). Subfactor planar algebra extremal subfactor. Problem: Constructing SPAs is hard (BDG, Peters, BMPS, B).

Bipartite graph planar algebra P Γ Γ is any locally finite bipartite graph Fix a positive weight vector μ of Γ For finite graphs (only) μ is unique This is an (unbounded) eigenfunction of the adjacency matrix

Bipartite graph planar algebra P Γ Γ is any locally finite bipartite graph Fix a positive weight vector μ of Γ For finite graphs (only) μ is unique This is an (unbounded) eigenfunction of the adjacency matrix has basis of length-2n loops on Γ, starting at an even vertex V + n V n has basis of length-2n loops starting on an odd vertex

Bipartite graph planar algebra P Γ Γ is any locally finite bipartite graph Fix a positive weight vector μ of Γ For finite graphs (only) μ is unique This is an (unbounded) eigenfunction of the adjacency matrix has basis of length-2n loops on Γ, starting at an even vertex V + n V n has basis of length-2n loops starting on an odd vertex action of planar operad determined by Γ, μ: Jones 99 =Γ, = l; b l V + 3 *

BGPAs are not of subfactor type V ± 0 has dimension equal to the number of even/odd vertices If the graph is infinite, then each V ± n is infinite dimensional

BGPAs are not of subfactor type V ± 0 has dimension equal to the number of even/odd vertices If the graph is infinite, then each V n ± is infinite dimensional However, BGPAs have an involution and a positive definite trace

BGPAs are not of subfactor type V 0 ± has dimension equal to the number of even/odd vertices If the graph is infinite, then each V n ± is infinite dimensional However, BGPAs have an involution and a positive definite trace Theorem (B 10): Let Γ be a locally finite graph with positive weight vector μ, A a planar subalgebra of P Γ with dima V 0 ± =1. Then A is a subfactor planar algebra: the other necessary properties are inherited from P Γ. This is straightforward when Γ is finite, but when Γ is infinite it must be shown that A V n ± is finite dimensional.

BGPAs are not of subfactor type V 0 ± has dimension equal to the number of even/odd vertices If the graph is infinite, then each V n ± is infinite dimensional However, BGPAs have an involution and a positive definite trace Theorem (B 10): Let Γ be a locally finite graph with positive weight vector μ, A a planar subalgebra of P Γ with dima V 0 ± =1. Then A is a subfactor planar algebra: the other necessary properties are inherited from P Γ. This is straightforward when Γ is finite, but when Γ is infinite it must be shown that A V n ± is finite dimensional. Caveat: If Γ is infinite, then A might not be spherical. However, A still corresponds to a subfactor (Burns) the subfactor is extremal iff A is spherical.

BGPAs are not of subfactor type V 0 ± has dimension equal to the number of even/odd vertices If the graph is infinite, then each V n ± is infinite dimensional However, BGPAs have an involution and a positive definite trace Theorem (B 10): Let Γ be a locally finite graph with positive weight vector μ, A a planar subalgebra of P Γ with dima V 0 ± =1. Then A is a subfactor planar algebra: the other necessary properties are inherited from P Γ. This is straightforward when Γ is finite, but when Γ is infinite it must be shown that A V n ± is finite dimensional. Caveat: If Γ is infinite, then A might not be spherical. However, A still corresponds to a subfactor (Burns) the subfactor is extremal iff A is spherical. So we can find new subfactor planar algebras as small planar subalgebras of BGPAs. This provides new subfactors.

Automorphisms of planar algebras Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B).

Automorphisms of planar algebras Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B). P is a planar algebra. α is an invertible graded linear map on V ± n α AutP if it commutes with the entire planar operad G AutP P G is closed under the planar operad

Automorphisms of planar algebras Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B). P is a planar algebra. α is an invertible graded linear map on V ± n α AutP if it commutes with the entire planar operad G AutP P G is closed under the planar operad To show α AutP, it suffices to show that it commutes with a convenient generating set of the planar operad. In general computing AutP is hard, but the group may be completely described when P is a BGPA (B 10). AutP is generated by Graph automorphism operators (from AutΓ) Multiplication operators (from unitaries in V + 1 )

Bisch-Haagerup subfactors Let G be a group generated by two finite subgroups H and K, with H K = {e} Let H and K have outer actions on some II 1 factor M Fixed point subfactor: M H M Crossed product subfactor: M M K

Bisch-Haagerup subfactors Let G be a group generated by two finite subgroups H and K, with H K = {e} Let H and K have outer actions on some II 1 factor M Fixed point subfactor: M H M Crossed product subfactor: M M K Composite subfactor (BH) M H M K Principal graph determined by G OutM Planar algebra determined by groups plus scalar 3-cocycle obstruction: ω H 3 (G, S 1 ) IRF model for planar algebra (BDG) Determined by subfactor pair: M M H, M M K

Generalized Bisch-Haagerup subfactors Let G be a group generated by two finite subgroups H and K, with H K = A. H G Nondegenerate group quadrilateral: A K

Generalized Bisch-Haagerup subfactors Let G be a group generated by two finite subgroups H and K, with H K = A. H G Nondegenerate group quadrilateral: A K Let M be a II 1 factor admitting outer actions of H and K which agree on A, such that G is the group generated by H and K in OutM M A M H and M A M K are subfactors.

Generalized Bisch-Haagerup subfactors Let G be a group generated by two finite subgroups H and K, with H K = A. H G Nondegenerate group quadrilateral: A K Let M be a II 1 factor admitting outer actions of H and K which agree on A, such that G is the group generated by H and K in OutM M A M H and M A M K are subfactors. Let N be the result of the downward basic construction on M A M H. (i.e.m H is isomorphic to the basic construction on N M A). Then N M K is the group type subfactor obtained from the above group quadrilateral. This is a generalization of the Bisch-Haagerup construction M H M K.

Irreducible planar fixed point subfactors The class of planar fixed point subfactors is very large, but a few assumptions make it more tractible. Let Γ be a bipartite graph with no multiple edges. Let G AutP Γ act transitively on V 1 +.

Irreducible planar fixed point subfactors The class of planar fixed point subfactors is very large, but a few assumptions make it more tractible. Let Γ be a bipartite graph with no multiple edges. Let G AutP Γ act transitively on V 1 +. Then the planar fixed point subfactor obtained from PΓ G is a generalized Bisch-Haagerup subfactor (group quadrilateral). Moreover, the planar algebra of any such subfactor may be obtained in this way (B 10). All of these irreducible subfactors have (composite) integer index, and have an intermediate subfactor.

Cocycle perturbations Let ρ be a map from some group G to AutP Γ, such that P G Γ produces a subfactor. Let E be the center of the group of multiplication operators (a normal subgroup of AutP Γ ) Let α be a map from G to E such that α gh = α g ρ g (α h ). Equivalently, α is a 1-coycle for G with coefficients in E. This is a perturbation of the G -action, producing a (potentially) different SPA with the same principal graph.

Cocycle perturbations Let ρ be a map from some group G to AutP Γ, such that P G Γ produces a subfactor. Let E be the center of the group of multiplication operators (a normal subgroup of AutP Γ ) Let α be a map from G to E such that α gh = α g ρ g (α h ). Equivalently, α is a 1-coycle for G with coefficients in E. This is a perturbation of the G -action, producing a (potentially) different SPA with the same principal graph. Generalized Bisch-Haagerup planar algebras are determined by (A, H, K, G) plusω H 3 (G, S 1 ), with the restriction that ω has trivial image under the inflation map H 3 (G, S 1 ) 3 (H A K, S 1 ). From some elementary group cohomology, all such cocycles can be obtained from elements of H 1 (G, E) (c.f.jones) This sometimes allows enumeration of BH subfactors with specified G, H, K (c.f. IK 93)

Enumeration of Bisch-Haagerup subfactors =Γ Taking G = A 4 produces a Bisch-Haagerup subfactor (H = Z 2, K = Z 3, G = A 4 ). Here H 1 (G, E) =Z 2.

Enumeration of Bisch-Haagerup subfactors =Γ Taking G = A 4 produces a Bisch-Haagerup subfactor (H = Z 2, K = Z 3, G = A 4 ). Here H 1 (G, E) =Z 2. The principal graphs of the subfactor are

Enumeration of Bisch-Haagerup subfactors =Γ Taking G = A 4 produces a Bisch-Haagerup subfactor (H = Z 2, K = Z 3, G = A 4 ). Here H 1 (G, E) =Z 2. The principal graphs of the subfactor are The cohomology computation implies that there are two (hyperfinite) subfactors with this principal graph. They are distinguished by whether or not the representation of G in OutR lifts to AutR.

Wildness at 3+2 2 Reducible planar fixed point subfactors are more complicated They are determined by the group and the graph, not just the group They need not be integer index Smallest index: 3 + 2 2 Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex

Wildness at 3+2 2 Reducible planar fixed point subfactors are more complicated They are determined by the group and the graph, not just the group They need not be integer index Smallest index: 3 + 2 2 Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex This is the smallest possible index for reducible extremal subfactors (PP) Color the edges red and blue Every even vertex contacts two red edges and one blue Every odd vertex contacts one red and one blue

Wildness at 3+2 2 Reducible planar fixed point subfactors are more complicated They are determined by the group and the graph, not just the group They need not be integer index Smallest index: 3 + 2 2 Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex This is the smallest possible index for reducible extremal subfactors (PP) Color the edges red and blue Every even vertex contacts two red edges and one blue Every odd vertex contacts one red and one blue Any vertex-transitive color-preserving group of graph automorphisms produces a subfactor Infinitely many of these produce mutually nonisomorphic subfactors