S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä



Samankaltaiset tiedostot
d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

S Mittaustekniikan perusteet A Tentti

S Mittaustekniikan perusteet Y - Tentti

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka

LABORATORIOTYÖ 2 A/D-MUUNNOS

Sähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 9. Sähkömagneettiset häiriöt. Sähkömagneettiset häiriöt

S Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa

LABORATORIOTYÖ 2 A/D-MUUNNOS

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

A/D-muuntimia. Flash ADC

Signaalit ja järjestelmät aika- ja taajuusalueissa

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Analogiapiirit III. Tentti

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

Ongelmia mittauksissa Ulkoiset häiriöt

LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET

Kapasitiivinen ja induktiivinen kytkeytyminen

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

LOPPURAPORTTI Lämpötilahälytin Hans Baumgartner xxxxxxx nimi nimi

Vahvistimet ja lineaaripiirit. Operaatiovahvistin

Perusmittalaitteet 2. Yleismittari Taajuuslaskuri

EMC Mittajohtimien maadoitus

S Elektroniset mittaukset ja elektroniikan häiriökysymykset. 2 ov

6. Analogisen signaalin liittäminen mikroprosessoriin Näytteenotto analogisesta signaalista DA-muuntimet 4

Analogiapiirit III. Keskiviikko , klo , TS128. Operaatiovahvistinrakenteet

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

11. kierros. 1. Lähipäivä

521124S Anturit ja mittausmenetelmät (5 op/3 ov) Koe

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

Tiedonkeruu ja analysointi

83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset

Elektroniikka, kierros 3

Signaalien datamuunnokset

Signaalien datamuunnokset. Digitaalitekniikan edut

Tiedonkeruu ja analysointi

ELEC-C5070 Elektroniikkapaja (5 op)

Signaalien datamuunnokset. Näytteenotto ja pito -piirit

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

Elektroniikan perusteet, Radioamatööritutkintokoulutus

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4. LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

20 Kollektorivirta kun V 1 = 15V Transistorin virtavahvistus Transistorin ominaiskayrasto Toimintasuora ja -piste 10

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT

Vahvistimet. Käytetään kvantisointi alue mahdollisimman tehokkaasti Ei anneta signaalin leikkautua. Mittaustekniikka

S SÄHKÖTEKNIIKKA Kimmo Silvonen

Sähkömagneettiset häiriöt. Sähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 8

S Mittaustekniikan perusteet A. Esiselostustehtävät Erityisesti huomioitava

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

Perusmittalaitteet 3. Yleismittari. Mittaustekniikan perusteet / luento 5. Digitaalinen yleismittari. Digitaalinen yleismittari.

Pinces AC-virtapihdit ampèremetriques pour courant AC

Fluke 279 FC -yleismittari/lämpökamera

Spektri- ja signaalianalysaattorit

Energianhallinta. Energiamittari. Malli EM10 DIN. Tuotekuvaus. Tilausohje EM10 DIN AV8 1 X O1 PF. Mallit

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

Sähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 9. Sähkömagneettiset häiriöt. Sähkömagneettiset häiriöt

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita.

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

a) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim.

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä.

RADIOTEKNIIKKA 1 HARJOITUSTYÖ S-2009 (VERSIO2)

1. Mittausjohdon valmistaminen 10 p

S Elektroniikan häiriökysymykset. Laboratoriotyö 1

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

1 Olkoon suodattimen vaatimusmäärittely seuraava:

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet

Energian hallinta. Energiamittari. Malli EM23 DIN. Tuotekuvaus. Tilausohje EM23 DIN AV9 3 X O1 PF. Mallit. Tarkkuus ±0.5 RDG (virta/jännite)

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Tietoliikennesignaalit & spektri

Pinces AC/DC-virtapihdit ampèremetriques pour courant AC

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Signaalien datamuunnokset

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti

1. Tasavirtapiirit ja Kirchhoffin lait

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

FYSP105 / K3 RC-SUODATTIMET

EMC:n perusteet. EMC:n määritelmä

TDC-CD TDC-ANTURI RMS-CD MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. TDC-CD_Fin.doc / BL 1(5)

S SÄHKÖTEKNIIKKA Kimmo Silvonen

Pinces AC/DC-virtapihti ampèremetriques pour courant AC

Laitteita - Yleismittari

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

KÄYTTÖOPAS. PIHTIVIRTAMITTARI AC/DC Malli Kaise E

S Elektroniset mittaukset ja elektroniikan häiriökysymykset. Petri Kärhä 27/01/2004 Luento 1: Anturit ja mittausvahvistimet 1

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:

DATAFLEX. Vääntömomentin mittausakselit DATAFLEX. Jatkuvan päivityksen alaiset tiedot löytyvät online-tuoteluettelostamme, web-sivustosta

Sisällysluettelo. Dokumentin tiedot

2003 Eero Alkkiomäki (OH6GMT) 2009 Tiiti Kellomäki (OH3HNY)

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

Transkriptio:

S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä 3. Selosta lyhyesti eri kohinamekanismit sekä miten kussakin tapauksessa kohinaa voidaan pienentää. 4. Luettele menetelmiä joiden avulla voidaan parantaa signaali-kohina suhdetta. Oletetaan että sähköisesti kytkeytyvät häiriöt on jo eliminoitu. (1 piste/menetelmä) 5. Keskiarvoistus mittaustekniikassa. 6. Selitä korrelaatiofunktion periaate. Miten auto- ja ristikorrelaatioita voidaan käyttää mittaustekniikassa? 7. Laske oheisen operaatiovahvistinkytkennän ulostulossa näkyvä kohinajännitteen tehollisarvo. R 1 = 1 kω, R = 1 MΩ, C = 5 pf, T = 3 K, k = 1,38 1-3 J/K. Operaatiovahvistimen kohinajännite- ja kohinavirtatiheys ovat e n = nv/ Hz ja i n = 1 pa/ Hz, muuten voit olettaa sen ideaaliseksi. Kohinakaista B on kytkennän rajataajuus f kertaa 1,57. C R R 1 8. Oheisen operaatiovahvistinkytkennän avulla mitataan ilmanpainetta (referenssivirtalähdettä ei piirretty, ei tarvitse huomioida). Paineanturin resistanssi riippuu paineesta kaavan R S = R + β (p-p ) mukaan, jossa R = 1 kω, β = 1, Ω/Pa ja p = 1 kpa. Operaatiovahvistimen kohinajännite- ja kohinavirtatiheys ovat e n = 5 nv/ Hz ja i n =,4 pa/ Hz, muuten voit olettaa sen ideaaliseksi. T = 3 K, k = 1,38 1 3 J/K. Laske: a) ulostulossa näkyvä kohinajännitetiheys (V/ Hz), kun p = 11 kpa, (4 pist.) b) paine p, jolla saavutettaisiin kohinaoptimi. ( pist.) 4/6/4 1 (1) PK

p R k R S R 1 1k 9. Ohessa on anturi-mittausvahvistinkytkentä, jossa R S = 1 kω, R 1 = 1 kω ja R = 1 kω. Operaatiovahvistimen jännitekohinatiheys on e n = 1 nv/ Hz ja virtakohinatiheys i n = 1 pa/ Hz. Kytkentä on lämpötilassa T = C. k = 1,38 1-3 J/K. a) Laske ulostulossa näkyvä kohinajännitetiheys (4 p). b) Miten kohinaa voisi pienentää vaikuttamatta signaalin tasoon, kun käytetään samaa anturia ja mittauskytkentää ( p). anturi R S R U S R 1 1. Tarkastellaan oheisen kuvan mukaista kytkentää. a) Johda U :n lauseke. Termomuuntajan lähtö on muotoa U = kuin + at, missä T on ulkoinen lämpötila. Oletetaan, että k 1 k ja a 1 a. DC-vahvistimen vahvistus oletetaan suureksi. b) Kuvan mukaisen termomuuttajan ottoon syötetään tasalatvaisia pulsseja, joiden leveys on α, jakson pituus T = 1 ms sekä pulssin korkeus U = 1 mv. Kuinka lyhyt voi α enintään olla, jotta epätarkkuus olisi pienempi kuin 1 %, kun tiedetään, että ACvahvistimen SLEW RATE on.5 V/µs. AC-input jännite U 1 = mittaustermomuuttaja = balansoiva termomuuttaja 1 + - + ACvahv. DCvahv. U U3 mittari U1 U - takaisinkytkentä virta 11. Kerro ongelmia/ilmiöitä (6 kpl), jotka voivat aiheuttaa virhettä pienten virtojen (alle 1 na) mittauksissa sekä miten niiden vaikutusta voidaan pienentää. 4/6/4 (1) PK

1. Jaksollisen signaalin signaali-kohina suhdetta parannetaan laskemalla keskiarvoa useista mittauksista. a) Johda kaava S/N-suhteen paranemiselle, kun keskiarvo lasketaan N:stä mittauksesta. b) Montako desibeliä S/N-suhde paranee jos N=1? c) Miten tilanne muuttuu, jos signaaliin on summautunut valkoisen kohinan sijaan 1/fkohinaa? 13. Selitä lyhyesti: a) raekohina, (syntyminen ja kaava) b) kohinaluku, (määritelmä) c) kohinakaista. 14. a) Selitä minkälaisia ovat amplitudi- ja taajuusmoduloitujen signaalien spektrit. (3 p.) b) Määrittele kohinakaistanleveys ja laske se 1-napaiselle RC-alipäästösuodattimelle. (3 p.) 15. Kapasitiivisesti kytkeytyvien häiriöiden torjunta. 16. Induktiivisesti kytkeytyvien häiriöiden torjunta. 17. Sähkökentän voimakkuuden mittaus ja mittauksen virhelähteet. 18. Miten lähikentässä tapahtuva kapasitiivinen ja induktiivinen kytkeytyminen eroavat toisistaan? Miten niitä voi mitata? 19. Piirrä ja selosta esimerkin avulla kelluva johteella suojattu (GUARD) mittausjärjestelmä.. Hetkelliset ylijännitteet sähköverkossa ja niiden vaimentaminen elektroniikkalaitteiden sähkönsyötössä. 1. Selosta kelluvan, johteella suojatun (guard) mittausjärjestelmän rakenne ja toimintaperiaate. Esitä esimerkki kyseisen mittauslaitteen oikeasta käytöstä.. Kahden metallisen laitekotelon välillä vallitsee noin 1 V, 5 Hz häiriöjännite (maapotentiaaliero). Koteloiden etäisyys on noin 1 metriä. Esitä ne tavat (1/ pistettä per tapa), joilla signaali välitetään kotelosta toiseen häiriöttä. 3. Selosta kahden laitteen välisen signaaliyhteyden (noin 1 metriä) järjestämiskeinot, kun kyseisten laitteiden laiterunkojen (koteloiden) välillä vallitsee noin 1 voltin verkkotaajuinen (5 Hz) häiriöjännite. (Keinoja on noin kpl. Arvostelussa,5 p/hyväksytty keino, kuitenkin max 6p). 4. Elektroniikkalaitteen sähkömagneettinen suojaus laitekoteloinnilla. 5. Laske pääte- ja esivahvistimien välille muodostuva häiriöjännite kuvan mukaisessa tapauksessa. Johtimen AB poikkipinta-ala on,1 mm, pituus 5 cm, ρ(cu)=,175 µωm. 4/6/4 3 (1) PK

V 1,1 V 1 V, 1 A S 3 V 5 Hz 1 V A 1 mf B Päätevahv. Esivahv. 6. Laske pääte- ja esivahvistimien välille muodostuva häiriöjännite kuvan mukaisessa tapauksessa. Johtimen AB poikkipinta-ala on,1 mm, pituus 5 cm, ρ(cu)=,175 µωm. V 1,1 V 1 V, 1 A S 3 V 5 Hz 1 V A 1 mf B Päätevahv. Esivahv. 7. Laske oheisen piirin CMRR tasajännitteellä. Uin 1k 1.5k 98k + - 1M 8. Kuinka suuri läpivientikondensaattori tarvitaan DC-johtoon, jos halutaan 6 db:n vaimennus (verrattuna tapaukseen ilman kondensaattoria) 15 MHz:n taajuudella? Häiriögeneraattorin sisäinen vastus R S = 5 Ω ja kuormavastus R L = 5 Ω. R S C R L U h U g 9. Selosta pyyhkäisevän ja Fourier-spektrianalysaattorin toimintaperiaate ja ominaisuudet. 3. Tyypilliset AD/DA-muuntimien muunnosvirheet (6 kpl). 31. Punnitsevan A/D-muuntimen toiminta ja ominaisuudet. 3. Mitä on laskostuminen (alias ilmiö)? Kuvaile laskostumisilmiö aika- ja taajuusalueissa. 4/6/4 4 (1) PK

33. Laitekotelon suojaaminen ohuella johteella. 34. Dual-slope periaatteella toimivan DVM:n sisäisen vertailujännitteen (1 V) epätarkkuus on 1-5, integroinnin stabiilisuus on 1 µv/s ja oskillaattorin stabiilisuus 1-4 /s. a) Kuinka tarkasti laitteella voi mitata 1 V jännitteen, kun mittausaika on 1 ms? b) Oletetaan, että häiriön vaikutus (ottoon redusoituna) on 5 1-4, jos mittausaika on 1 ms. Oletetaan lisäksi, että häiriön vaikutus on kääntäen verrannollinen mittausaikaan. Kuinka pitkän mittausajan valitsisit? 35. R-R vastus-tikapuuverkko D/A -muuntimen rakenne ja ominaisuudet. 36. Oheisessa kuvassa on määritelty kaksi signaalia x(t) ja y(t). x(t) 4 3 1 y(t) 1 3 4 5 6 7 8 t 1 3 4 5 6 7 8 t a) Hahmottele signaalin x(t) autokorrelaatiofunktio. b) Hahmottele signaalien välinen ristikorrelaatiofunktio ψ xy. 4 3 1 c) Mikä vaikutus b)-kohdassa hahmottelemaasi ristikorrelaatiofunktioon on sillä, jos vaihdat funktiot keskenään, eli lasketkin ristikorrelaation ψ yx? 37. Tarkastellaan oheisen kuvan mukaista jaksollista pulssijonoa. a) Hahmottele signaalin autokorrelaatiofunktio ψ(τ). b) Miten autokorrelaatiofunktio muuttuu, jos signaaliin summautuu kohinaa? U/µV 4 1-1 -8-6 -4 - -1 - -3-4 -5 4 6 8 1 1 t/ms 38. Miten määritellään A/D-muuntimen efektiivinen bittien lukumäärä? 4/6/4 5 (1) PK

39. Tarkastellaan oheisen kuvan mukaista pulssijonoa. a) Hahmottele pulssijonon amplitudispektri. b) Miten spektri muuttuu, jos kyseessä on vain yksi pulssi? c) Millainen on alipäästösuodatetun (RC-suodatin) pulssijonon spektri? U/V 4 1-1 -8-6 -4 - -1 4 6 8 1 1 t/ms - -3-4 -5 4. Rinnakkais-D/A-muuntimen toiminta ja ominaisuudet. 41. Selitä korrelaatiofunktion periaate. Miten auto- ja ristikorrelaatioita voidaan käyttää mittaustekniikassa? 4. Käytössäsi on kaksitoistabittinen A/D-muunnin, jonka referenssijännite U ref = 5 V. Muunninta käytetään yksipuoleisella käyttöjännitteellä (>5 V) ja ulostuleva digitaalisana luetaan mikroprosessorille. a) Mikä on pienin signaalin muutos [V], jonka voit järjestelmällä mitata? a) Testaat muunnintasi sinisignaalilla jonka amplitudi on 3, V huipusta huippuun. Signaali on biasoitu siten, että alin arvo on U min = V. Kuinka suuri voi olla parhaimmillaan prosessorille luettavan signaalin signaali-kohina suhde [db] tässä mittauksessa? 43. Analogisesta signaalista otetaan näytteenotto- ja pitopiirillä näytteitä 5 µs välein. Näytteitä luetaan prosessorille 8-bittisellä A/D-muuntimella 1 ms ajan, ja saaduille pisteille tehdään diskreetti Fourier-muunnos. a) Miten saatu spektri eroaa signaalin todellisesta spektristä? (Mainitse vähintään kolme epäideaalisuutta, 1 piste/ero). b) Systeemillä luetaan signaalia jonka signaali-kohina suhde SNR = 6 db. Paljonko SNR voi parhaimmillaan olla muuntimen jälkeen? (Voit olettaa muunninsysteemin termiset kohinat olemattomiksi. Oletetaan lisäksi, että signaalin amplitudi on mahdollisimman suuri, kuitenkin niin ettei signaali säröydy). 44. Määrittele lyhyesti a) A/D-muuntimen efektiivinen bittien lukumäärä 4/6/4 6 (1) PK

b) Konvoluutio 45. Käytössäsi on 8-bittinen A/D-muunnin. Muuntimelle tulee sinisignaalia, jonka SNR = 48dB. a) Kuinka hyvä voi signaali/kohina-suhde korkeintaan olla muuntimen jälkeen? b) Mikä on ulostulevan signaalin efektiivinen bittien lukumäärä? 46. Pienikohinaisella esivahvistimella vahvistetaan signaalia, jonka lähteen resistanssi R S = Ω. Vahvistimen ottoimpedanssi on käytännössä ääretön, kohinajännitetiheys e n = nv/ Hz ja kohinavirtatiheys i n =.5 pa/ Hz. Kytkennän kohinaominaisuuksia parannetaan vahvistimen ottopuolelle kytkettävän impedanssisovitusmuuntajan avulla. T = 3 K, k = 1.38 1-3 J/K. a) Määritä sisäänmenoon asetettavan impedanssisovitusmuuntajan käämien kierrossuhde (1:N), jolla saavutetaan optimaaliset kohinaominaisuudet (Huom. kerro myös kummalle puolelle kyseiset N kierrosta tulee). p. b) Laske kohinajännite vahvistimen ulostulossa, kun vahvistimen vahvistus A = 1 ja efektiivinen kaistanleveys B = 1 Hz. p. c) Miten suuri olisi ulostulon kohinajännite, jos vahvistin kytkettäisiin suoraan Ω:n lähteeseen ilman muuntajaa? 1 p. Miksi tämä tilanne on huonompi vaikka kohina on pienempi? 1 p. e ns e n R s U s 1:N i n Z i A U o e no R s ' = N R s 47. Miten näytteenottotaajuus vaikuttaa A/D-muuntimesta saatavaan kuvaukseen jatkuvasta signaalista? 48. a) Laske oheisen piirin CMRR tasajännitteellä. (4 p.) U in 1 k Ω + A - k Ω 99 k Ω 1 MΩ b) Oletetaan että piiriä käytetään instrumentointivahvistimena. Mikä on piirin perimmäinen ongelma tässä mittaustarkoituksessa ja miten sitä voisi vähentää? 4/6/4 7 (1) PK

49. a) Määrittele ja laske kohinakaistanleveys 1 napaiselle RC-alipäästösuodattimelle. b) Operaatiovahvistimen ulostulon kohinaspektri koostuu sekä valkoisesta- että 1/fkohinasta kaavan e( f ) f n = e (1 + ) mukaan. Vahvistimen kohinakaista on rajoitettu f välille 1 1 Hz. Laske mittarilla näkyvä kohinajännite. f = 15 Hz. 5. Määrittele lyhyesti: a) A/D-muuntimen efektiivinen bittien lukumäärä? b) Kohinaluku c) Sähkömagneettinen pulssi (EMP) e = 1 V / Hz ja µ 51. Selitä konvoluution periaate. Miten mittalaitteen (esim. spektrianalysaattori) konvoluutio vaikuttaa mittaustulokseen ja miten sen vaikutus voidaan minimoida? 5. a) Operaatiovahvistimen ulostulon kohinaspektri koostuu sekä valkoisesta- että 1/fkohinasta kaavan e( f ) f n = e (1 + ) mukaan. Vahvistimen kohinakaista on rajoitettu f välille 1-1 Hz. Mittaat volttimittarilla 5 Hz sinimuotoista signaalia operaatiovahvistimen lähdöstä ja saat lukeman 5 mv RMS. Laske mittauksen signaalikohina suhde. e = 1 V / Hz ja f =75 Hz. (3 p.) µ b) Kuvan 3 operaatiovahvistinkytkennän avulla mitataan ilmanpainetta (referenssivirtalähdettä ei piirretty, ei tarvitse huomioida). Paineanturin resistanssi riippuu paineesta kaavan R s = R + b (p-p ) mukaan, jossa R = 1 kω, b = 1, Ω/Pa ja p = 1 kpa. Operaatiovahvistimen kohinajännite- ja kohinavirtatiheys ovat e n = 15 nv/ Hz ja i n = 3 pa/ Hz, muuten voit olettaa sen ideaaliseksi. T = 3 K, k = 1,38 1-3 J/K. Laske ulostulossa näkyvä kohinajännitetiheys (V/ Hz), kun p = 111 kpa (3 p.) p RS Kuva 3 R R1 k 1k 53. Tehtävänäsi on suunnitella elektroniikka, jolla voidaan lukea audiosignaali (f = 5 Hz 1 khz) prosessorille. Signaali on biasoitu siten, että sen keskiarvo on 5 V, ja signaali vaihtelee välillä 1 V. Lopputuloksen signaalikohinasuhteen on oltava parempi kuin 65 db. a) Minkätyyppiset A/D muuntimet tulevat kyseeseen? (1 p.) b) Miten muuntimen referenssijännite on mitoitettava? (1 p.) c) Kuinka monta bittiä muuntimeen tarvitaan?. ( p.) d) Miten muuntimen kellotaajuus kannattaa valita?. ( p.) 54. Kuvan mittaussillassa venymäliuska-anturin R 4 vastus vaihtelee välillä 1 1 Ω. Sillan ulostulo DV kytketään oheisen instrumentointivahvistimen sisäänmenoon (V 1, V ). 4/6/4 8 (1) PK

a) Millä välillä sillan ulostulojännite DV vaihtelee? b) Mitoita instrumentointivahvistin siten, että ulostulojännitteen V out maksimiarvo on.5 V. c) Mikä merkitys on instrumentointivahvistimen sisäänmenoissa olevilla yksikkövahvistimilla? 55. Selosta lyhyesti a) Mihin käytetään anti-alias-suodatinta? b) Miten näytteenottotaajuus vaikuttaa anti-alias-suodattimen suunnitteluun ja toteutukseen? c) Miten määritellään A/D-muuntimen efektiivinen bittien lukumäärä? 56. Tehtävänäsi on suunnitella elektroniikka, jolla voidaan lukea audiosignaali (f = 5 Hz 1 khz) prosessorille. Signaali on biasoitu siten, että sen keskiarvo on 1.5 V, ja signaali vaihtelee välillä 3 V. Lopputuloksen signaalikohinasuhteen on oltava parempi kuin 65 db. a) Minkätyyppiset A/D muuntimet tulevat kyseeseen? (1 p.) b) Miten muuntimen referenssijännite on mitoitettava? (1 p.) c) Kuinka monta bittiä muuntimeen tarvitaan?. ( p.) d) Miten muuntimen kellotaajuus kannattaa valita?. ( p.) 57. Digitaalipiirin tilanmuutos aiheuttaa tehonsyöttöjohtimeen 3 ma virtatason muutoksen 5 ns:ssa (kuva). a) Kuinka suuri on tästä aiheutuva häiriöjännite kun johtimen induktanssi L = 5 nh, eikä suodatinkondensaattoria ole? b) Mikä on tarvittavan suodatinkondensaattorin minimiarvo Cmin, kun edellä mainitun tilanmuutoksen aiheuttama jännitemuutos ei saa ylittää 5 millivolttia, joka on muiden piirien sietoisuuden kannalta suurin sallittu arvo? 4/6/4 9 (1) PK

58. Selitä lyhyesti a) Konvoluutio b) Anti-alias-suodatin 4/6/4 1 (1) PK